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Abstract: The objective of this manuscript is to present some new, improved aggregation operators for
the T-spherical fuzzy sets, which is an extension of the several existing sets, such as intuitionistic fuzzy
sets, picture fuzzy sets, neutrosophic sets, and Pythagorean fuzzy sets. In it, some new, improved
operational laws and their corresponding properties are studied. Further, based on these laws, we
propose some geometric aggregation operators and study their various relationships. Desirable
properties, as well as some special cases of the proposed operators, are studied. Then, based
on these proposed operators, we present a decision-making approach to solve the multi-attribute
decision-making problems. The reliability of the presented decision-making method is explored
with the help of a numerical example and the proposed results are compared with several prevailing
studies’ results. Finally, the superiority of the proposed approach is explained with a counter example
to show the advantages of the proposed work.

Keywords: multi-attribute decision making; aggregation operators; spherical fuzzy sets; interactive
geometric operators

1. Introduction

The term fuzzy set (FS) was developed by Zadeh [1] based on a characteristic function that
described the degree of membership of an element. Atanassov [2] established the theory of intuitionistic
fuzzy set (IFS) as a generalization of FS with the help of two characteristic functions, known as
membership and non-membership functions, describing the positive and negative aspects of an
element or object. In the framework of IFSs, there was a constraint on two characteristic functions,
in that their sum must not exceed the unit interval, which restricted the selection of membership
and non-membership grades. Accordingly, Atanassov and Gargov [3] extended the IFS to the
interval-valued intuitionistic fuzzy sets (IVIFSs), which contain the degrees of agreeing and disagreeing
as interval values instead of single digits. Keeping in mind the constraint on IFSs, Yager [4,5] introduced
a new generalization of IFSs, known as Pythagorean fuzzy set (PyFS), with a condition that the sum of
squares of membership and non-membership grades must not exceed the unit interval.

The frameworks of IFSs and PyFSs have importance in situations where the structure of FSs
fails to be applied. But these structures have their own limitations, as in the circumstances of voting
where opinion cannot be restricted to “yes” or “no” but some refusal degree and abstinence is also
involved. Therefore, Cuong [6,7] developed a novel concept of picture fuzzy sets (PFSs), which

Symmetry 2018, 10, 670; doi:10.3390/sym10120670 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0001-9099-8422
https://orcid.org/0000-0002-1438-6413
https://orcid.org/0000-0002-3871-3845
http://dx.doi.org/10.3390/sym10120670
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/12/670?type=check_update&version=2


Symmetry 2018, 10, 670 2 of 23

is based on four characteristic functions known as membership, non-membership, abstinence, and
refusal grades. Cuong’s structure of PFSs is diverse in nature but, similar to IFSs, there is also a
restriction in PFSs that the sum of all three membership grades must not exceed the unit interval. In the
above-stated environments, various researchers have constructed their methodologies for solving the
multi-attribute decision-making (MADM) problems, focusing on information measures, aggregation
operators, etc. For instance, Xu [8] presented some weighted averaging aggregation operators (AOs)
for intuitionistic fuzzy numbers (IFNs). Garg [9,10] presented some improved interactive AOs for IFNs.
Wang and Liu [11] gave interval-valued intuitionistic fuzzy hybrid weighted AOs based on Einstein
operations. Wang and Liu [12] presented some hybrid weighted AOs using Einstein norm operations
for IFNs. Wang et al. [13] presented some AOs to aggregate various interval-valued intuitionistic fuzzy
(IVIF) numbers (IVIFNs). Garg [14,15] presented generalized AOs using Einstein norm operations for
Pythagorean fuzzy sets. Xu and Xia [16] proposed induced generalized aggregation tools and applied
them in MADM. Garg and Kumar [17] presented some new similarity measures for IVIFNs based on
the connection number of the set pair analysis theory. However, apart from these, a comprehensive
overview of the different approaches under the IFSs, IVIFSs, PyFSs, etc., to solve MCDM problems are
summarized in [18–33].

Apart from the above theories, the concept of the spherical fuzzy sets (SFSs) has been introduced
by Mahmood et al. [34], which consists of three membership degrees with a condition that the sum of
squares of all degrees must not exceeds one. Further, the concepts of SFSs are extended to T-spherical
fuzzy sets T-SFSs, where there are no restrictions on their constants and, hence, T-SFSs can handle all
the situations where the frameworks of FSs, IFSs, PyFSs, PFSs, and SFSs failed. For this environment,
Mahmood et al. [34] presented some aggregation operators for T-SFSs. Later on, Ullah et al. [35]
presented the concept of the symmetry measures for handling the uncertainties under the T-SFSs
environment, and applied it to solve the decision-making problems. However, from the existing work,
it is noticeable that the existing AOs under the IFSs, PFSs, etc., have failed to handle the situations
under some certain cases. For instance, under the IFS environment, if we consider the two IFNs,
A = (0, nA) and B = (mB, nB) where mB, nA, nB represented degrees of membership grades that lies
between zero and one, by applying the geometric AOs, as defined in [36], to such numbers we then
get the aggregated numbers as (0, nA + nB − nAnB). Thus, the final aggregated value of membership
degree is zero, irrespective of value of mB. Similarly, for T-SFSs, if we assume A = (mA, 0, nA) and
B = (mB, iB, nB) then, using the geometric aggregation operators of PFSs [37,38] and T-SFSs [34], we
obtain the result of type (some value, 0, some value). This shows that the abstinence value of B is not
accounted for in aggregation. Further, by taking A = (0, 0, nA) and B = (mB, iB, nB), then using the
operators defined in [34,37,38], we get (some value, 0, some value). This shows that the membership
and abstinence value is not accounted for in aggregation. These examples clearly point out the
shortcomings that exist in the aggregation operators of PFSs and T-SFSs.

In order to overcome such shortcomings, and by utilizing the advantages of the T-SFSs over
the several other existing theories, in this manuscript we have presented some new, improved
geometric interactive aggregation operators. For it, firstly, we define some new operational
laws by adding the degree of the hesitation into the operations. To do this, the concept of
probability membership, non-membership, and heterogeneous are introduced and then some of
their desirable properties are studied. Then, based on these proposed operational laws, some weighted,
ordered weighted, and hybrid geometric aggregation operators, namely, T-spherical fuzzy weighted
geometric interaction averaging (T-SFWGIA), T-spherical fuzzy ordered weighted geometric interaction
averaging (T-SFOWGIA), and T-spherical fuzzy hybrid geometric interaction averaging (T-SFHGIA)
operators are introduced in the paper. The desirable properties of such operators are investigated in
detail. Then, based on such operators, we developed an algorithm for solving the decision-making
problem under the T-SFS environment. The practical utility of the proposed approach is demonstrated
through a numerical example, and comparative studies investigate the superiority of the approach.
Finally, a counter example is provided to show the supremacy of the proposed operators with respect
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to the existing operators. Therefore, motivated from it, the objectives of the paper are summarized
as follows:

(1) To propose some new operational laws based on the probability membership, non-membership,
and heterogeneous laws.

(2) To define some new, improved weighted geometric aggregation operators under the
T-SFSs environment.

(3) To develop an algorithm for solving the multi-attribute decision-making problems based on the
proposed operators.

(4) To check numerical applicability of the approach to a real-life case, and to compare the outcomes
with prevailing approaches.

To do so, the organization of this manuscript is summarized as follows: Section 2 gives a basic
overview of the basic concepts of IFSs, PFSs, SFSs, and T-SFSs; Section 3 deals with some new
multiplication operations laws and their corresponding weighed geometric AOs; inn Section 4, we
present a MADM approach for solving the decision-making problem by using the proposed AOs (here
the preferences related to each alternative are summarized in the form of T-SFS information); Section 5
presents a numerical example to illustrate the proposed approach and the comparative analysis; and
finally, Section 6 concludes the paper with some concluding remarks.

2. Preliminaries

In this section, we present some basic concepts related to IFS, PyFS, PFS, SFS, and T-SFS over the
universal set X.

Definition 1. [2] An IFS on X consists of membership and non-membership functions defined as

P = {〈 x, m(x), n(x)〉 | x ∈ X}

such that m, n : X → [0, 1] with a condition 0 ≤ m(x) + n(x) ≤ 1 ∀ x ∈ X Further, the degree of refusal of x
in P is r(x) = 1− (m(x) + n(x)) and the pair (m, n) is regarded as an IFN.

