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Abstract: A set to locate all eigenvalues for matrices with a constant main diagonal entry is given,
and it is proved that this set is tighter than the well-known Geršgorin set, the Brauer set and the set
proposed in (Linear and Multilinear Algebra, 60:189-199, 2012). Furthermore, by applying this result
to Toeplitz matrices as a subclass of matrices with a constant main diagonal, we obtain a set including
all eigenvalues of Toeplitz matrices.
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1. Introduction

Eigenvalue localization is an important topic in Matrix theory and its applications.
Many eigenvalue inclusion sets for a matrix A = [aij] ∈ Cn×n [1–11] have been established, such as the
well-known Geršgorin set [5,11] and the Brauer set [1,11]. However, as Melman [9] pointed out, for the
special class of matrices with a constant main diagonal (c.m.d.), both the Geršgorin and Brauer sets each
consists of a single disc, a rather uninteresting outcome. In fact, if a matrix A = [aij] ∈ Cn×n satisfies
a11 = a22 = · · · = ann = ā, then both Γ(A) and K(A) reduce, respectively, to the following forms:

Γ(A) = {z ∈ C : |z− ā| ≤ max
i∈N

ri(A)},

and

K(A) =

{
z ∈ C : |z− ā| ≤ max

i,j∈N,i 6=j

√
ri(A)rj(A)

}
,

where ri(A) = ∑
j 6=i
|aij| and N = {1, 2, . . . , n}. Obviously, the Geršgorin and Brauer sets are just discs [9].

To localize all eigenvalues of matrices with a c.m.d. more precisely, Melman also [9] gave an
eigenvalue inclusion set (see Theorem 1), which is tighter than Γ(A) and K(A).

Theorem 1 ([9] Theorem 2.1). Let A = [aij] ∈ Cn×n with aii = ā for all i ∈ N, n ≥ 2. Let σ(A) be the
spectrum of the matrix A, that is, σ(A) = {λ ∈ C : det(λI − A) = 0}. Then,

σ(A) ⊆ Ω(A) =
⋃

i∈N
Ωi(A),

where A0 = A− āI, (A2
0)ij denotes the (i, j)th entry of A2

0 and

Ωi(A) =

{
z ∈ C :

∣∣∣∣z− ā−
√(

A2
0
)

ii

∣∣∣∣ ∣∣∣∣z− ā +
√(

A2
0
)

ii

∣∣∣∣ ≤ ri

(
A2

0

)}
.

Symmetry 2018, 10, 745; doi:10.3390/sym10120745 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
http://dx.doi.org/10.3390/sym10120745
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/10/12/745?type=check_update&version=2


Symmetry 2018, 10, 745 2 of 9

Furthermore, Ω(A) ⊆ K(A) ⊆ Γ(A).

In [7], Li and Li provided two tighter sets including all eigenvalues of a matrix with a c.m.d.
(see Theorems 2 and 3).

Theorem 2 ([7] Theorem 2.4). Let A = [aij] ∈ Cn×n with aii = ā for all i ∈ N, n ≥ 2. Then,

σ(A) ⊆ Ω1(A) =
⋂

0≤α≤1

⋃
i∈N

Ω1α
i (A),

where

Ω1α
i (A) =

{
z ∈ C :

∣∣∣∣z− ā−
√(

A2
0
)

ii

∣∣∣∣ ∣∣∣∣z− ā +
√(

A2
0
)

ii

∣∣∣∣ ≤ αri

(
A2

0

)
+ (1− α)ci

(
A2

0

)}
.

Theorem 3 ([7] Theorems 2.5 and 2.7). Let A = [aij] ∈ Cn×n with aii = ā for all i ∈ N, n ≥ 2. Then,

σ(A) ⊆ Ω2(A) =
⋂

0≤α≤1

⋃
i∈N

Ω2α
i (A),

where

Ω2α
i (A) =

{
z ∈ C :

∣∣∣∣z− ā−
√(

A2
0
)

ii

∣∣∣∣ ∣∣∣∣z− ā +
√(

A2
0
)

ii

∣∣∣∣ ≤ (ri

(
A2

0

))α (
ci

(
A2

0

))1−α
}

.

Furthermore,

Ω2(A) ⊆ Ω1(A) ⊆ (Ω(A)
⋂

Ω(AT)) ⊆ (K(A)
⋂
K(AT)) ⊆ (Γ(A)

⋂
Γ(AT)).

