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Abstract: In this article, we propose a different generalization of (p, q)-BBH operators and carry
statistical approximation properties of the introduced operators towards a function which has to
be approximated where (p, g)-integers contains symmetric property. We establish a Korovkin
approximation theorem in the statistical sense and obtain the statistical rates of convergence.
Furthermore, we also introduce a bivariate extension of proposed operators and carry many
statistical approximation results. The extra parameter p plays an important role to symmetrize
the g-BBH operators.
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1. Introduction

The g-analog of Bleiman, Butzer and Hahn operators (BBH) [1] is defined by:

[K]g Ket) | mo| o g
<n—k+1]qq>q lka’ @
where £}, (x) = [T{_; (1 + ¢°x).

For q = 1, the sequence of g-BBH operators (1) reduces to the classical BBH-operators [2] in which
authors investigated pointwise convergence properties of the BBH-operators in a compact sub-interval
of R;.

Let H,, denote the space of all real-valued functions f defined on the semi-axis R4 [3], where w is
the usual modulus of continuity satisfying

|ﬂﬂ—f@ﬂ§w<‘x _y’)

T+x 14y

LI (f;x) =

forany x,y > 0.

Gadjiev and Cakar [3] established the Korovkin type theorem which gives the convergence for
the sequence of linear positive operators (LPO) to the functions in H,,.

Now, we recollect the following theorem:
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Theorem 1 ([3]). Let { A} be the sequence of LPOs from H,, into Cg(R..) such that

i | ((555) ) - (v52)

then, for any function f € H,

=0, v=0,1,2

Cp

lim [|A(f) = fllc, = 0.

20f15

(p, q)-calculus, also called post-quantum calculus, is a generalization of g-calculus which has lots
of applications in quantum physics. In approximation theory, the very first (p, )-type generalization of
Bernstein polynomials was introduced by Mursaleen et al. [4] using (p, g)-calculus and improved the
said operators (see Erratum [4]). The theory of semigroups of the linear operators is used in order to
prove the existence and uniqueness of a weak solutions of boundary value problems in thermoelasticity

of dipolar bodies (see [5,6]).

Recently, a very nice application and usage of extra parameter p has been discussed in [7] in
the computer-aided geometric design. In that paper, authors applied these (p, g)-Bernstein bases to
construct (p, q)-Bézier curves which are further generalizations of g-Bézier curves [8]. For more results

on LPOs and its (p, q)-analogues, one can refer to [9-15].
Now, we provide some notations on (p, q)-calculus.
[11]p,4 stands for (p, q)-integers defined as

e (p#q9#1),
_ n—1 n—2 n=32 . -1 _ 1-¢" (p=1)
[y =P PP AT = Ty p=2=4
n (p=9=1),

n ey G- | n g ;o
(ax + by)?}lq = 2 p 2 g 2 ] un*/b/xﬂ*]y],
j=0 T 1pg

(A Y)pg = D (Px ) (PPx+7y) - (p" x4 g™ y),

n—1

(1=x)ps =1 =x)(p—gx) (P> —*x) - (p" ' —¢" '),

and the binomial coefficients in (p, 7)-calculus are given by

1],
j P4 mp,q![”_].]p,q!'

By easy computation, we have the relation given below:

n—j+1[

qj[”—f"‘l]r?,q: n+1pg—p ilpag-

Authors suggest the readers [16-19].

@)
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The (p, q)-analogue of BBH operators was introduced by Mursaleen et al. in [20] as follows:
Ly (f:%)

1 ¢ P g (=)o=i=1) =1 | n :
, f . - i P 2 q . x]/ (3)
07(x) ,;) [n—j+1pe i,

where x > 0,0 < g < p <1, £(x) = [T"Z3(p° + ¢°x) and function f is defined on the semi axis
Ry. If we put p = 1, we get the g-BBH operators (1). In that paper, authors established different
approximation properties of the sequence of operators (3).

Theorem 2 ([20]). Let p = (pn), 9 = (qn) satisfying nh_{r;o =1, nlgr;o gn = 1for0 < qy < pp < land if
LE""(f; x) is defined by Label (3). Then, for any function f € H,,,

: Pnin ¢ _
Jim [ L™ f = flicy = 0.

