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Abstract: Topological indices are graph invariants computed by the distance or degree of vertices of
the molecular graph. In chemical graph theory, topological indices have been successfully used in
describing the structures and predicting certain physicochemical properties of chemical compounds.
In this paper, we propose a definition of generalized bridge molecular graphs that can model more
kinds of long chain polymerization products than the bridge molecular graphs, and provide some
results of the edge versions of atom-bond connectivity (ABCe) and geometric arithmetic (GAe)
indices for some generalized bridge molecular graphs, which have regular, periodic and symmetrical
structures. The results of this paper offer promising prospects in the applications for chemical and
material engineering, especially in chemical industry research.

Keywords: atom-bond connectivity index; geometric arithmetic index; line graph; generalized bridge
molecular graph

1. Introduction

Let G be an undirected simple graph without loops or multiple edges. We denote by V(G) the
vertex set of G and we denote by E(G) the edge set of G. We denote by e = uv the edge connect vertices
u and v or vertices u and v adjacent. We denote by Pn, Cn, and Sn the path, cycle, and star of n vertices,
respectively. We denote by N(v) the open neighborhood of vertex v, i.e., N(v) = {u|uv ∈ E(G)}.
We denote by d(v) or dG(v) the degree of a vertex v of a graph G, i.e., d(v) = |{u ∈ N(v)}|. Let L(G)

or GL be a line graph of G, so each vertex of L(G) corresponds an edge of G. Two vertices of L(G)

are adjacent if and only if a common endpoint is shared by their corresponding edges in G [1].
The degree of edge e in G is denoted by dL(G)(e), which is the number of edges that share common
endpoint with edge e in G; it is also the degree of vertex e in L(G). We give simple a illustration to
explain the relationship of original graph and corresponding line graph in Figure 1. We can see u, v, w
denote corresponding vertexes, and e, f , g, h, i, j denote corresponding edges in original graph G and
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denote corresponding vertices in line graph L(G). We get d(u) = d(v) = 3, d(w) = 2. dL(G)(e), which
is the degree of vertex e in L(G), is also the degree of edge e in G, thus dL(G)(e) = 4 in Figure 1.

Figure 1. The original graph G and corresponding line graph L(G).

Topological indices are graph invariants, which are obtained by performing some numerical
operations on the distance or degree of vertices of the molecular graph. In chemical graph theory,
topological indices are the molecular descriptors. They have been successfully used in describing the
structures and predicting certain physicochemical properties of chemical compounds. To study the
relationship between molecular structure and physical properties of saturated hydrocarbons, Wiener
index was first published in 1947 [2], and the edge version of Wiener index, which can be considered as
the Wiener index of line graph of G, was proposed by Iranmanesh et al. in 2009 [3]. As the important
role of topological indices in chemical research has been confirmed, more topological indices appeared,
which include atom-bond connectivity index and geometric arithmetic index.

In chemical graph theory, hydrogen atoms are usually ignored when the topological indices are
calculated, which is very similar to how organic chemists usually simply write a benzene ring as a
hexagon [4]. Now, three types of graphs of C24H28 are illustrated in Figure 2.

Figure 2. (a) C24H28 ball and stick model graph in 3D; (b) C24H28 chemical structure graph; and (c)
C24H28 model graph in chemical graph theory.

To explore the properties of simple short chain compound products, Gao et al. [5] defined some
join graphs such as Pn +Cm, Pn + Sm, Cm + Pn +Cm, Sm + Pn + Sm, and Cm + Pn + Sr, created by Pn, Cn

and Sn and obtained the ABCe and GAe indices of these graphs. In another paper, Gao et al. [6] defined
the bridge molecular structures, which can be used to research some long chain polymerization
products, and the forgotten indices (F(G)) formulae of some simple bridge molecular structures
constructed by P2, C6 or K3 are presented. The forgotten index is defined as F(G) = ∑

v∈V(G)
(d(v)3) [7].

In this paper, we define generalized bridge molecular graphs that could cover more kinds of long chain
polymerization products, and the edge-version atom-bond connectivity and geometric arithmetic
indices of generalized bridge molecular graphs are calculated.