Definition 2. [4] A Pythagorean fuzzy set (PyFS) on X consists of membership and non-membership functions
defined as

P = {〈 x, m(x), n(x)〉 | x ∈ X}

such that m, n : X → [0, 1] with a condition that 0 ≤ m2(x) + n2(x) ≤ 1 ∀ x ∈ X. Further, the degree of
refusal of x in P is r(x) =

√
1− (m2(x) + n2(x)) and the pair (m, n) is regarded as a Pythagorean fuzzy

number (PyFN).

Definition 3. [6] A picture fuzzy set (PFS) on X consists of membership, abstinence, and non-membership
functions defined as

P = {〈 x, m(x), i(x), n(x)〉 | x ∈ X}

such that m, i, n : X → [0, 1] with a condition that 0 ≤ m(x) + i(x) + n(x) ≤ 1 ∀ x ∈ X Further, the
degree of refusal of x in P is r(x) = 1− (m(x) + i(x) + n(x)) and (m, i, n) is regarded as a picture fuzzy
number (PFN).

Definition 4. [34] A spherical fuzzy set (SFS) on X consists of membership, abstinence, and non-membership
functions defined as

P = {〈 x, m(x), i(x), n(x)〉 | x ∈ X}

such that m, i, n : X → [0, 1] with a condition that 0 ≤ m2(x) + i2(x) + n2(x) ≤ 1 ∀ x ∈ X Further, the
degree of refusal of x in P is r(x) =

√
1− (m2(x) + i2(x) + n2(x)) and (m, i, n) is regarded as a spherical

fuzzy number (SFN).
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Definition 5. [34] A T-SFS on X consists of membership, abstinence, and non-membership functions defined as

P = {〈 x, m(x), i(x), n(x)〉 | x ∈ X}

such that m, i, n : X → [0, 1] with a condition that 0 ≤ mt(x) + it(x) + nt(x) ≤ 1 ∀ x ∈ X t = 1, 2, . . . k.
Further, the degree of refusal of x in P is r(x) = t

√
1− (mt(x) + it(x) + nt(x)) and (m, i, n) is regarded as a

T-spherical fuzzy number (T-SFN).

Definition 6. [34] Let P = (m, i, n) be a T-SFS. Then the score value of P is defined as

SC(P) = mt − nt

and accuracy function is defined as
AC(P) = mt + it + nt

The one which has a greater score is the superior value. If the score of two T-SFNs is equal, then we rank them
using the accuracy value, and a number is called superior if it has greater accuracy. If again accuracy values of
two T-SFNs become equal, then both numbers are considered as similar.

Definition 7. [39] Let P = (mP, nP) and P′ = (mP′ , nP′) be two IFNs. Then the existing operational laws
between them are defined as

(1) P⊗ P′ = ((1− nP)(1− nP′)− (1−mP − nP)(1−mP′ − nP′)), 1− (1− nP)(1− nP′))

(2) Pλ = ((1− nP)
λ − (1−mP − nP)

λ, 1− (1− nP)
λ).

Definition 8. For any collection of T-SFNs Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k), [34] defined the T-spherical

fuzzy weighted geometric aggregation operator (T-SFWGA) as

T− SFWGAw(P1, P2, . . . . . . , Pk) =


t

√
k
∏
j=1

(mt
j + itj )

wj −
k
∏
j=1

(itj )
wj ,

k
∏
j=1

(ij)
wj ,

t

√
1−

k
∏
j=1

(1− nt
j )

wj

 (1)

where w = (w1, w2, . . . . . . wk)
T be the weighting vector of T-SFNs Pj with wj ∈ (0, 1] and ∑k

j=1 wj = 1 and
t = 1, 2, . . . . . . k.

3. Proposed Operational Laws and Aggregation Operators

This section is divided into two subsections. One presents the improved operations laws for the
T-SFSs, while other presents some improved geometric AOs under the T-SFS environment.

3.1. Improved Operational Laws

In this section, we present some new, improved operations laws by incorporating the features of
the degree of refusal into the analysis.

Definition 9. Let P1 =
(
mP1 , iP1 , nP1

)
and P2 =

(
mP2 , iP2 , nP2

)
be two T-SFNs. Then, the proposed operational

laws are defined as

(1) P1 ⊗ P2 =

 t
√
(1− nP

t
1)(1− nP

t
2)− (1−mt

P1
− iP

t
1 − nP

t
1)(1−mt

P2
− iP

t
2 − nP

t
2)− iP

t
1iP

t
2,

t
√

1− (1− iP
t
1)(1− iP

t
2),

t
√

1− (1− nP
t
1)(1− nP

t
2)


(2) Pλ =

(
t
√(

1− nt
P
)λ −

(
1−mt

P − it
P − nt

P
)λ − itλ

P , t
√

1−
(
1− it

P
)λ, t

√
1−

(
1− nt

P
)λ
)
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For two T-SFNs, P1 =
(
mP1 , iP1 , nP1

)
and P2 =

(
mP2 , iP2 , nP2

)
, new operations of multiplication

can be construed from four aspects, such as between:

(1) Two non-membership functions of different T-SFNs.
(2) Two membership functions of different T-SFNs.
(3) Membership and non-membership functions of different T-SFNs.
(4) Two neutral functions of different T-SFNs.

These multiplication rules are of the form:

1. E
(
nP1 , nP2

)
= nP1 .nP2 . Therefore, nP1⊗P2 = t

√(
nP

t
1 + nP

t
2 − nP

t
1nP

t
2
)

is considered as a probability
non-membership (PN) function operator, that is,

PN
(
nP1 , nP2

)
= t
√

nP
t
1 + nP

t
2 − nP

t
1nP

t
2

2. E
(
mP1,mP2

)
=
(
mP1 + iP1

)
.
(
mP1 + iP1

)
. Therefore, mP1⊗P2 =

t

√
1−

(
1−

(
mt

P1
+ itP1

))(
1−

(
mt

P2
+ itP2

))
is considered as a probability membership (PM) function operator, that is,

PM
(
mP1 , mP2

)
= t
√

1−
(
1−mP

t
1 − iP

t
1
)(

1−mP
t
1 − iP

t
1
)

3. I
(
nP1 , mP2

)
= t
√(

mP
t
2 + iP

t
2
)
nP

t
1.I
(
nP1 , mP2

)
is considered as a probability heterogeneous (PH)

function operator, that is,

PH
(
nP1 , mP2

)
= t
√

mP
t
2nP

t
1 + iP

t
2nP

t
1

4. I
(
iP1 , iP2

)
= iP1 .iP2 . Therefore, iP1⊗P2 = t

√(
iP

t
1 + iP

t
2 − iP

t
1iP

t
2
)
.iP1⊗P2 is considered as a probability

neutral (PNe) function operator, that is,

PNe
(
iP1 , iP2

)
= t
√

iP
t
1 + iP

t
2 − iP

t
1iP

t
2

From the proposed laws, it is observed that the several existing laws can be considered as a special
case of it. For instance,

(i) For t = 2, above operations become valid for SFNs.
(ii) For t = 1, above operations become valid for PFNs.
(iii) For t = 2 and i = 0, above operations become valid for PyFNs.
(iv) For t = 1 and i = 0, above operations become valid for IFNs.

Further, it is observed that for the above defined PN, PH satisfies the following properties:

Theorem 1. Let P = 〈mP, iP, nP〉, Q =
〈
mQ, iQ, nQ

〉
, R = 〈mR, iR, nR〉 and D = 〈mD, iD, nD〉 be four

T-SFNs. Then, we have:

(1) Boundedness: PN(1, 1) = 1, PN(0, 0) = 0, 0 ≤ PN
(
nP, nQ

)
≤ 1.

(2) Monotonicity: If nP ≤ nR and nQ ≤ nD. Then PN
(
nP, nQ

)
≤ PN(nR, nD).

(3) Commutativity: PN
(
nP, nQ

)
= PN

(
nQ, nP

)
.

Proof.
(1) For two T-SFNs, P and Q, and by definition of PN, we have PN

(
nP, nQ

)
= t
√

nt
P + nt

Q − nt
pnt

Q.

Thus, we have PN(1,1) = 1 and PN(0,0) = 0. Further, since nP, nQ ∈ [0, 1] and t ∈ Z, which implies that
nt

P + nt
Q − nt

Pnt
Q = 1− (1− nt

P)(1− nt
Q) ≤ 1. Also, PN(nP, nQ) ≥ 0. Therefore, 0 ≤ PN(nP, nQ) ≤ 1.
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(2) Since nP ≤ nR and nQ ≤ nD. Thus, for any t ∈ Z, we get 1− nt
P ≥ 1− nt

R and 1− nt
Q ≥ 1− nt

D,
and hence 1− (1− nt

P)(1− nt
Q) ≤ 1− (1− nt

R)(1− nt
D). Thus, PN

(
nP, nQ

)
≤ PN(nR, nD) holds.