Mursaleen and Nasiruzzaman constructed bivariate (p, )-BBH operators [21] and studied many
nice properties based on that sequence of operators and also given some generalization of that sequence
of bivariate operators introducing one more parameter <y in the operators.

The statistical convergence is another notion of convergence, which was introduced by Fast [22]
nearly fifty years ago and now this is a very active area of research. The statistical limit of a sequence
is an extension of the idea of limit of sequence in an ordinary sense. The natural density of K C Nis
defined as:

5(K) :lim%{kgn:keK}
n

whenever the limit exists (see [23,24]). The sequence x = (xy) is said to be statistically convergent to a
number L means if, for every € > 0,

0Mk: |xx—L| >€} =0,

and it is denoted by st — limy x; = L. It can be easily seen that every convergent sequence is statistically
convergent but not conversely.
Now, we will state some preliminary results on positive linear operators:

Proposition 1 ([25]). If L is an operator, linear and positive, then, for every x € X, we have
LI < LFD- )

Proposition 2 ([25]). (Holder’s inequality for LPOs). Let L : X — Y be an operator, linear and positive, and
let1/p+1/q =1, where p,q > 1 are real numbers. Then, for every f,g € X

L(f - gl) < (LUfIP)7 - (L(1gIT)7. 5)

Remark 1 ([25]). A particular case of Proposition 2 is the Cauchy—Schwarz’s inequality for LPOs, which is
obtained from Holder’s inequality for p = q = 2 as:

IL(F-g0)] < \JL(F2) - \/L(g% ). ©)

We have organized the rest of the paper as follows. In Section 2, we have constructed (p, q)-BBH
operators and calculated some auxiliary results. In Sections 3 and 4, Korovkin type results and rate of
convergence are established in statistical sense, respectively. Section 5 is devoted to the construction of
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the bivariate (p, g)-BBH operators. In Section 6, we have computed rate of statistical convergence for
the bivariate (p, 9)-BBH operators.

2. Construction of Operators and Moment Estimation

Ersan and Dogru [26] introduced a generalization of (1) and studied different statistical
approximation properties of the operators towards a function f which has to be approximated. Inspired
with the work of Ersan and Dogru [26], we construct a (p, 4)-analogue generalization of the sequence
of operators defined in [26] or, on the other hand, we generalize the operators introduced in [20]
as follows:

Vx >0, 0 < g < p <1,letusdefine a sequence of (p,q)-BBH operators as follows:

By (fx)
n 'rl JHL; n—j)(n—j— i(j— :
_ / Z ( +&7]] ]>p< dgeien 70 [n] g -
j=0 —J pa4 ] P
where
n—1 n n i .
@ =T o= Sy ’(”l"} . ®
s=0 j=0 T 1pa
It is easy to verify that, if p = g = 1, the operators turn into the classical BBH operators.

The sequence of operators (7) is of course more generalized than (1), and it is more flexible than (1).
We need the following lemma to our main result:

Lemma 1. Let the sequence of operators be given by (7). Then,
BY(1x) =1 ©)
p
foranyx >0,0<g<p <L
Proof. The proof is obvious with the help of the relation (8), so we skip the proof. O

Lemma 2. Let the sequence of operators be given by (7). Then,

pa t _ ‘7[”]?# X
Bn (1+tx TSRS {10)

foranyx >0,0<g<p<1.

_ P g £ P il
Proof. Lett = mr then T+ = [n+1]p, 7 50

t
p4 .
By (1+t’x>

q/p_ [nlpg an ]+1 (n=pe=j= 1)11@ [ r?—l ] o
pA

N

) [+ 1 A j—1
— q/p [n]p,qx n_l n—jp(”_j_z)Z(”_j_l) q](]%l) n — 1 xj
() [n+1]pg 5 il

_ _a/p Pllpr e iy |- qx)f
gh(x) [n+1]p4 = o
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By using (8), the result can be easily obtained. [