To facilitate the reader, the topological indices discussed in this thesis are all given in Table 1.
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Table 1. The definition of topological indices.

Index Name Definition Proposed Recent Studied

atom-bond connection index ABC(G) = ∑
uv∈E(G)

√
d(u)+d(v)−2

d(u)d(v) [8] [9–11]

edge version of ABC index ABCe(G) = ∑
e1e2∈E(L(G))

√
dL(G)(e1)+dL(G)(e2)−2

dL(G)(e1)×dL(G)(e2)
[12] [5,13,14]

geometric arithmetic index GA(G) = ∑
uv∈E(G)

2
√

dG(u)dG(v)
dG(u)+dG(v)

[15] [16–18]

edge version of GA index GAe(G) = ∑
e1e2∈E(L(G))

2
√

dL(G)(e1)dL(G)(e2)

dL(G)(e1)+dL(G)(e2)
[19] [5,12,19–21]

In Table 1, dG(u) and dG(v) are the degrees of the vertices u and v in G, and dL(G)(e1) and dL(G)(e2)

are the degrees of the edges e1 and e2 in G.

2. Main Results and Proofs

2.1. Definition of the Generalized Bridge Molecular Graph

Before we start a discussion, we give the definition of the generalized bridge molecular graph as
follows. For a positive integer d, d pairwise disjoint molecular graphs {G(1), G(2), · · · , G(d)}with v(i) ∈
V(G(i)) for each i = 1, 2, · · · , d, and d− 1 pairwise disjoint path molecular graphs P(1), P(2), · · · , P(d−1)

(called bridges), the generalized bridge molecular graph GBG(G(1), v(1), G(2), v(2), · · · , G(d), v(d); P(1),
P(2), · · · , P(d−1)) is the graph obtained by connecting the vertices v(i) and v(i+1) by a path P(i) for
which two end vertices are identified with v(i) and v(i+1) for i = 1, 2, ..., d− 1 (See Figure 3). When
G := G(i), P := P(i), v := v(i) for each i, we simplify GBG(G(1), v(1), G(2), v(2), · · · , G(d), v(d); P(1),
P(2), · · · , P(d−1)) to be GBG(G, v; P; d). In this paper, if G is a star, then v is the central vertex and
if G is a cycle, v is considered as any vertex. In such cases, we further simplify GBG(G, v; P; d) to
be GBG(G, P; d). The bridge molecular graph’s bridge is strictly P2 in [6], which limits the scope of
modeling objects. The generalized bridge molecular graphs can model more kinds of long chain
polymerization products than the bridge molecular graphs, because the bridge can be either P2 or Pn

and n ≥ 3.

Figure 3. The generalized bridge molecular graph GBG(G(1), v(1), G(2), v(2), ..., G(d), v(d); P(1), P(2), ..., P(d−1)).

2.2. Results and Discussion

In the following, we discuss the edge-version atom-bond connectivity and geometric arithmetic
indices of some generalized bridge molecular graph. The line graph GBGL(Sm, Pn; d) of GBG(Sm, Pn; d)
is illustrated in Figure 4.
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Figure 4. The generalized bridge molecular graph of GBG(Sm, Pn; d) and GBGL(Sm, Pn; d).

Theorem 1. Let GBG(Sm, Pn; d) be the generalized bridge molecular graph for n ≥ 4, d ≥ 2 and m ≥ 2
(see Figure 4), then the ABCe and GAe of GBG(Sm, Pn; d) are

ABCe(GBG(Sm, Pn; d)) =

√
2

2
(d− 1)(n− 2) +

d− 2
m + 1

√
2m

+2(m− 1)

√
2m− 3
m2 −m

+ 2(d− 2)(m− 1)

√
2m− 1
m2 + m

+(m− 2)
√

2m− 4 +
(d− 2)(m− 1)(m− 2)

√
2m− 2

2m
,

GAe(GBG(Sm, Pn; d)) =
4
√

2m
m + 2

+
4(d− 2)

√
2m + 2

m + 3
+ (d− 1)(n− 4) + (d− 2)

+4(m− 1)

√
m2 −m

2m− 1
+ 4(d− 2)(m− 1)

√
m2 + m

2m + 1

+
d
2
(m− 1)(m− 2).