In this paper, we first give a sufficient condition for non-singular matrices, which leads to a new
set including all eigenvalues of matrices with a c.m.d. As an application, in Section 3, we apply the
result obtained in Section 2 to Toeplitz matrices as a subclass of matrices with a c.m.d. and obtain a
new eigenvalue inclusion set. All the new eigenvalue inclusion sets are proved to be tighter than those
in [9].

2. A New Eigenvalue Inclusion Set for Matrices with a c.m.d.

In this section, we present a new eigenvalue inclusion set for matrices with a c.m.d. First,
a sufficient condition for non-singular matrices is given.

Lemma 1. For any A = [aij] ∈ Cn×n with aii = ā for all i ∈ N, and n ≥ 2, if

|ā2 − (A2
0)ii||ā2 − (A2

0)jj| > ri(A2
0)rj(A2

0), (1)

where A0 = A− āI, then A is non-singular.

Proof. Suppose on the contrary that A = [aij] ∈ Cn×n satisfies Inequality (1) and is singular, then there
is an x = [x1, x2, . . . , xn]T ∈ Cn, with x 6= 0, such that Ax = 0. Let

0 < |xt| ≥ |xs| ≥ max{|xk| : k ∈ N, k 6= s, k 6= t}.

Note that A0 = A− āI. Then, A0x = −āx, which leads to A2
0x = ā2x, equivalently, (A2

0 − ā2I)x = 0.
This implies that for all i ∈ N,

((A2
0)ii − ā2)xi = − ∑

j∈N, j 6=i
(A2

0)ijxj.
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Hence,
|(A2

0)ii − ā2||xi| ≤ ∑
j∈N, j 6=i

|(A2
0)ij||xj|, ∀i ∈ N. (2)

Taking i = t, Inequality (2) becomes

|(A2
0)tt − ā2||xt| ≤ ∑

j∈N, j 6=t
|(A2

0)tj||xj| ≤ rt(A2
0)|xs|. (3)

If |xs| = 0, then Inequality (3) reduces to |(A2
0)tt − ā2||xt| = 0, implying that |(A2

0)tt − ā2| = 0.
However, this contradicts Inequality (1). Hence, |xs| > 0. We now take i = s in Inequality (3),
and obtain similarly

|(A2
0)ss − ā2||xs| ≤ rs(A2

0)|xs|.

On multiplying the above inequality with Inequality (3), then

|(A2
0)tt − ā2||(A2

0)ss − ā2||xt||xs| ≤ rt(A2
0)rs(A2

0)|xt||xs|. (4)

Note that |xt||xs| > 0, then

|(A2
0)tt − ā2||(A2

0)ss − ā2| ≤ rt(A2
0)rs(A2

0), (5)

which contradicts Inequality (1). Therefore, A is non-singular.

From Lemma 1, we can obtain a new eigenvalue inclusion set for matrices with a c.m.d.

Theorem 4. Let A = [aij] ∈ Cn×n with aii = ā for all i ∈ N, and n ≥ 2. Then,

σ(A) ⊆ Ω̄(A) =
⋃

i,j∈N,i 6=j

Ω̄i,j(A),

where

Ω̄i,j(A) = {z ∈ C : |z− ā−
√
(A2

0)ii||z− ā +
√
(A2

0)ii||z− ā−
√
(A2

0)jj| (6)

|z− ā +
√
(A2

0)jj| ≤ ri(A2
0)rj(A2

0)}, (7)

and A0 = A− āI.

Proof. Suppose that λ ∈ σ(A), then λI − A is singular. If λ 6∈ Ω̄(A), then λ 6∈ Ω̄ij(A) for any
i, j ∈ N, i 6= j, which leads to that for any i, j ∈ N, i 6= j,

|z− ā−
√
(A2

0)ii||z− ā +
√
(A2

0)ii||z− ā−
√
(A2

0)jj||z− ā +
√
(A2

0)jj| > ri(A2
0)rj(A2

0),

that is,
|(z− ā)2 − (A2

0)ii||(z− ā)2 − (A2
0)jj| > ri(A2

0)rj(A2
0).

From Lemma 1, we have that λI − A is non-singular. This contradicts that λI − A is singular.
Hence, λ ∈ Ω̄(A).

We now give a comparison between the new eigenvalue set Ω̄(A) and the set Ω(A) in Theorem 1.