Lemma 3. Let the sequence of operators be given by (7). Then,

t)? peP[n]pqln — 1] 22 plalnlpg  x
B < > 2] = pA pa P 11
n < T+t) " 1B,  (+0(pter)  [+12,1+x (1)

foranyx >0,0<g<p<L

Proof. It is easy to verify that

ipa =0 +ali=Upe 154 =allpali = Upg + 7 s (12)
With the help of (12), we can have

B t z'x
n 1+t 7

_ o q/p ) alnlpgln —1]p, an—2j42, DD D | =2 j
= éﬁ,q(x) { [7’1+1] Zp p q 2 . pqx

j—2

[p.q on—2ji2, j-1, B=D0==) G- | n—1 ,
I Sl R I
[n+1]pq] i1 N

q/p Jalnlpgln —1pg S o 0in (nj2)(n=j=3) ((42)(i+1) | 1 —2 2
= gﬁ,q(x) { [n+1]%7,q ; p ] p q . x/

[1]p.q - Ui rei) o [ n—1
+ — J i 2 x]-i—l
it 1]M ]Z Py

Q/p p2n—2q2[n]p,q[ pq 2 Z (n—j— 2 (n—j=2)(n—j-3) j i 2x>j
E,q(x) [1’[ + 1]pq P2

2n n—1 . . ..
P nlpq (n=j-1)(n-j-2) j(-1) | n—1 (qx)
Py 2 2 , '
TS M 7 i) G

Now, using (8), we can get the desired result. O

3. Korovkin Type Statistical Approximation Properties

In this section, we obtain the Korovkin type statistical approximation theorem for our sequence of
operators (7). Let us give the following theorem:

Theorem 3. [3] Let { A, } be the sequence of LPOs from H,, into Cg(R.) such that

w () ) - (55)

Then, for any function f € Hy,

=0, v=0,1,2

Cs

st —lim [| A5 () — fllc, = 0.
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Let us take p = (pn) and g = (g,) such that

st —limp, =1, st —limg, = 1. (13)
n n

Theorem 4. Let BY(f; x) be the sequence of operators (7) and the sequences p = (p,) and q = (qn) satisfy
the assumption (13) for 0 < g, < pn < 1. Then, for any function f € H,,,

st —lim [|B}(f;.) - fIl = 0.
Proof. For v = 0 and using (9), we can have
st — lim | B} (1;x) — 1] = st—lirrln‘zz —1‘.
By (13), the following can be easily verified, which is
st —lim | B (1;x) — 1| = 0.
For v = 1 and using (10), we get
t X
Pndn . o
‘B” (1—|—t'x> 1+x

For a given € > 0, let us define the following sets:

t X
u= |15 L p—— -
{” ‘B” (1+tx> T+x

<

qn [n]Pn/Qn
[n + 1] pﬂrqn

[”]p q
1l =1 g P
‘ qn [71 + 1]]0;1,%

26},

and ]
n
uUu=<n:1- p”’q">e}.
{ n [n+1]Pn/5]n o
It is easily perceived that U C U’, so we can write
t X
Sk <m:||BYy T ——;x ) — >
{ =N ’B” <1+t’x> 1+x —e}
n
On using (13), it is clear that
. [”]p q )
st—lim(1—g,———="—| =0.
n ( qn[n+1]Pn/Qn
Thus,
[”}p q }
bk<n:l—g,—" _>¢eb =0
{ o qn [n+l]Pn/Qn o
then,

st—lim’
n

t x
BPH;‘]n ; _
" <1 +t x) T+x



Symmetry 2018, 10, 731

7 of 15
Lastly, for v = 2 and using (11), we obtain
2 2
Bpnr‘in t X o X
" 1+t 1+x
— pnq% [n]}”nrlh [T’l - 1] Pnn x2 pzqn [1’1} Pnfn X 1
n+12 . (T+x)(pn+qux)  [n+1)3 , 1+x
2
S pflqn[”]l’nﬂn [;l - 1]Pn,qn -1 + pﬁ‘]n [n]zpn,‘ht (14)
[7’1 + ”Pnﬂn [7’[ + 1]Pi1ﬂn
Using [1n 4 1]p,,4, = Pnl1p,.q, + 5, the following can be easily justified that
[n]Pn,lIn [T’l - 1}Pn/‘1n _ i 1 _ qu + anﬁ_l _|_ q%n + PHQ%n_l
[7’1 + 1]%”,qn p?l [7’1 + 1]Pnr‘7n [T’l + 1]%7,,6]7/,
Substituting it in (14), we can have
2 2
Bgmqn £ ;X _ X
1+t 1+4+x
| ‘ I e T i 1 i Piin [ p g
o p%l P%l [n + HPW‘M [n + 1]%,,,1]” [n + 1]%;1,‘711
B TR [ (L il R A
N p%l p%l [71 + 1]pn/qn [7’1 + 1}%;1,1111 [n + ]'h’VHqV’ [Yl + 1]%%1‘7;1
_ T B U 2 i 2 i
If we choose a;, = e 1, B = e ( =S i, ) and
_ ri'
Y= [”Jrl]rfnﬂn [”*1]%;1/% ! then by (13)/ we have
st — lignzxn =st— lirlgn By = st — lirrln Yn = 0. (15)