(3) Holds trivial. �

Theorem 2. Let P = 〈mP, iP, nP〉, Q =
〈
mQ, iQ, nQ

〉
, R = 〈mR, iR, nR〉 and S = 〈mS, iS, nS〉 be four T-SFN.

Then:

(1) Boundedness: PH(1, 0, 1) = 1, PH(0, 0, 0) = 0, 0 ≤ PH(mP, iP, nP) ≤ 1.
(2) Monotonicity: If mP ≤ mR, iP ≤ iR and nQ ≤ nS. Then PH

(
mP, iP, nQ

)
≤ PH(mR, iR, nS) and if

nP ≤ nR, iQ ≤ iS and mQ ≤ mS. Then PH
(
nP, iQ, nQ

)
≤ PH(nR, iS, mS)

(3) Commutativity: PH(mP, iP, nP) = PH(nP, iP, mP).

Proof. Similar to Theorem 1, so we omit here.

Theorem 3. If P and Q are two T-SFNs and λ > 0 is a real number, then P⊗Q and Pλ are also T-SFNs.

Proof. Follows from the definition easily, so we omit here.

Theorem 4. Let P1 = 〈m, i, n〉, P2 = 〈m′, i′, n′〉 be a T-SFNs, λ, λ1, λ2 > 0 be real numbers. Then we have

(1) P1 ⊗ P2 = P2 ⊗ P1

(2) (P1 ⊗ P2)
λ = Pλ

1 ⊗ Pλ
2

(3) Pλ1
1 ⊗ Pλ2

1 = Pλ1+λ2
1 .

Proof. Follows from the definition easily, so we omit here.

3.2. Aggregation Operators

In this section, based on the above proposed operational laws, we have proposed some series of
geometric interactive improved AOs, namely, T-SFWGIA, T-SFOWGIA, and T-SFHGIA, under the
T-SFS environment.

Definition 10. For any collection, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k) of T-SFNs. If the mapping

T − SFWGIAw(P1, P2, . . . . . . , Pk) = ⊗k
j=1P

wj
j (2)

then T − SFWGIAw is called a T-Spherical fuzzy weighted geometric interactive averaging (T-SFWGIA)
operator, where w = (w1, w2, . . . . . . wk)

T is the weighting vector of Pj with wj ∈ (0, 1] and ∑k
j=1 wj = 1.

Theorem 5. For any collection of T-SFNs, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k), the aggregated values

obtained by using Definition 10 is still T-SFNs and is given by:

T − SFWGIAw(P1, P2, . . . . . . , Pk) =


t

√
k

∏
j=1

(1− nt
j)

wj −
k

∏
j=1

(1−mt
j − itj − nt

j)
wj −

k
∏
j=1

(it
j)

wj ,

t

√
1−

k
∏
j=1

(1− it
j)

wj , t

√
1−

k
∏
j=1

(1− nt
j)

wj



Proof. For any collection of T-SFNs, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k), we shall proof the result by

induction on k.



Symmetry 2018, 10, 670 7 of 23

For k = 1, we have:

T − SFWGIAw(P1) = Pw1
1 = (m1, i1, n1)

=

(
t
√
(1− nt

1)
1 − (1− (mt

1 + it
1 + nt

1))
1 − (it

1)
1, t
√

1− 1 + (it
1)

1, t
√

1− 1 + (nt
1)

1
)

Thus, hold for k = 1. Now, the result holds for n = m:

T − SFWGIAw

(
P1, P2, . . . . . . , Pm

)
=


t

√
m
∏
j=1

(
1− nt

j

)wj −
m
∏
j=1

(
1−mt

j − itj − nt
j

)wj −
m
∏
j=1

(it
j)

wj ,

t

√
1−

m
∏
j=1

(
1− it

j

)wj
, t

√
1−

m
∏
j=1

(
1− nt

j

)wj


Then for k = m + 1, we have:

T − SFWGIAw(P1, P2, . . . . . . . . . , Pm+1) = ⊗m+1
j=1 P

wj
j

= T − SFWGIAw(P1, P2, . . . . . . . . . , Pm)⊗ Pwm+1
m+1

=

 t
√

∏m
j=1 (1− nt

j)
wj −∏m

j=1 (1−mt
j − itj − nt

j)
wj −∏m

j=1 (i
t
j)

wj ,

t
√

1−∏m
j=1 (1− it

j)
wj , t
√

1−∏m
j=1 (1− nt

j)
wj


⊗

 t
√
(1− nt

j)
wj − (1−mt

j − itj − nt
j)

wj − (it
j)

wj ,

t
√

1− (1− it
j)

wj , t
√

1− (1− nt
j)

wj



=


t

√
m+1
∏
j=1

(1− nt
j)

wj −
m+1
∏
j=1

(1−mt
j − itj − nt

j)
wj −

m+1
∏
j=1

(it
j)

wj ,

t

√
1−

m+1
∏
j=1

(1− it
j)

wj , t

√
1−

m+1
∏
j=1

(1− nt
j)

wj


So, the result holds for k = m + 1. Therefore, by the principle of mathematical induction, the

result holds for all k ∈ Z+. �

Theorem 6. If Pj =
(
mj, ij, nj

)
, j = 1, . . . , k are T-SFNs. Then the aggregated value using the T-SFWGIA

operator is also T-SFN.

Proof. Since Pj =
(
mj, ij, nj

)
is a T-SFN, j = 1, . . . , k, we have 0 ≤ mj, ij, nj ≤ 1. So 0 ≤ mt

j, it
j , nt

j ≤ 1
and 0 ≤ mt

j + it
j + nt

j ≤ 1. Then:

≤
k

∏
j=1

(1− nt
j)

wj −
k

∏
j=1

(1−mt
j − itj − nt

j)
wj −

k
∏
j=1

(it
j)

wj ≤ 1

0 ≤ 1−
k

∏
j=1

(1− it
j)

wj ≤ 1

0 ≤ 1−
k

∏
j=1

(1− nt
j)

wj ≤ 1

Now:

t

√√√√√√√√
k

∏
j=1

(1− nt
j)

wj −
k

∏
j=1

(1− (mt
j + itj + nt

j))
wj −

k
∏
j=1

(it
j)

wj+

1−
k

∏
j=1

(1− it
j)

wj + 1−
k

∏
j=1

(1− nt
j)

wj

= t

√
2−

k
∏
j=1

(1− (mt
j + itj + nt

j))
wj −

k
∏
j=1

(it
j)

wj −
k

∏
j=1

(1− it
j)

wj ∈ [0, 1]
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Thus, T − SFWGIAw(P1, . . . . . . . . . , Pk) is T-SFN.
Further, it is observed that the proposed operator satisfies certain properties, which are listed as

follows: �

Theorem 7. If all T-SFNs, Pj(j = 1, 2, . . . , k), are equal to P0, where P0 is another T-SFN, then

T − SFWGIAw(P1, . . . . . . . . . , Pk) = P0

Proof. Assume that Pj = P0 = (m0, i0, n0) is a T-SFN ∀j. Then, by definition of T-SFWGIA operator,
we have:

T − SFWGIAw(P1, P2, . . . , Pk) =


t

√
k

∏
j=1

(1− nt
j)

wj −
k

∏
j=1

(1− (mt
j + itj + nt

j))
wj −

k
∏
j=1

(it
j)

wj ,

t

√
1−

k
∏
j=1

(1− it
j)

wj , t

√
1−

k
∏
j=1

(1− nt
j)

wj


=


t

√
(1− nt

j)
∑k

j=1 wj − (1− (mt
j + itj + nt

j))
∑k

j=1 wj − (it
j)

∑k
j=1 wj ,

t

√
1− (1− it

j)
∑k

j=1 wj , t

√
1− (1− nt

j)
∑k

j=1 wj


= (m0, i0, n0)

= P0

Theorem 8. If Pj =
(
mj, ij, nj

)
is a T-SFN and

PL =
(
max

{
0,
(
min

(
mj + ij + nj

)
−min ij −max nj

)}
, min ij, max nj

)
,

PU =
(
max

(
mj + ij + nj

)
−max ij −min nj, max ij, min nj

)
. Then, we have

PL ≤ T − SFWGIAw(P1, . . . . . . , Pk) ≤ PU

Proof is straightforward.