Theorem 5. Let A = [aij] ∈ Cn×n with aii = ā for any i ∈ N, and n ≥ 2. Then,

Ω̄(A) ⊆ Ω(A).
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Proof. Suppose that z ∈ Ω̄(A), then there exist i, j ∈ N with i 6= j and z ∈ Ω̄ij(A), that is,

|z− ā−
√
(A2

0)ii||z− ā +
√
(A2

0)ii||z− ā−
√
(A2

0)jj|

|z− ā +
√
(A2

0)jj| ≤ ri(A2
0)rj(A2

0).

Equivalently,
|(z− ā)2 − (A2

0)ii||(z− ā)2 − (A2
0)jj| ≤ ri(A2

0)rj(A2
0). (8)

If ri(A2
0)rj(A2

0) = 0, then(z − ā)2 = (A2
0)ii or (z − ā)2 = (A2

0)jj. We can get z ∈ Ωi(A) or
z ∈ Ωj(A) and hence z ∈ Ωi(A)

⋃
Ωj(A). If ri(A2

0)rj(A2
0) > 0, we have from Inequality (8),(

|(z− ā)2 − (A2
0)ii|

ri(A2
0)

)(
|(z− ā)2 − (A2

0)jj|
rj(A2

0)

)
≤ 1,

that is, |(z− ā)2 − (A2
0)ii| ≤ ri(A2

0) or |(z− ā)2 − (A2
0)jj| ≤ rj(A2

0). Hence, z ∈ Ωi(A) or z ∈ Ωj(A),
consequently, z ∈ Ωi(A)

⋃
Ωj(A) and

Ω̄ij(A) ⊆ Ωi(A)
⋃

Ωj(A). (9)

As Equation (9) holds for any i and j (i 6= j) in N, therefore Ω̄(A) ⊆ Ω(A).

Example 1. Consider the matrix A (the matrix A4 in [9]),

A =


2 i −3 −i
0 2 1 −5i
4 1 2 2
i −1 1 2

 .

the sets Γ(A), K(A), Ω(A), and Ω̄(A) are shown in Figure 1, where Γ(A) is represented by the outside
boundary, K(A) by the middle, Ω(A) by the inner, and Ω̄(A) is filled. The exact eigenvalues are plotted with
asterisks. It is easy to see that

Ω̄(A) ⊂ Ω(A) ⊂ K(A) ⊂ Γ(A).

This example shows that the the new eigenvalue inclusion set in Theorem 4 is tighter than the Geršgorin
set Γ(A), the Brauer set K(A) and the set Ω(A) obtained in [9].

Figure 1. Ω̄(A) ⊂ Ω(A) ⊂ K(A) ⊂ Γ(A).
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Remark 1. From Theorems 3 and 5, we have that

Ω̄(A) ⊆ Ω(A), Ω̄(AT) ⊆ Ω(AT),
(

Ω̄(A)
⋂

Ω̄(AT)
)
⊆
(

Ω(A)
⋂

Ω(AT)
)

and
Ω2(A) ⊆ Ω1(A) ⊆ (Ω(A)

⋂
Ω(AT)).

Note here that Ω1(A) = Ω1(AT) and Ω2(A) = Ω2(AT). However, the sets Ω2(A) and
Ω̄(A)

⋂
Ω̄(AT) (also Ω1(A) and Ω̄(A)

⋂
Ω̄(AT)) cannot be compared with each other. In fact, we also

consider the matrix A in Example 1, and draw Ω2(A), and Ω̄(A)
⋂

Ω̄(AT) in Figures 2 and 3. It is not
difficult to see that

Ω2(A) ⊆/ Ω̄(A)
⋂

Ω̄(AT)

and
Ω̄(A)

⋂
Ω̄(AT) ⊆/ Ω2(A).

Figure 2. Ω2(A).

Figure 3. Ω̄(A)
⋂

Ω̄(AT).
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3. Eigenvalue Inclusion Set for Toeplitz Matrices

Toeplitz matrices, a subclass of matrices with a c.m.d., arise in many fields of application [12–18],
such as probability and statistics, signal processing, differential and integral equations, Markov chains,
Padé approximation, etc. For example, consider an assigned Lebesgue integrable function f defined on
the fundamental interval I = [−π, π) and periodically extended to the whole real axis, and the Fourier
coefficients ak of f that is

ak =
1

2π

∫ π

−π
f (x)e−ikxdx, (i2 = −1)

where k is an integer number. From the coefficients ak one can build the infinite dimensional Toeplitz
matrix Tn( f ) with entries (Tn( f ))st = as−t, s, t = 1, 2 . . . , n [12,13,16].