For any given € > 0, now we define four sets as follows:

2 2
t X
_ . Pnfn . _
U‘{"‘ By ((1+t> ’x> <l—|—x>

€ € €
= : > = : > _ = . > _
oA {n.an_3},u2 {n.ﬁn_s},llg {n.’yn_3}.
It is obvious that U C U; U U, U Us. Then, we obtain
Ze}

(S{kﬁn:‘Bﬁ”'q” <<1t+t>2;x> - (1ix>2
§5{k§nzzxn2§}+5{k§n:ﬁn2§}+5{k§n:7n2g}.

It is clear that the right-hand side of the above inequality is zero by (15); then,

t 2 X 2
Pnfn . _
B <<1+t> ’x> <1+x)

Hence, the proof is completed. O

st—lim|
n

=0.
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4. Rates of Statistical Convergence

This section is devoted to find rates of statistical convergence of operators (7).
The modulus of continuity for the space of functions f € H,, [1] is defined by

@(f;0) = sup f(#) = f(x)1,

xt20, |1~ | <0
where @(f;J) satisfies the following conditions: Vf € H,(R+)
1. limw(f;6) =0,
lim &(f;6)

2 If0) - ) < @(fs0) (FL5EE 41)

Theorem 5. Let p = (py) and g = (qy) be the sequences satisfying (13) and 0 < g, < p, < 1, we have

B (£330 - £ < @i Jon0) (L2 1)),

where
dn(x)
— ( X )2 q%(l—i_x) [n]Pn qn{ ﬂpnﬂn o 2‘7%1{ ]Pn qn + ﬁ
1+x Pn+ﬂnx [n+1]pn qn Pn[n+1]pn qn p%l
F’Z 1‘7%[ ]Pn/qn ; X . (16)
m+1]3 .. 1+x
Proof.

|B§nl% (f/ .X') _ f(x)|
< B ([f(t) = f(x)];x)
7 1
=~ CU(f,(s) {Bzﬂlqn(l;x> + SBZVU‘M (‘

_t =
1+t 1+x

)}

By using the Cauchy-Schwarz inequality (see (6)) and using (9)-(11), we have

|Bpn%1
pnA t x )’ : Prdin (12
<ot (2o g { (0 (i) =)} ()
(I) f JVI l_f_ X )2 q;’ll<1+x> [n]Pn/'in[n_l]Pn,qn
Pn 1+x potanx  [n+1]5
1
M+qn +P271’7%z[ Jpwgn x |7
puln +113 . i n+13,, 1+x

Thus, it is obvious that, by choosing ¢, as in (16), the theorem is proved. O

N—

o)‘,_\

|

Notice that, by conditions in (13), st — lim = 0. Then, we have
n

st —lim@(f;é,) = 0.
n
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This provides us the pointwise rate of statistical convergence of the sequence of operators
BI™ 1 (f;x) to f(x).

Now, we will contribute an estimate related to the rate of approximation by means of Lipschitz
type maximal functions.

Lenze [27] introduced a Lipschitz type maximal function as

]sz(x) _ f(t)_f(x)

= sup
>0, t#x |x—t|lx

The Lipschitz type maximal function space on E C R is defined in [1] as follows:

Wlx,E = {f:sup(1+x)“fa(x) < Mm;x >0andy € E},

where function f is bounded and continuous on R4, 0 < « < 1 and M is a positive constant.