Proof. This line graph has 2− 2m− n + d
2 (m

2 + m + 2n− 4) edges. If dL(G)(e1) and dL(G)(e2) are the
degree of edge of e1 and e2, then there are 2 edges of type dL(G)(e1) = m, dL(G)(e2) = 2, 2(d− 2) edges of
type dL(G)(e1) = m + 1, dL(G)(e2) = 2, (d− 1)(n− 4) edges of type dL(G)(e1) = dL(G)(e2) = 2, d− 2
edges of type dL(G)(e1) = dL(G)(e2) = m + 1, 2(m− 1) edges of type dL(G)(e1) = m, dL(G)(e2) = m− 1,
2(d − 2)(m − 1) edges of type dL(G)(e1) = m, dL(G)(e2) = m + 1, (m − 1)(m − 2) edges of type
dL(G)(e1) = dL(G)(e2) = m − 1, and d−2

2 (m − 1)(m − 2) edges of type dL(G)(e1) = dL(G)(e2) = m.
Hence, we get
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ABCe(GBG(Sm, Pn; d)) = 2
(√

m + 2− 2
m× 2

)
+ 2(d− 2)

(√
m + 1 + 2− 2
(m + 1)× 2

)
+(d− 1)(n− 4)

(√
2 + 2− 2

2× 2

)
+(d− 2)

(√
m + 1 + m + 1− 2
(m + 1)× (m + 1)

)

+2(m− 1)
(√

m + m− 1− 2
m× (m− 1)

)

+2(d− 2)(m− 1)
(√

m + m + 1− 2
m× (m + 1)

)

+(m− 1)(m− 2)
(√

m− 1 + m− 1− 2
(m− 1)× (m− 1)

)
+

d− 2
2

(m− 1)(m− 2)
(√

m + m− 2
m×m

)
=

√
2

2
(d− 1)(n− 2) +

d− 2
m + 1

√
2m

+2(m− 1)

√
2m− 3
m2 −m

+ 2(d− 2)(m− 1)

√
2m− 1
m2 + m

+(m− 2)
√

2m− 4 +
(d− 2)(m− 1)(m− 2)

√
2m− 2

2m
,

GAe(GBG(Sm, Pn; d)) = 2
(

2
√

m× 2
m + 2

)
+ 2(d− 2)

(
2
√
(m + 1)× 2

m + 1 + 2

)
+(d− 1)(n− 4)

(
2
√

2× 2
2 + 2

)
+(d− 2)

(
2
√
(m + 1)× (m + 1)
m + 1 + m + 1

)
+2(m− 1)

(
2
√

m× (m− 1)
m + m− 1

)
+2(d− 2)(m− 1)

(
2
√

m× (m + 1)
m + m + 1

)
+(m− 1)(m− 2)

(
2
√
(m− 1)× (m− 1)
m− 1 + m− 1

)
+

d− 2
2

(m− 1)(m− 2)
(

2
√

m×m
m + m

)
=

4
√

2m
m + 2

+
4(d− 2)

√
2m + 2

m + 3
+ (d− 1)(n− 4) + (d− 2)

+4(m− 1)

√
m2 −m

2m− 1
+ 4(d− 2)(m− 1)

√
m2 + m

2m + 1

+
d
2
(m− 1)(m− 2).

The proof is complete.
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For Example 1, in Figure 5, 2, 7, 7, 12− tetramethyltridecane can be modeled by GBG(S3, P6; 3),
so ABCe(GBG(S3, P6; 3)) ≈ 13.76052 and GAe(GBG(S3, P6; 3)) ≈ 19.72337.

Figure 5. (a) 2, 7, 7, 12-tetramethyltridecane ball and stick model graph in 3D; (b)
2, 7, 7, 12-tetramethyltridecane chemical structure graph; and (c) 2, 7, 7, 12-tetramethyltridecane
model graph in chemical graph theory.