Theorem 9. For a collection of two different T-SFNs, Aj = (mAj , iAj , nAj), (j = 1, 2, . . . , k) and Bj =

(mBj , iBj , nBj), (j = 1, 2, . . . , k), which satisfy the following inequalities if nAj ≥ nBj , iAj ≥ iBj and mt
Aj

+

it
Aj

+ nt
Aj
≤ mt

Bj
+ it

Bj
+ nt

Bj
∀j, then we have

T − SFWGIAw (A1, A2, . . . ,Ak) ≤ T − SFWGIAw (B1, B2, . . . ,Bk)

Proof. Since nAj ≥ nBj , we have:

t

√√√√1−
k

∏
j=1

(
1− nt

Aj

)wj ≥ t

√√√√1−
k

∏
j=1

(
1− nt

Bj

)wj

and iAj ≥ iBj

t

√√√√1−
k

∏
j=1

(
1− it

Aj

)wj ≥ t

√√√√1−
k

∏
j=1

(
1− it

Bj

)wj
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As, nAj ≥ nBj , mt
Aj

+ it
Aj

+ nt
Aj
≤ mt

Bj
+ it

Bj
+ nt

Bj
∀j we have:


t

√
k

∏
j=1

(
1− nt

Aj

)wj −
k

∏
j=1

(
1−

(
mt

Aj
+ itAj

+ nt
Aj

))wj −
k

∏
j=1

(it
Aj
)

wj ,

t

√
1−

k
∏
j=1

(
1− it

Aj

)wj
, t

√
1−

k
∏
j=1

(
1− nt

Aj

)wj



≤


t

√
k

∏
j=1

(
1− nt

Bj

)wj −
k

∏
j=1

(
1−

(
mt

Bj
+ itBj

+ nt
Bj

))wj −
k

∏
j=1

(it
Bj
)

wj ,

t

√
1−

k
∏
j=1

(
1− it

Bj

)wj
, t

√
1−

k
∏
j=1

(
1− nt

Bj

)wj


Therefore, we have:

T − SFWGIAw(A1, A2, . . . , Ak) ≤ T − SFWGIAw(B1, B2, . . . , Bk)

Definition 11. [34] For any collection, Pj =
(
mj, ij, nj

)
(j = 1, 2, . . . , k) of T-SFNs. The

T − SFOWGAw : Ωn → Ω is a mapping defined as

T − SFOWGAw(P1, P2, . . . . . . , Pk) =


t

√
k

∏
j=1

(
mt

σ(j) + itσ(j)

)wj −
k

∏
j=1

(
it
σ(j)

)wj
,

k
∏
j=1

(
iσ(j)

)wj
,

t

√
1−

k
∏
j=1

(
1− nt

σ(j)

)wj

 (3)

where Ω is the collection of all T-SFNs, then T− SFOWGAw is called a T-SFOWGA operator with weighting
vector w = (w1, w2, . . . . . . wk)

T of Pj with wj ∈ (0, 1] and ∑k
j=1 wj = 1.

Definition 12. For any collection, Pj =
(
mj, ij, nj

)
, (j = 1, 2, . . . , k) of T-SFNs. The

T − SFOWGIAw : Ωn → Ω is a mapping defined as:

T − SFOWGIAw(P1, P2, . . . . . . , Pk) = ⊗k
j=1P

wj
σ(j) (4)

then T − SFOWGIAw is called T-SFOWGIA operator, where w = (w1, w2, . . . . . . . . . wk)
T is the weighting

vector of Pj with wj ∈ (0, 1] and ∑k
j=1 wj = 1 and σ is the permutation of {1, 2, . . . , k}, such that σ(j − 1) ≥ σ(j).

Theorem 10. For any collection Pj =
(
mj, ij, nj

)
, (j = 1, 2, . . . , k) of T-SFNs. Then

T − SFOWGIAw(P1, P2, . . . , Pk) =


t

√
k

∏
j=1

(
1− nt

σ(j)

)wj −
k

∏
j=1

(
1−

(
mt

σ(j) + it
σ(j) + nt

σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj ,

t

√
1−

k
∏
j=1

(
1− it

σ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

σ(j)

)wj


Proof is similar to Theorem 5.

Theorem 11. If Pj =
(
mj, ij, nj

)
is a T-SFN, j = 1, . . . , k. Then the aggregated value using the T-SFOWGIA

operator is also T-SFN.
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Proof. Since Pσ(j) =
(

mσ(j), iσ(j), nσ(j)

)
is a T-SFN, j = 1, . . . , k, we have 0 ≤ mσ(j), iσ(j), nσ(j) ≤ 1. So

0 ≤ mt
σ(j), it

σ(j), nt
σ(j) ≤ 1 and 0 ≤ mt

σ(j) + it
σ(j) + nt

σ(j) ≤ 1. Then:

0 ≤
k

∏
j=1

(
1− nt

σ(j)

)wj −
k

∏
j=1

(
1−

(
mt

σ(j) + itσ(j) + nt
σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj ≤ 1

0 ≤ 1−
k

∏
j=1

(
1− it

σ(j)

)wj ≤ 1

0 ≤ 1−
k

∏
j=1

(
1− nt

σ(j)

)wj ≤ 1

Now:

t

√√√√√√√√
k

∏
j=1

(
1− nt

σ(j)

)wj −
k

∏
j=1

(
1−

(
mt

σ(j) + itσ(j) + nt
σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj + 1−
k

∏
j=1

(
1− it

σ(j)

)wj

+1−
k

∏
j=1

(
1− nt

σ(j)

)wj

= t

√
2−

k
∏
j=1

(
1−

(
mt

σ(j) + itσ(j) + nt
σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj −
k

∏
j=1

(
1− it

σ(j)

)wj ∈ [0, 1]

Thus, T − SFOWGIAw(P1, . . . . . . . . . , Pk) is T-SFN. �

Theorem 12. T − SFOWGIAw(P1, . . . . . . . . . , Pk) = P0 if Pj = P0 =
(
mj, ij, nj

)
is a T-SFN ∀j.

Proof. We have:

T − SFOWGIAw(P1, . . . . . . . . . Pk) =
t

√
k

∏
j=1

(
1− nt

σ(j)

)wj −
k

∏
j=1

(
1−

(
mt

σ(j) + itσ(j) + nt
σ(j)

))wj −
k

∏
j=1

(it
σ(j))

wj ,

t

√
1−

k
∏
j=1

(
1− it

σ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

σ(j)

)wj



=


t

√(
1− nt

σ(j)

)∑k
j=1 wj −

(
1−

(
mt

σ(j) + itσ(j) + nt
σ(j)

))∑k
j=1 wj − (it

σ(j))
∑k

j=1 wj ,

t

√
1−

(
1− it

σ(j)

)∑k
j=1 wj

,
t

√
1−

(
1− nt

σ(j)

)∑k
j=1 wj


=
(

mσ(0), iσ(0), nσ(0)

)
= P0

�

Theorem 13. If Pj =
(
mj, ij, nj

)
is a T-SFN and

PL =
(
max

{
0,
(
min

(
mj + ij + nj

)
−min ij −max nj

)}
, min ij, max nj

)
,

PU =
(
max

(
mj + ij + nj

)
−max ij −min nj

)}
, max ij, min nj). Then

PL ≤ T − SFOWGIA(P1, . . . . . . , Pk) ≤ PU

Proof is straightforward.

Theorem 14. T − SFOWGIAw(B1B2, . . . . . . , Bk) = T − SFOWGIAw(A1, . . . . . . , Ak) if Bj =(
mBj , iBj , nBj

)
is any permutation of Aj =

(
mAj , iAj , nAj

)
where j = 1, . . . . . . , k.
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Proof.

T − SFOWGIAw(B1, B2 . . . . . . Bk) =
t

√
k

∏
j=1

(
1− nt

Bσ(j)

)wj −
k

∏
j=1

(
1−

(
mt

Bσ(j)
+ itBσ(j)

+ nt
Bσ(j)

))wj −
k

∏
j=1

(it
Bσ(j)

)
wj ,

t

√
1−

k
∏
j=1

(
1− it

Bσ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

Bσ(j)

)wj


T − SFOWGIAw(A1, A2 . . . . . . Ak) =

t

√
k

∏
j=1

(
1− nt

Aσ(j)

)wj −
k

∏
j=1

(
1−

(
mt

Aσ(j)
+ itAσ(j)

+ nt
Aσ(j)

))wj −
k

∏
j=1

(it
Aσ(j)

)
wj ,

t

√
1−

k
∏
j=1

(
1− it

Aσ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

Aσ(j)

)wj


If Bj =

(
mBj , iBj , nBj

)
is any permutation of Aj =

(
mAj , iAj , nAj

)
then we have Bσ(j) = Aσ(j).