Toeplitz matrices are constant along all their NW-SE diagonals [7,9], i.e., a Toeplitz matrix
T ∈ Cn×n has the following form:

T =


t0 t1 t2 · · · tn−1

t−1 t0 t1 · · · tn−2
...

. . . . . . . . .
...

t2−n · · · t−1 t0 t1

t1−n · · · t−2 t−1 t0

 .

Indeed, if f is a real valued function, we have ak = ā−k and, consequently, Tn( f ) is Hermitian;
moreover, if f (x) = f (−x), then the coefficients ak are real and Tn( f ) is symmetric. The following
result can be found in [12,19] and in a multilevel setting in [16,17].

Theorem 6 ([17,19]). Let λ
(n)
j be the eigenvalues of Tn( f ) sorted in nondecreasing order, and m f = ess inf f ,

M f = ess sup f .

a. If m f < M f , then λ
(n)
j ∈ (m f , M f ) for every j and n; if m f = M f , then f is constant and trivially

Tn( f ) = m f In with In identity of size n;
b. The following asymptotic relationships hold: lim

n→∞
λ
(n)
1 = m f , lim

n→∞
λ
(n)
n = M f .

Furthermore, there exist further results establishing precisely how fast the convergence
holds [13,17]. Since in applications (differential and fractional operators/equations, shift-invariant
integral operators/equations, signal and image processing etc.) often the underlying Toeplitz matrices
have large size n, then the results in [12,13,16,17] are difficult to beat and improved. When f is
complex-values the theory is more complicated and in that case the convex hull of the essential
range of f plays a role (see [13,18]). Obviously, a Toeplitz matrix is persymmetric. Here, we call A
persymmetric if A is symmetric with respect to the main anti-diagonal [9]. Furthermore, the square of
a Toeplitz matrix T is not necessary Toeplitz, but it is persymmetric.

In [9], Melman applied the eigenvalue inclusion Theorem (Theorem 1) of matrices with a c.m.d.
to Toeplitz matrices, and obtained the following simpler form of the eigenvalue inclusion set.

Theorem 7 ([9] Theorem 3.1). Let T = [tij] ∈ Cn×n be a Toeplitz matrix and tii = t̄, n ≥ 2. Then,

σ(T) ⊆ Ω(T) =
d n

2 e⋃
i=1

Ωi(T),

where
Ωi(T) = {z ∈ C : |z− t̄−

√
(T2

0 )ii||z− t̄ +
√
(T2

0 )jj| ≤ vi(T2
0 )},

T0 = T − t̄ I, vi(T2
0 ) = max{ri(T2

0 ), rn−i+1(T2
0 )},
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and

dn
2
e =

{
n
2 , i f n is even,

n+1
2 , i f n is odd.

Furthermore, Ω(T) ⊆ K(T) ⊆ Γ(T).

Next, by applying Theorem 4 to Toeplitz matrices, we obtain a new eigenvalue inclusion set.

Theorem 8. Let T = [tij] ∈ Cn×n be a Toeplitz matrix with t11 = t̄ and n ≥ 2. Then,

σ(T) ⊆ Ω̄(T) =

 ⋃
i,j∈d n

2 e, i 6=j

Ω̄1
ij(T)

⋃ ⋃
i∈d n

2 e
Ω̄i(T)

 ,

where

Ω̄1
ij(T) = {z ∈ C : |z− t0 −

√
(T2

0 )ii||z− t0 +
√
(T2

0 )ii|

|z− t0 −
√
(T2

0 )jj||z− t0 +
√
(T2

0 )jj| ≤ Vi(T2
0 )Vj(T2

0 )},

Ω̄i(T) = {z ∈ C :
(
|z− t0 −

√
(T2

0 )ii||z− t0 +
√
(T2

0 )ii|
)2
≤ ri(T2

0 )rn−i+1(T2
0 )},

Vi(T2
0 ) = max{ri(T2

0 ), rn−i+1(T2
0 )}, and T0 = T − t0 I.

Proof. Since T is Toeplitz and T0 = T − t̄ I, we have that T0 is also Toeplitz and T2
0 is persymmetric.

Therefore, the main diagonal of T2
0 has at most d n

2 e distinct values, and (T2
0 )ii = (T2

0 )n−i+1,n−i+1 for
i = 1, 2, . . . , d n

2 e. Hence, by Theorem 4 and Equation (6), for any λ ∈ σ(T), λ ∈ Ω̄(T) =
⋃

i,j∈N,i 6=j
Ω̄ij(T).