Theorem 6. If BL"" (f; x) is defined by (7), then V' f € W, g, we have

—

P (£, 3 w\T 2
B () f(x)|<M<Pn(X) (p) +pnd<x,E>),

where

on(x) = ( X )2 <an2(1 + %) (M pugn [ = Upugu 2qn[] g n %)

1+x Pn + Gux n+1)3 ..  paln+ 12 a0 Pn

qun [n]Pn,% X

n+1]3 . 1+x

_l’_

Proof. A similar technique used in Theorem 7 in [26] will be taken to provide the proof. Letting
x>0, (x,x9) € Ry x E, itis understood that

[f = FE < 1f = f(xo) [+ [f(x0) = f(2)]-
Since BE"™(f;x) is a linear and positive operator, f € W, g, using the previous inequality,
we have
B3 (f;x) = f(x)]
< B (If — f(xo)lix) + |f (x0) — f(2) 1B (1;x)

< (g (| x0T\ P xl B (1;x) (17)
= n 1+t 14x| (1+x)%(1+x9)* " ’ ’

Consequently, we obtain

t X0 “
BPn,Qn _ ;
" <1+t 1+ x)
t x | |x — xo|*
< Bpn/qn _ ; BPnﬂn 1;x).
= Fn (1+t T+x x)+(1+x)"‘(1—|—x0)"‘ n " (13)
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Using the Holder’s inequality (see (5)) with p = % and g = ﬁ and using (9)—(11), we have

t x |*
Pnfn o .
Bn < 1+ 1+x ’x>
PnAn 2 X 2 % Pnfn (12 2-a
< By m—m ;X (B (15 x)) 2
|x — xo|* P
+ By (1 x
(14 x)*(1 +xg)x " (1)

2—u

(i ()P A Xl
“’"“”(m) T o T2 7o)t

If the above result is substituted in (17), we will get our desired result. Hence, the theorem
is proved. O

Corollary 1. If B"" (f;x) is defined by (7) and take E = R implies d(x, E) = 0, then a special case of
Theorem 6 can be obtained as the following result: Vf € Wy g,

Pudln £\ _ £(x " 5 qn 2%“/
B (£3) = £0)] < Mpu(? (22

where p,(x) is the same as in Theorem 6.

5. Construction of the Bivariate Operators

In this section, we define a bivariate version of operators (7) and study their approximation
properties.

For RZ = [0,00) x [0,00), f:R%Z — Rand 0 < gu,,qn, < Pny, P, < 1, let us define the bivariate
case of the operators (7) as follows:

Buthn > (£5)

n—ji+1

. —jo+1y.
_ l]nl /Pn1 an /Pnz nzl 2 f P”ll []1]P;11,'7n1 ng 2 []2]%121%2
Pnq dn Pnn dn . TR . i

v (x) 2 (y) [1’11 —N + 1]Pn1rq;zl 115111 [7’12 -2 + 1]Pn2/qn2 ‘#122

ny na
(”1*]'1)(;1*]'1*1) j1G1-1) ('12*]'2)(;2*12*1) ]'2(]'22*1) [nl ‘| [1’12
PnqMnyq

j1=0j2=0

Xyl (18)
Pnyfny

X p”l in : Pnz l7n2 ]‘1

Pnqdn -1 Pnydn -1
where ;'™ (x) = TI;Lo (ph, + 45, %) and £5,2 72 (y) = T2, (3, + 31)-
For K = I? = [0,00) x [0,00), the modulus of continuity for bivariate case is defined by

s x
1+s 1+4+«x

7

fs,8) ~ fx,y)] < ws (f: ‘

t oy
1+t 14y
for each f € Hy,. Details of the modulus of continuity for the bivariate case can be found in [28].

Now, we will investigate Korovkin type approximation properties by using the following
test functions:

2 2
eo(u,v) =1, el(u,v):HLu, ez(u,v)zﬁ, e3(u,v) = <1—§qu) +(1—T—v) .

Lemma 4.

Pnq Png Mnq qny . _ qny4ny
1' Bnlr”Z (60’ X, y) - p"l p”Z ’
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qnlqﬂz [nl pPnyAny  x

2. Bﬁr}nzfiz'qnﬂnz (6 7 X y) Pny [711+1]]Pn1 Anq T+x/
3 B (o y) = Tt
4. Bﬁf 1nz"2'q"1q"2 (e3;x,y)
_ %1%2 [”1]pn1,qn] [”1—1];7111,%1 x?2 P:%7 Q%l%z [”1]pn1,qnl x
- Pny [n1+1]%n1,qnl (1+x)(Pn1 +qn1x) Pny [nlJrl]%Jnl,qnl I+x
qnq qﬁz [HZ]PHZ Any [n2— 1]Pn2 Any e pﬁﬁ 1qn1q3,2 [n Z]Pn2 Ay Y
Py [n2+l],,n2 Ay (1+y) (puy +4nyy) Pm [”2+1}p;12 dny Ty