Theorem 2. Let GBG(Sm, P3; d) be the generalized bridge molecular graph for n = 3, d ≥ 3 and m ≥ 2
(see Figure 6), then the ABCe and GAe of GBG(Sm, P3; d) are

ABCe(GBG(Sm, P3; d)) = 2

√
2m− 1
m2 + m

+
2d− 5
m + 1

√
2m + 2(m− 1)

√
2m− 3
m2 −m

+2(d− 2)(m− 1)

√
2m− 1
m2 + m

+ (m− 2)
√

2m− 4

+
(d− 2)(m− 1)(m− 2)

2m

√
2m− 2,

GAe(GBG(Sm, P3; d)) =
4

2m + 1

√
m2 + m + (2d− 5)

+
4

2m− 1
(m− 1)

√
m2 −m

+
4

2m + 1
(d− 2)(m− 1)

√
m2 + m

+
d
2
(m− 1)(m− 2).

Figure 6. The generalized bridge molecular graph of GBG(Sm, P3; d) and GBGL(Sm, P3; d).
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Proof. This line graph has d
2 (m

2 + m + 2)− 2m− 1 edges. If dL(G)(e1) and dL(G)(e2) are the degree of
edge of e1 and e2, then there are 2 edges of type dL(G)(e1) = m, dL(G)(e2) = m + 1, 2d− 5 edges of
type dL(G)(e1) = m + 1, dL(G)(e2) = m + 1, 2(m − 1) edges of type dL(G)(e1) = m, dL(G)(e2) =

m− 1, 2(d− 2)(m− 1) edges of type dL(G)(e1) = m,dL(G)(e2) = m + 1, (m− 1)(m− 2) edges of type
dL(G)(e1) = dL(G)(e2) = m − 1, and d−2

2 (m − 1)(m − 2) edges of type dL(G)(e1) = dL(G)(e2) = m.
Hence, we get

ABCe(GBG(Sm, P3; d)) = 2
(√

m + m + 1− 2
m× (m + 1)

)
+ (2d− 5)

(√
m + 1 + m + 1− 2
(m + 1)× (m + 1)

)

+2(m− 1)
(√

m + m− 1− 2
m× (m− 1)

)

+2(d− 2)(m− 1)
(√

m + m + 1− 2
m× (m + 1)

)

+(m− 1)(m− 2)
(√

m− 1 + m− 1− 2
(m− 1)× (m− 1)

)
+

d− 2
2

(m− 1)(m− 2)
(√

m + m− 2
m×m

)
= 2

√
2m− 1
m2 + m

+
2d− 5
m + 1

√
2m + 2(m− 1)

√
2m− 3
m2 −m

+2(d− 2)(m− 1)

√
2m− 1
m2 + m

+ (m− 2)
√

2m− 4

+
(d− 2)(m− 1)(m− 2)

2m

√
2m− 2,

GAe(GBG(Sm, P3; d)) = 2
(

2
√

m× (m + 1)
m + m + 1

)
+ (2d− 5)

(
2
√
(m + 1)× (m + 1)
m + 1 + m + 1

)
+2(m− 1)

(
2
√

m× (m− 1)
m + m− 1

)
+2(d− 2)(m− 1)

(
2
√

m× (m + 1)
m + m + 1

)
+(m− 1)(m− 2)

(
2
√
(m− 1)× (m− 1)
m− 1 + m− 1

)
+

d− 2
2

(m− 1)(m− 2)
(

2
√

m×m
m + m

)
=

4
2m + 1

√
m2 + m + (2d− 5)

+
4

2m− 1
(m− 1)

√
m2 −m

+
4

2m + 1
(d− 2)(m− 1)

√
m2 + m

+
d
2
(m− 1)(m− 2).

The proof is complete.

For Example 2, in Figure 7, 2, 4, 4, 6 − tetramethylheptane can be modeled by GBG(S3, P3; 3),
so ABCe(GBG(S3, P3; 3)) ≈ 9.394663 and GAe(GBG(S3, P3; 3)) ≈ 13.85764.
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Figure 7. (a) 2, 4, 4, 6-tetramethylheptane ball and stick model graph in 3D; (b) 2, 4, 4, 6-tetramethylheptane
chemical structure graph; and (c) 2, 4, 4, 6-tetramethylheptane model graph in chemical graph theory.