For the case i, j ∈ {1, 2, . . . , d n
2 e}, j 6= i, we have

|(λ− t̄)2 − (T2
0 )ii||(λ− t̄)2 − (T2

0 )jj| ≤ ri(T2
0 )rj(T2

0 ). (10)

For the case i ∈ {1, 2, . . . , d n
2 e}, j ∈ N\{1, 2, . . . , d n

2 e}, j 6= n− i + 1, we have

|(λ− t̄)2 − (T2
0 )ii||(λ− t̄)2 − (T2

0 )n−j+1,n−j+1| ≤ ri(T2
0 )rn−j+1(T2

0 ).

Note that (T2
0 )jj = (T2

0 )n−j+1,n−j+1, then

|(λ− t̄)2 − (T2
0 )ii||(λ− t̄)2 − (T2

0 )jj| ≤ ri(T2
0 )rn−j+1(T2

0 ). (11)

From Inequalities (10) and (11), we can get that

|(λ− t̄)2 − (T2
0 )ii||(λ− t̄)2 − (T2

0 )jj| ≤ ri(T2
0 )Vj(T2

0 ), (12)

where Vj(T2
0 ) = max{rj(T2

0 ), rn−j+1(T2
0 )}. Similarly, we obtain

|(λ− t̄)2 − (T2
0 )n−i+1,n−i+1||(λ− t̄)2 − (T2

0 )jj| ≤ rn−i+1,n−i+1(T2
0 )Vj(T2

0 ). (13)

From (T2
0 )ii = (T2

0 )n−i+1,n−i+1, Inequalities (12) and (13), we could easily get, for any
i, j ∈ {1, 2, . . . , d n

2 e} and j 6= i,

|(λ− t̄)2 − (T2
0 )ii||(λ− t̄)2 − (T2

0 )jj| ≤ Vi(T2
0 )Vj(T2

0 ). (14)
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Furthermore, for any i ∈ {1, 2, . . . , d n
2 e}, j = n− i + 1,

|(λ− t̄)2 − (T2
0 )ii||(λ− t̄)2 − (T2

0 )n−i+1,n−i+1| ≤ ri(T2
0 )rn−i+1(T2

0 )

which is equivalent to

|(λ− t̄)2 − (T2
0 )ii||(λ− t̄)2 − (T2

0 )i,i| ≤ ri(T2
0 )rn−i+1(T2

0 ),

that is, (
|z− t0 −

√
(T2

0 )ii||z− t0 +
√
(T2

0 )ii|
)2
≤ ri(T2

0 )rn−i+1(T2
0 ). (15)

The conclusion follows from Inequalities (14) and (15).

From Theorems 5, 7 and 8, we can obtain easily the comparison results as follows.

Theorem 9. Let T = [tij] ∈ Cn×n be a Toeplitz matrix with t11 = t̄ and n ≥ 2. Then,

Ω̄(T) ⊆ Ω(T) ⊆ K(T) ⊆ Γ(T).

Example 2. Consider the Toeplitz matrix Q in [9]:

Q =


6 1 −1 −2i
0 6 1 −1
−1 0 6 1
4 −1 0 6

 .

In Figure 4, the sets Γ(Q), K(Q), Ω(Q), and Ω̄(Q) are shown, where Γ(Q) is represented by the outside
boundary, K(Q) by the middle, Ω(Q) by the inner, and Ω̄(Q) is filled. The exact eigenvalues are plotted with
asterisks. As we can see,

Ω̄(Q) ⊂ Ω(Q) ⊂ K(Q) ⊂ Γ(Q).

This example shows that the new eigenvalue inclusion set in Theorem 8 is tighter than the set obtained
in [9], the Geršgorin set and the Brauer set for a Toeplitz matrix.

Figure 4. Ω̄(Q) ⊂ Ω(Q) ⊂ K(Q) ⊂ Γ(Q).
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4. Conclusions

In this paper, we obtain a new eigenvalue inclusion set for matrices with a c.m.d. We then apply
this result to Toeplitz matrices, and get a set including all eigenvalues of Toeplitz matrices. Although
they needs more computations to obtain the new eigenvalue sets than those in [9], the new sets capture
all eigenvalues more precisely than those in [9].
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2. Cvetković, L. H-matrix theory vs. eigenvalue localization. Numer. Algorithms 2006, 42, 229–245. [CrossRef]
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