Let (pn,), (Pny), (9n,) and (g,,) be the sequences that converge statistically to 1 but not convergent
in ordinary sense, so it can be written as for 0 < qu;, qu, < Py, P, <1,

st —lim p,, = st —limpy,, = st — limgy,, = st —limg,, = 1. (19)
nq np m n

Now, with condition (19), let us show the statistical convergence of the sequence of bivariate
operators (18).

Theorem 7. Let (pn,), (Pny), (qn,) and (qn,) be the sequences satisfying the condition (19) and let
B (£ v be the sequence of bivariate positive linear operators acting from Hy, (R%) into Cp(R.).
Then, for any f € He,,

st — lim || B2 772 (f) - f|| = 0.
112

Proof. Using Lemma 4, the proof can be achieved similarly the proof of Theorem 4. O

6. Rates of Convergence of the Bivariate Operators

For f € H,,(IR% ), modulus of continuity for bivariate case is defined as follows [28]:

S X

= | <6,
1+s 1+x 1

O(f:61,52) = sup {|f<s,t> ~ fw)l

x,s>0

- < 2 .
1+t 1+]/ 8, (s,t) € R (x,y)€R+}

Here, @(f; 41, 6,) satisfies the conditions:
@(f;61,60) = 0if &1 & tend to 0, and

Jﬂ

F(5) = F(x,9)] < @(f:61,6) (1+’”551”"') 1+’1”52”y (20)

Now, we give the rate of the statistical convergence of the bivariate operators (18) by means of
modulus of continuity in H,:

Theorem 8. Let (pn,), (Pny), (qn,) and (qn,) be the sequences satisfying the condition (19). Then, we have

B )~ f(59)] < 0 (5500 (0000 ) @

where

2
Pnq Pnynq gn S X A
51/11( ) Bnl,ll’lzz 12 ((]+51—|—x> /x/y>l (22)
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2
Pnq Pnsgnq gn t y .
Ony(Y) = By -2 <<1+t - 1+}/> ,x,y) ' 23)

Proof. By using (20), we have

BT (£ y) — f(x,y)| < @(f;61,62)
1

n nn/HYn n: n nnMn n S x
{ e + g B (| - )
1
Piq Py AIng G 1 oy Py g G t
X {Bnl}ﬂzz 1 2(@0;x,y)+%8n1}n22 1912 < m _ ﬁ /-x/y)}, (24)

Using Cauchy-Schwarz inequality (see (6)), we have

}x/]/>
1

2 2
Pnq Pnydnqqn S X Pnq PnoMnqqdn 2 1
< {Bnl}ﬂzz t (( ) ;x/y>} {Bﬂl}nzz ! Z(e();x'y)}zf

Bpn] PnyMnq Gny S N X
2 14+s 1+x

1+s 1+x
and
Py Py Ay Gy t oy .
Bnl/nz ( 1+¢ 1+y /xr]/>

1
2 2
Pnq Pnygnq qn t y A Pnq Pnyqnq gn 2. 1
et (i) )| el @nant

Putting above inequalities in (24) and choosing d;,, (x) and 8, (y) as in (22) and (23), respectively,
we get our desired result (21). The theorem is completed. O

In the end, we will present the rates of statistical convergence of the bivariate operators (18) by

means of Lipschitz type maximal functions.
Let us give the Lipschitz type maximal function space for the bivariate caseon E x E C R x R as

— ~ 1 1
Wal,zxz,Ez = {f : Sup(l + S)al(l + t)“zfﬁlﬂ"z (x'y) < M(l 4 x)“l (1 +]/)‘X2;

x,y>0,(st) € EZ}. (25)

Here, f is a bounded and continuous function in Ry, M is a positive constant and 0 < a1, ap <1,

and then let us define foq,zxz as follows:

f(s,t) = f(x,y)|

s— x|t —y|2’

framy (x,y) = sup

s,t>0
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Theorem 9. Let (py,), (Pny), (qn,) and (qn,) be the sequences satisfying the condition (19). Then, we have

|B£f}nzﬂzﬂn1qn2 (f;x,y) _f(x/]/)| <M (qmqnz)

PnqPny
g s 17“1;0‘2 « 71171
Q00 Fan)® (102 T g, (0 Fagy, ey (D0 )
Py Py PniPny

_*
o)l Eye (202 ) 7 *2‘1("’E)ald(y’5)“z}’
nypny

where 0 < aq, a0 < 1,d(x,E) = inf{|x —y| : y € E}, 0y, (x) and 6, (y) are defined as in (22) and (23),
respectively.