Thus, T − SFOWGIAw(B1, . . . . . . , Bk) = T − SFOWGIAw
(

A1, . . . . . . , Ak
)
. �

Definition 13. For any collection, Pj =
〈
mj, ij, nj

〉
of T-SFNs (j = 1, 2, 3, . . . . . . , k). If the mapping

T − SFHGAω,w(P1, P2, . . . . . . , Pk) = ⊗k
j=1(P̃σ(j))

wi (5)

then T − SFHGAω,w is called a T-SFHGA operator, where P̃j =
(

Pj
)nωj and ω = (ω1, . . . . . . ωk)

T is the
weighting vector of Pj with ωj ∈ (0, 1] and ∑k

j=1 ωj = 1.

Theorem 15. [34] For any collection, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k) of T-SFNs. If

T − SFHGAω,w(P1, P2, . . . . . . , Pk) =


t

√
k

∏
j=1

(
mt

P̃σ(j)
+ it

P̃σ(j)

)wj

−
k

∏
j=1

(
it
P̃σ(j)

)wj

,

k
∏
j=1

(
iP̃σ(j)

)wj
, t

√
1−

k
∏
j=1

(
1− nt

P̃σ(j)

)wj


then T − SFHGAω,w is called a T-SFHGA operator with weighting vector ω = (ω1, ω2, . . . . . . ωk)

T of Pj

with ωj ∈ (0, 1] and ∑k
j=1 ωj = 1.

Definition 14. For any collection, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k) of T-SFNs. If the mapping

T − SFHGIAω, w(P1, P2, . . . . . . , Pk) = ⊗k
j=1P̃

wj
σ(j) (6)

then T− SFHGIAω,w is called a T-SFHGIA operator, where ω = (ω1, ω2, . . . . . . ωk)
T is the weighting vector

of Pj with ωj ∈ [0, 1] and ∑k
j=1 wj = 1.

Theorem 16. For any collection, Pj =
〈
mj, ij, nj

〉
(j = 1, 2, 3, . . . . . . , k) of T-SFNs. Then

T − SFHGIAω, w(P1, P2, . . . . . . , Pk)

=


t

√
k

∏
j=1

(
1− nt

P̃σ(j)

)wj

−
k

∏
j=1

(
1−

(
mt

P̃σ(j)
+ it

P̃σ(j)
+ nt

P̃σ(j)

))wj

−
k

∏
j=1

(it
P̃σ(j)

)
wj ,

t

√
1−

k
∏
j=1

(
1− it

P̃σ(j)

)wj

, t

√
1−

k
∏
j=1

(
1− nt

P̃σ(j)

)wj
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The following example demonstrates these aggregation operators:

Example 1. Let P1 = (0.3, 0.8, 0.1), P2 = (0.4, 0.3, 0.6), P3 = (0.7, 0.1, 0.5), P4 = (0.9, 0.4, 0.1) and
P5 = (0.2, 0.6, 0.7) are T-SFN. The weight vector for Pi (i = 1, 2, . . . , 5) is ω = (0.18, 0.22, 0.16, 0.21, 0.23)T .
With loss of generality, we use t = 2 for all calculations.

Firstly, we utilized T-SFHGIA operators on this data to aggregate it.

P1 =

 √
(1− 0.12)

5×0.18 − (1− (0.32 + 0.82 + 0.12))
5×0.18 − (0.82)

5×0.18,√
1− (1− 0.82)

5×0.18,
√

1− (1− 0.12)
5×0.18


= (0.1559, 0.7754, 0.0949)

P2 =

 √
(1− 0.62)

5×0.22 − (1− (0.42 + 0.32 + 0.62))
5×0.22 − (0.32)

5×0.22,√
1− (1− 0.32)

5×0.22,
√

1− (1− 0.62)
5×0.22


= (0.4317, 0.3139, 0.6228)

P3 =

 √
(1− 0.52)

5×0.16 − (1− (0.72 + 0.12 + 0.52))
5×0.16 − (0.12)

5×0.16,√
1− (1− 0.12)

5×0.16,
√

1− (1− 0.52)
5×0.16


= (0.6629, 0.0895, 0.4534)

P4 =

 √
(1− 0.12)

5×0.21 − (1− (0.92 + 0.42 + 0.12))
5×0.21 − (0.42)

5×0.21,√
1− (1− 0.42)

5×0.21,
√

1− (1− 0.12)
5×0.21


= (0.9094, 0.4090, 0.1024)

P5 =

 √
(1− 0.72)

5×0.23 − (1− (0.22 + 0.62 + 0.72))
5×0.23 − (0.62)

5×0.23,√
1− (1− 0.62)

5×0.23,
√

1− (1− 0.72)
5×0.23


= (0.2705, 0.6336, 0.7342)

The score values corresponding to these aggregated numbers were obtained as SC(P1) =

0.0153, SC(P2) = −0.2016, SC(P3) = 0.2338, SC(P4) = 0.8166, SC(P5) = −0.4658. Based on
the score values, we had the following arrangement of data:

Pσ(1) = (0.9094, 0.4090, 0.1024), Pσ(2) = (0.6629, 0.0895, 0.4534), Pσ(3) = (0.1559, 0.7754, 0.0949),
Pσ(4) = (0.4317, 0.3139, 0.6228), Pσ(5) = (0.2705, 0.6336, 0.7342)

By using the normal distribution-based method, we found w = (0.1117, 0.2365, 0.3036, 0.2365, 0.1117)T

and by the definition of T-SFHGIA operator we had

T − SFHGIAω,w(P1, P2, P3, P4, P5) = (0.4688, 0.5643, 0.4792)

Theorem 17. If Pj =
(
mj, ij, nj

)
is a T-SFN , j = 1, . . . , k, then the aggregated value using the T-SFHGIA

operator is also T-SFN.

Proof is similar as in Theorem 11.

Theorem 18. T − SFHGIAω, w(P1, P2, . . . . . . , Pk) = P0 if Pj = P0 =
(
mj, ij, nj

)
is a T-SFN ∀j.

Proof is similar as in Theorem 12.

Theorem 19. If Pj =
(
mj, ij, nj

)
is a T-SFN and

PL =
(
max

{
0,
(
min

(
mj + ij + nj

)
−min ij −max nj

)}
, min ij, max nj

)
,

PU =
(
max

(
mj + ij + nj

)
−max ij −min nj, max ij, min nj

)
. Then

PL ≤ T − SFHGIAω,w(P1, . . . . . . , Pk) ≤ PU
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Proof is straightforward.

Theorem 20. T− SFHGIAω,w(B1, . . . . . . , Bk) = T− SFHGIAω,w(A1, . . . . . . , Ak) if Bj =
(

mBj , iBj , nBj

)
is any permutation of Aj =

(
mAj , iAj , nAj

)
where j = 1, . . . . . . , k.

Proof is similar as Theorem 14.

Whenever membership and neutral number of one T-SFN become zero then the membership
and abstinence value is not accounted for in the aggregation [34]. However, the geometric interaction
averaging operators that are developed in our manuscript overcome this problem. The example below
will describe this more clearly.

Example 2. Let P1 = (0.7, 0.5, 0.6), P2 = (0.9, 0.5, 0.4), P3 = (0, 0, 0.1), P4 = (0.5, 0.3, 0.4) and P5 =

(0.6, 0.4, 0.5) are T-SFN. The weight vector for Pi (i = 1, 2, . . . , 5) is ω = (0.18, 0.22, 0.16, 0.21, 0.23)T .

For the solution, first we will find the T-SFHGA operator.
As, 0.7+ 0.5+ 0.6 = 1.8 /∈ [0, 1], 0.72 + 0.52 + 0.62 = 1.1 /∈ [0, 1] but 0.73 + 0.53 + 0.63 = 0.684 ∈ [0, 1]
Similarly, P2 and P4 satisfy the condition for t = 3.