Proof. Let x,y > 0 and (xg,yo) € E%. Then, we can write

[f(s,8) = fFxy)| < f(s,8) = f(x0,0)] + | f (x0,90) = f(x, )]
Applying the positive linear operators B "2 ""1%"2 (£; x) on both the sides of the above inequality
and using (25), we obtain

Bt (£ y) — F(x, )]
< BimPra T2 (| £ (s,t) — f(xo,y0)|; %, y)
+ [ f(x0,y0) — F(x, )| BhEr P12 (g x, )

a1 %)
Py Py Aing G S X0 f Yo
< 1 PnysHny ny _ . .
< MBin, ( T+s 1+x0| |1+t 14y ’x’y>
o7 1%
X X0 y Yo Pnq Py fng Gny
M - - X, Y). 2
* ‘1+X 1—|—x0 1+y 1+]/O Bnlrnz (60/x/y) ( 6)

It is known that (4 + v)* < u* 4+ v* and 0 < & < 1, s0 it can be written as

s x [T ol x " x  x |M
1+s 14+xy| ~|14+4s 1+«x 1+x 14xg
tooyw Pty Py e [P
1+t T1+4+y| ~ |1+t 14y 1+y 1+yo
By using the above inequalities in (26), we have
Pnq Pnyqnq Gn
|Buyny 212 (fix,y) = f(x, )]
o] L%)
Pnq PnsGnq n S X t ]/
< 1 Py rHng fny _ _ .
< Bun, <1+s 1+x| |14+t 14y ’x’y>
[L%) @1
y Y BPmPraAn s X .
+ 1+y 1+ye| "™ (’1+s 1+x ’x’y)
o %)
X X0 Pnq Pny gnqg gn t y
_ B 1P iy _ X,
i 1+x0 e (1—|—t 1+y xy)
51 L5
X . X0 y - Yo Bpnl Py Anq Gny .
Tir T Trxl |11y 1+y0' 2 (60:%.¥).
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Using Holder’s inequality with p; = %, p2 = a%, q1 = ﬁ, g = ﬁ (see (5)), we obtain
o7 t y

a
1+t 1ty ;x’y)

aq t y
.x, Bpnl Png Mnq Gny o
*Y > i 1+t 14y

Bpnl Png Mnq Gny S . X
2 1+s 1+4x

_ Bpnlpn2/qn1%12 (‘ S X

e 1+s 1+«

o

IN

2 v
Pnq Prnqnq Gn S X Pnq Pnsdnq qn 2 2-ag
B 172 ) _ i X, B 112 17112 e5; X, bl
( ny,ny 1+s 1+ x y ( ny,ny ( 0 ]/))

“2

2 2
pnl Pnzzqnlqnz t ]/ . Pn Pnernlq;qz 2. 2—a
X <Bn1,n2 <1—|—t - m XY i (egsx,y) 2.

If we use the above inequality in (26), we get our desired result. Thus, the proof is completed. [J

Corollary 2. If we take E = [0, o), then because of d(x, E) = 0 and d(y, E) = 0, we have

_Mtm

2 ®
BLP I () f )| < M (ZZ) by (1) F o),
ny Fny

N‘S

where 6y, (x) and by, (y) are same as defined as in (22) and (23), respectively.

7. Conclusions

In this paper, we have constructed (p, q)-BBH operators and calculated some auxiliary results for
these newly defined operators. We also established Korovkin type results and rate of convergence in a
statistical sense. Furthermore, we constructed the bivariate (p, q)-BBH operators and computed rate of
statistical convergence for the bivariate (p, )-BBH operators. Our results are more general than the
results for BBH and ¢-BBH operators.
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