P̃1 =

(
3
√
(0.73 + 0.53)

5×0.18 − (0.53)
5×0.18, 0.55×0.18, 3

√
1− (1− 0.63)

5×0.18
)

= (0.7054, 0.5359, 0.5816)

P̃2 =

(
3
√
(0.93 + 0.53)

5×0.22 − (0.53)
5×0.22, 0.55×0.22, 3

√
1− (1− 0.43)

5×0.22
)

= (0.9041, 0.4665, 0.4125)

P̃3 =

(
3
√
(03 + 03)

5×0.16 − (03)
5×0.16, 05×0.16, 3

√
1− (1− 0.13)

5×0.16
)

= (0, 0, 0.0928)

P̃4 =

(
3
√
(0.53 + 0.33)

5×0.21 − (0.33)
5×0.21, 0.35×0.21, 3

√
1− (1− 0.43)

5×0.21
)

= (0.4874, 0.2885, 0.4063)

P̃5 =

(
3
√
(0.63 + 0.43)

5×0.23 − (0.43)
5×0.23, 0.45×0.23, 3

√
1− (1− 0.53)

5×0.23
)

= (0.5738, 0.3486, 0.5221)

Scores values for these aggregated numbers were obtained as SC(P̃1) = 0.1543, SC(P̃2) =

0.6689, SC(P̃3) = −0.0008, SC(P̃4) = 0.0487, SC(P̃5) = 0.0466, and, based on these score values,
we had

P̃σ(1) = (0.9041, 0.4665, 0.4125), P̃σ(2) = (0.7054, 0.5359, 0.5816), P̃σ(3) = (0.4874, 0.2885, 0.4063),
P̃σ(4) = (0.5738, 0.3486, 0.5221), P̃σ(5) = (0, 0, 0.0928)

By using the normal distribution-based method, we found w = (0.1117, 0.2365, 0.3036, 0.2365,
0.1117)T , and, by the definition of T-SFHGA operator, we found

T− SFHGAω,w(P1, P2, P3, P4, P5) = (0, 0, 0.4803) (7)

This type of aggregated value seems meaningless, as whenever the membership and abstinence
value is zero in any one of the T-SFN it will make the value of the membership and non-membership as
zero in the whole aggregated value. This shows that the geometric aggregation operator of T-SFSs [34]
does not possess the ability to aggregate such types of information effectively.

On the other hand, the proposed new geometric interactive aggregation operators can process
any type of information effectively. Now, the Example 2 was solved using the proposed new
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aggregation operators in order to justify its effectiveness. For it, we aggregated the data using the
T-SFHGIA operator:

P1 =

 3
√
(1− 0.63)

5×0.18 − (1− (0.73 + 0.53 + 0.63))
5×0.18 − (0.53)

5×0.18,
3
√

1− (1− 0.53)
5×0.18, 3

√
1− (1− 0.63)

5×0.18


= (0.6656, 0.5359, 0.5816)

P2 =

 3
√
(1− 0.43)

5×0.22 − (1− (0.93 + 0.53 + 0.43))
5×0.22 − (0.53)

5×0.22,
3
√

1− (1− 0.53)
5×0.22, 3

√
1− (1− 0.43)

5×0.22


= (0.9144, 0.4665, 0.4125)

P3 =

 3
√
(1− 0.13)

5×0.16 − (1− (03 + 03 + 0.13))
5×0.16 − (03)

5×0.16,
3
√

1− (1− 03)
5×0.16, 3

√
1− (1− 0.13)

5×0.16


= (0, 0, 0.0928)

P4 =

 3
√
(1− 0.43)

5×0.21 − (1− (0.53 + 0.33 + 0.43))
5×0.21 − (0.33)

5×0.21,
3
√

1− (1− 0.33)
5×0.21, 3

√
1− (1− 0.43)

5×0.21


= (0.5141, 0.2885, 0.4063)

P5 =

 3
√
(1− 0.53)

5×0.23 − (1− (0.63 + 0.43 + 0.53))
5×0.23 − (0.43)

5×0.23,
3
√

1− (1− 0.43)
5×0.23, 3

√
1− (1− 0.53)

5×0.23


(0.6422, 0.3486, 0.5221)

The score values of these numbers were obtained as SC(P1) = 0.0981, SC(P2) = 0.6943, SC(P3) =

−0.0008, SC(P4) = 0.0688, SC(P5) = 0.1225, and, based on score values, we had the following
arrangement:

Pσ(1) = (0.9144, 0.4665, 0.4125),
Pσ(2) = (0.6422, 0.3486, 0.5221), Pσ(3) = (0.6656, 0.5359, 0.5816),

Pσ(4) = (0.5141, 0.2885, 0.4063), Pσ(5) = (0, 0, 0.0928)

Now, by using the definition of the T-SFHGIA operator, we found

T− SFHGIAω,w(P1, P2, P3, P4, P5) = (0.8375, 0.4223, 0.4928) (8)

Clearly, the aggregated value obtained in Equation (8) was an improvement of the one obtained
in Equation (7), as it incorporated the zero values occurring in the membership and abstinence
of T-SFNs efficiently. The analysis of Equations (7) and (8) proved the significance of proposed
aggregation operators.

4. MADM Approach Based on Proposed Operators

Consider a decision-making problem which consists of a set of alternatives (Y =

{y1, y2, . . . . . . , yl}) and set of attributes (Z =
{

z1, z2, . . . . . . , zq
}
) associated with weighted vector

(w =
(
w1, w2, . . . . . . , wq

)T
), where wk ∈ (0, 1] and Σq

k=1wk = 1. Suppose every alternative (yj) is

represented by T-SFNs (Pjk =
〈

mjk, ijk, njk

〉
), which show by which degree alternatives satisfy, neutral,

and not satisfy the given attribute. Then, the following steps of the MADM approach, based on the
proposed operators, are summarized as follows:

Step 1 Find the value of t for which the information of the decision matrix lies in the T-spherical
fuzzy environment.
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Step 2 Assume the weighting vector ω =
(
ω1, . . . . . . , ωq

)T of Pj1, Pj2, . . . . . . , Pjq. where ωk ∈ (0, 1]

and Σq
k=1ωk = 1 we get Pjk = Plωk

jk .

Step 3 By calculating the scores of each attribute of all alternatives, we find:

Pσ(j1), Pσ(j2), . . . . . . , Pσ(jk)

Step 4 By using the normal-distribution based method we find w and then aggregate the data using
the T-SFHGIA operator.

Step 5 Find the scores of all alternatives.
Step 6 With the help of score values, we find the best option.

5. Numerical Example

The above-mentioned approach has been illustrated with a real-life decision-making problem
under the T-SFS environment, and obtained results have been compared with the other existing results.

5.1. Case Study

Jharkhand is the eastern state of India, which has 40 percent of the mineral resources of the
country, and is the second leading state in terms of mineral wealth, after Chhattisgarh state. It is
also known for its vast forest resources. Jamshedpur, Bokaro, and Dhanbad, cities in Jharkhand, are
famous for industries from all over the world. After that, it is known as being the state in India that
has widespread poverty state, because it is primarily a rural state, as 76 percent of the population lives
in villages that depend on agriculture and wages from agriculture. Only 30 percent of the villages are
connected by roads, and only 55 percent of the villages have access to electricity and other facilities.
But in the today’s life, many are looking for ways to make changes in order to better their lives, and,
accordingly, many move to the urban cities for better jobs. To stop this emigration, the Jharkhand
government wants to set up agricultural-based industries in the rural areas. For this, the government
organized the “Momentum Jharkhand” global investor summit 2017, in Ranchi, to invite companies to
invest in the rural areas. The government announced the various facilities that were available to be
set up as five food processing plants in the rural areas, and the five attributes required for selection
of the companies to set them up, namely, project cost (Q1), technical capability (Q2), financial status
(Q3), company background (Q4), and other factors (Q5). The three companies that were interested in
this projects, Surya Food and Agro Pvt. Ltd. (s1), Mother Dairy Fruit and Vegetable Pvt. Ltd. (s2),
and Parle Products Ltd. (s3), were taken as in the form of the alternatives. Then, the main object of
the government was to choose the best company among them for the task. In order to fulfill this, a
decision maker evaluated these and gave their preferences in the term of T-SFS, and their preference
values were summarized in the form of a decision-matrix, shown in Table 1 as follows.

Table 1. Input information related to each alternative.

Q1 Q2 Q3 Q4 Q5

s1 (0.7, 0.5, 0.6) (0.9, 0.5, 0.4) (0.4, 0.2, 0.1) (0.5, 0.3, 0.4) (0.6, 0.4, 0.5)
s2 (0.5, 0.4, 0.6) (0.7, 0.2, 0.3) (0.5, 0.3, 0.6) (0.4, 0.1, 0.6) (0.5, 0.2, 0.4)
s3 (0.4, 0.1, 0.2) (0.5, 0.4, 0.1) (0, 0, 0.5) (0.6, 0.2, 0.2) (0.6, 0.1, 0.5)

The given problem was solved using two approaches. First it was solved using new interactive
operators showing their applicability. Then it was solved using geometric aggregation operators
proposed in [34], showing their failure.

Solution using proposed operators:

Step 1 With some calculations, it was found that all the values in Table 1 were T-SFNs for t = 3.
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Step 2 By taking ω = (0.18, 0.22, 0.16, 0.21, 0.23)T we found Pjk and their values were summarized
as below.

k = 1 k = 2 k = 3 k = 4 k = 5

j = 1

 0.6656,
0.5359,
0.5816


 0.9144,

0.4665,
0.4125


 0.3333,

0.2759,
0.0928


 0.5141,

0.2825,
0.4063


 0.6422,

0.3486,
0.5221


j = 2

 0.4520,
0.4384,
0.5816


 0.7194,

0.1703,
0.3095


 0.4212,

0.3817,
0.5614


 0.4053,

0.0891,
0.6086


 0.5264,

0.1571,
0.4184


j = 3

 0.3843,
0.1259,
0.1931


 0.5397,

0.3650,
0.1032


 0,

0,
0.4662


 0.6104,

0.1845,
0.2033


 0.6209,

0.0708,
0.5221


Step 3 Now we had to find the score of each attribute of all alternatives, and their computed values

were given as below
k = 1 k = 2 k = 3 k = 4 k = 5

j = 1 0.0981 0.6943 0.0362 0.0688 0.1225
j = 2 −0.1043 0.3426 −0.1021 −0.1589 0.0726
j = 3 0.0495 0.1561 −0.1013 0.2190 0.0970

By comparing the score values, we had

SC(P12) > SC(P15) > SC(P11) > SC(P14) > SC(P13)

SC(P22) > SC(P25) > SC(P23) > SC(P21) > SC(P24)

SC(P34) > SC(P32) > SC(P35) > SC(P31) > SC(P33)

Based on above score analysis, we found Pσ(jk) and summarized them as

k = 1 k = 2 k = 3 k = 4 k = 5

j = 1

 0.9144,
0.5150,
0.4125


 0.6422,

0.9857,
0.5221


 0.6656,

0.4838,
0.5816


 0.5141,

0.3048,
0.4063


 0.3333,

0.1857,
0.0928


j = 2

 0.7194,
0.2064,
0.3095


 0.5264,

0.9987,
0.4184


 0.4212,

0.2787,
0.5614


 0.4520,

0.9804,
0.5816


 0.4053,

0.1016,
0.6086


j = 3

 0.6104,
0.2033,
0.2033


 0.5397,

0.4125,
0.1032


 0.6209,

0.9999,
0.5221


 0.3843,

0.0966,
0.1931


 0,

0,
0.4662


Step 4 By using the normal distribution-based method, we got w = (0.1117, 0.2365, 0.3036, 0.2365,

0.1117)T , and by using the defined aggregation operators, we had

P1 = T − SFHGIAω,w(P11, P12, P13, P14, P15)

=


3

√
5

∏
j=1

(
1− n3

P̃σ(1k)

)wj

−
5

∏
j=1

(
1−

(
m3

P̃σ(1k)
+ i3

P̃σ(1k)
+ n3

P̃σ(1k)

))wj

−
5

∏
j=1

(i3
P̃σ(1k)

)
wj ,

3

√
1−

5
∏
j=1

(
1− i3

P̃σ(1k)

)wj

, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(1k)

)wj


= (0.9380, 0.4264, 0.4928)

P2 = T − SFHGIAω,w(P21, P22, P23, P24, P25)

=


3

√
5

∏
j=1

(
1− n3

P̃σ(2k)

)wj

−
5

∏
j=1

(
1−

(
m3

P̃σ(2k)
+ i3

P̃σ(2k)
+ n3

P̃σ(2k)

))wj

−
5

∏
j=1

(i3
P̃σ(2k)

)
wj ,

3

√
1−

5
∏
j=1

(
1− i3

P̃σ(2k)

)wj

, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(2k)

)wj


= (0.9420, 0.3390, 0.5296)
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P3 = T − SFHGIAω,w(P31, P32, P33, P34, P35)

=


3

√
5

∏
j=1

(
1− n3

P̃σ(3k)

)wj

−
5

∏
j=1

(
1−

(
m3

P̃σ(3k)
+ i3

P̃σ(3k)
+ n3

P̃σ(3k)

))wj

−
5

∏
j=1

(i3
P̃σ(3k)

)
wj

3

√
1−

5
∏
j=1

(
1− i3

P̃σ(3k)

)wj

, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(3k)

)wj

,


= (0.9779, 0.9713, 0.3906)

Step 5 The score values of three alternatives based on their aggregated values were computed as
SC(P1) = 0.7056, SC

(
P2) = 0.6874, and SC(P3) = 0.8813.

Step 6 By comparing score values, we got

SC(P3) > SC(P1) > SC(P2)

The comparison of score values indicated that P3 had a greater score value. So, the third company
was the best option. Thus, by using the new geometric interaction averaging operators a MADM
problem was successfully solved.

Solution using aggregation operators proposed in [34]:

Step 1 The input preferences related to each alternative was summarized in Table 1 for t = 3.

Step 2 By using weight vector ω = (0.18, 0.22, 0.16, 0.21, 0.23)T we found P′jk as follows

k = 1 k = 2 k = 3 k = 4 k = 5

j = 1

 0.7054,
0.5359,
0.5816


 0.9041,

0.4665,
0.4125


 0.4655,

0.2759,
0.0928


 0.4874,

0.2825
0.4063


 0.5738,

0.3486,
0.5221


j = 2

 0.5180,
0.4384,
0.5816


 0.6776,

0.1703,
0.3095


 0.7330,

0.3817,
0.5614


 0.3826,

0.0891,
0.6086


 0.4553,

0.1517,
0.4184


j = 3

 0.4370,
0.1259,
0.1931


 0.4811,

0.3650,
0.1032


 0,

0,
0.4662


 0.5863,

0.1845,
0.2033


 0.5563,

0.0708,
0.5221


Step 3 Now, we had to find the score of each attribute of all alternatives.

k = 1 k = 2 k = 3 k = 4 k = 5
j = 1 0.1543 0.6689 0.1000 0.0487 0.0466
j = 2 −0.0577 0.2815 0.2169 −0.1695 0.0212
j = 3 0.0762 0.1103 −0.1013 0.1932 0.0298

By comparing the score values, we had

SC
(

P′12
)
> SC

(
P′11
)
> SC

(
P′13
)
> SC

(
P′14
)
> SC

(
P′15
)

SC(P′22) > SC(P′23) > SC(P′25) > SC
(

P′21
)
> SC

(
P′24
)

SC
(

P′34
)
> SC(P′32) > SC

(
P′31
)
> SC(P′35) > SC(P′33)

Based on above score analysis, we found P′
σ(jk)
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k = 1 k = 2 k = 3 k = 4 k = 5

j = 1

 0.9041,
0.4665,
0.4125


 0.7054,

0.5359,
0.5816


 0.4655,

0.2759,
0.0928


 0.4874,

0.2825,
0.4063


 0.5738,

0.3486,
0.5221


j = 2

 0.6776,
0.1703,
0.3095


 0.7330,

0.3817,
0.5614


 0.4553,

0.1571,
0.4184


 0.5180,

0.4384,
0.5816


 0.3826,

0.0891,
0.6086


j = 3

 0.5863,
0.1845,
0.2033


 0.4811,

0.3650,
0.1032


 0.4370,

0.1259,
0.1931


 0.5563,

0.0708,
0.5221


 0,

0,
0.4662


Step 4 By using the normal distribution-based method, we got w = (0.1117, 0.2365, 0.3036, 0.2365,

0.1117)T , and by using the defined aggregation operators, we had

P′1 = T − SFHGIAω,w
(

P′11, P′12, P′13, P′14, P′15
)

=

 3

√
5

∏
j=1

(
m3

P̃σ(1k)
+ i3

P̃σ(1k)

)wj

−
5

∏
j=1

(i3
P̃σ(1k)

)
wj ,

5
∏
j=1

(
iP̃σ(1k)

)wj
, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(1k)

)wj


= (0.5750, 0.3533, 0.4473)
P′2 = T − SFHGIAω,w

(
P′21, P′22, P′23, P′24, P′25

)
=

 3

√
5

∏
j=1

(
m3

P̃σ(2k)
+ i3

P̃σ(2k)

)wj

−
5

∏
j=1

(i3
P̃σ(2k)

)
wj ,

5
∏
j=1

(
iP̃σ(2k)

)wj
, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(2k)

)wj


= (0.5384, 0.1970, 0.5721)
P′3 = T − SFHGIAω,w

(
P′31, P′32, P′33, P′34, P′35

)
=

 3

√
5

∏
j=1

(
m3

P̃σ(3k)
+ i3

P̃σ(3k)

)wj

−
5

∏
j=1

(i3
P̃σ(3k)

)
wj ,

5
∏
j=1

(
iP̃σ(3k)

)wj
, 3

√
1−

5
∏
j=1

(
1− n3

P̃σ(3k)

)wj


= (0, 0, 0.3692)

This seems meaningless because membership and abstinence of only one T-SFN is zero, but
existing operators make a whole aggregated value zero.

Step 5 This step involved the computation of score values:

SC(P1) = 0.1006
SC(P2) = −0.0312
SC(P3) = −0.0503

Step 6 By comparing score values, we got

SC(P1) > SC(P2) > SC(P3)

From the above example, the applicability of the proposed operators could easily be checked
by comparing the results obtained using new and existing geometric aggregation operators. It was
noticed that whenever membership and abstinence of one TSFN became zero, then the aggregated
value using existing aggregation operators seemed impractical. However, the aggregated value using
new geometric interactive aggregation operators seemed significant and consistent.

5.2. Advantages of the Proposed Work

In this section, we prove the generalization of proposed work over the existing literature. Here
we observed that under some certain conditions the proposed aggregation operators became the
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existing aggregation operators under different environment, which shows the superiority of our
proposed work.

Consider the T-SFWGIA operator defined as

T − SFWGIAw(P1, P2, . . . . . . , Pk) =


t

√
k

∏
j=1

(
1− nt

j

)wj
−

k
∏
j=1

(
1−

(
mt

j + itj + nt
j

))wj
−

k
∏
j=1

(it
j)

wj ,

t

√
1−

k
∏
j=1

(
1− it

j

)wj
, t

√
1−

k
∏
j=1

(
1− nt

j

)wj

 (9)

(1) If we take t = 2, the Equation (9) becomes spherical fuzzy weighted geometric interaction
averaging operator (SFWGIA operator) and we have

SFWGIAw(P1, P2, . . . . . . , Pk) =


√

k
∏
j=1

(
1− n2

j

)wj −
k

∏
j=1

(
1−

(
m2

j + i2j + n2
j

))wj −
k

∏
j=1

(i2j )
wj ,√

1−
k

∏
j=1

(
1− i2j

)wj
,

√
1−

k
∏
j=1

(
1− n2

j

)wj


(2) If we take t = 1, the Equation (9) becomes picture fuzzy weighted geometric interaction averaging

operator (PFWGIA operator) and we have

PFWGIAw(P1, P2, . . . . . . , Pk) =


k

∏
j=1

(
1− nj

)wj −
k

∏
j=1

(
1−

(
mj + ij + nj

))wj −
k

∏
j=1

(
ij
)wj ,

1−
k

∏
j=1

(
1− ij

)wj , 1−
k

∏
j=1

(
1− nj

)wj


(3) If we take t = 2 and i = 0, the Equation (9) becomes Pythagorean fuzzy weighted geometric

interaction averaging operator (PyFWGIA operator) and we have

PyFWGIAw(P1, P2, . . . . . . , Pk) =


√

k
∏
j=1

(
1− n2

j

)wj −
k

∏
j=1

(
1−

(
m2

j + n2
j

))wj
,√

1−
k

∏
j=1

(
1− n2

j

)wj


(4) If we take t = 1 and i = 0, the Equation (9) becomes intuitionistic fuzzy weighted geometric

interaction averaging operator (IFWGIA operator) and we have

IFWGIAw(P1, P2, . . . . . . , Pk) =


k

∏
j=1

(
1− nj

)wj −
k

∏
j=1

(
1−

(
mj + nj

))wj ,

1−
k

∏
j=1

(
1− nj

)wj


Similarly, T-SFOWGIA and T-SFHGIA operators can be converted to the existing operators. All

of this clearly indicated that our proposed work could be used in the problems described in existing
literature, but the operators of existing literature are unable to deal with problems of T-spherical fuzzy
information. For example, if we look at Example 2, it can be seen that none of the existing operators
can be applied to such problems where information is in the form of T-SFNs.

5.3. Comparative Analysis

The significance of the proposed new geometric operators lies in the fact that the result obtained
by using these operations were more justifiable than those developed earlier (i.e., [34,37,38]). Such
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operators could not deal with situations where if membership and abstinence value of any number
becomes zero then the membership and abstinence value of their aggregated value is also zero. Hence
the existing operators of PFSs and T-SFSs did possess the capability of dealing with any kinds of
information. But, on the other hand, the new geometric operators of T-SFSs can deal with any type of
data justifiably. This point is demonstrated in the case study described in Section 5.1.

The second main advantage of our proposed work is that it has the ability to aggregate the
data available in the form of IFSs, PyFSs, PFSs, and SFSs. But, conversely, the existing operators
could not handle the data provided in the T-spherical fuzzy environment. For example, if we look at
Example 2, its data is purely in the form of T-SFNs based on four grades, being membership, abstinence,
non-membership, and refusal degree with t = 3, which shows that the aggregation operators of IFSs,
PyFSs, PFSs, and SFSs could not aggregate this data. But if we look at Example 3, its data is in the form
of IFNs, and our proposed operators easily aggregated this type of data with t = 1 and i = 0.

Hence, by all means, the proposed work had superiority over the existing work.

Example 3. Let P1 = (0, 0.5), P2 = (0.5, 0.4), P3 = (0.4, 0.2), P4 = (0.3, 0.3) and P5 = (0.7, 0.1) ∈ IFN.
The weight vector for Pi(i = 1, 2, . . . , 5) is ω = (0.18, 0.22, 0.16, 0.21, 0.23)T .

P1 =
(
(1− 0.5)5×0.18 − (1− (0 + 0.5))5×0.18, 1− (1− 0.5)5×0.18

)
= (0, 0.5796)

P2 =
(
(1− 0.4)5×0.22 − (1− (0.5 + 0.4))5×0.22, 1− (1− 0.4)5×0.22

)
= (0.5039, 0.3183)

P3 =
(
(1− 0.2)5×0.16 − (1− (0.4 + 0.2))5×0.16, 1− (1− 0.2)5×0.16

)
= (0.4000, 0.2000)

P4 =
(
(1− 0.3)5×0.21 − (1− (0.3 + 0.3))5×0.21, 1− (1− 0.3)5×0.21

)
= (0.2870, 0.2746)

P5 =
(
(1− 0.1)5×0.23 − (1− (0.7 + 0.1))5×0.23, 1− (1− 0.1)5×0.23

)
= (0.7203, 0.1094)

Scores values were

SC(P1) = −0.5796, SC(P2) = 0.1856, SC(P3) = 0.2000, SC(P4) = 0.0125, SC(P5) = 0.6109.

Thus, SC(P5) > SC(P3) > SC(P2) > SC(P4) > SC(P1) and we had

Pσ(1) = (0.7203, 0.1094)
Pσ(2) = (0.4000, 0.2000)
Pσ(3) = (0.5039, 0.3183)
Pσ(4) = (0.2870, 0.2746)

Pσ(5) = (0, 0.5796)

By using the normal distribution-based method, we found w = (0.1117, 0.2365, 0.3036,
0.2365, 0.1117)T .

Now, by using the definition of the T-SFHGIA operator, we found

T − SFHGIAω,w(P1, P2, P3, P4, P5) = (0.4093, 0.2919)

Here we got the same result as in [9,10,39]. Thus, the proposed new operators had the capability
to solve the problems that lie in the existing structures.
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6. Conclusions

In this manuscript, we utilized the concept of T-SFS to handle the uncertainty in the data, so as to
capture the information with some more degree of freedom. For it, we defined some new, improved
interactive aggregation operations by adding the degree of refusal into the analysis. Then, we studied
some basic properties of them. Based on these operational laws, we defined some new weighted
geometric aggregation operators and studied their desirable properties. Some of the counter examples
were also provided, which showed that the proposed operators worked well in all cases where the
existing ones failed to classify the objects. In addition to this, in a comprehensive scrutiny of T-SFSs and
the decision-maker preferences, a MADM approach was presented, based on the proposed operator, to
select the best alternatives among the feasible ones. Finally, the presented decision-making approach
was explained with the help of a numerical example, and an extensive comparative analysis was
conducted in relation to the existing decision-making theories. Additionally, the advantages as well
as the superiority of the approach was tested with some examples. The advantages of the proposed
operators were that a decision maker could choose the required operator in order to optimize their
desired goals with more confidence level as compared the existing operators. Furthermore, it was
concluded that the several existing operators could be deduced from the proposed one and, hence, the
presented operators and algorithm were more generalized. In the future, there is the scope to extend
the proposed method to some different environments, and to extend its application in various fields
related to decision-theory [40–47].
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