Theorem 3. Let GBG(Sm, P2; d) be the generalized bridge molecular graph for n = 2, d ≥ 4 and m ≥ 2
(see Figure 8), then the ABCe and GAe of GBG(Sm, P2; d) are

ABCe(GBG(Sm, P2; d)) = 2(m− 1)

√
3m− 4

2m2 − 3m + 1
+ 2(m− 1)

√
3m− 3

2m2 −m

+2
(d− 3)(m− 1)

m

√
3m− 2

2
+ (m− 2)

√
2m− 4

+
(d− 2)(m− 1)(m− 2)

2m

√
2m− 2

+2

√
4m− 3

4m2 − 2m
+

d− 4
2m

√
4m− 2,

GAe(GBG(Sm, P2; d)) =
4(m− 1)
3m− 2

√
2m2 − 3m + 1 +

4(m− 1)
3m− 1

√
2m2 −m

+
4
√

2
3

(d− 3)(m− 1) +
d
2
(m− 1)(m− 2)

+
4
(√

4m2 − 2m
)

4m− 1
+ (d− 4).

Figure 8. The generalized bridge molecular graph of GBG(Sm, P2; d) and GBGL(Sm, P2; d).

Proof. This line graph has 1
2 m(dm+ d− 4) edges. If dL(G)(e1) and dL(G)(e2) are the degree of edge of e1

and e2, then there are 2(m− 1) edges of type dL(G)(e1) = 2m− 1,dL(G)(e2) = m− 1, 2(m− 1) edges of
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type dL(G)(e1) = 2m− 1,dL(G)(e2) = m, 2(d− 3)(m− 1) edges of type dL(G)(e1) = 2m,dL(G)(e2) = m,
(m − 1)(m − 2) edges of type dL(G)(e1) = dL(G)(e2) = m − 1, d−2

2 (m − 1)(m − 2) edges of type
dL(G)(e1) = dL(G)(e2) = m, 2 edges of type dL(G)(e1) = 2m− 1,dL(G)(e2) = 2m, and d− 4 edges of
type dL(G)(e1) = dL(G)(e2) = 2m. Hence, we get

ABCe(GBG(Sm, P2; d)) = 2(m− 1)
(√

2m− 1 + m− 1− 2
(2m− 1)× (m− 1)

)

+2(m− 1)
(√

2m− 1 + m− 2
(2m− 1)×m

)

+2(d− 3)(m− 1)
(√

2m + m− 2
2m×m

)

+(m− 1)(m− 2)
(√

m− 1 + m− 1− 2
(m− 1)× (m− 1)

)

+
d− 2

2
(m− 1)(m− 2)

(√
m + m− 2

m×m

)

+2
(√

2m− 1 + 2m− 2
(2m− 1)× 2m

)

+(d− 4)
(√

2m + 2m− 2
2m× 2m

)
= 2(m− 1)

√
3m− 4

2m2 − 3m + 1
+ 2(m− 1)

√
3m− 3

2m2 −m

+2
(d− 3)(m− 1)

m

√
3m− 2

2
+ (m− 2)

√
2m− 4

+
(d− 2)(m− 1)(m− 2)

2m

√
2m− 2

+2

√
4m− 3

4m2 − 2m
+

d− 4
2m

√
4m− 2,

GAe(GBG(Sm, P2; d)) = 2(m− 1)
(

2
√
(2m− 1)× (m− 1)
2m− 1 + m− 1

)
+2(m− 1)

(
2
√
(2m− 1)×m

2m− 1 + m

)
+2(d− 3)(m− 1)

(
2
√

2m×m
2m + m

)
+(m− 1)(m− 2)

(
2
√
(m− 1)× (m− 1)
m− 1 + m− 1

)
+

d− 2
2

(m− 1)(m− 2)
(

2
√

m×m
m + m

)
+2
(

2
√
(2m− 1)× 2m

2m− 1 + 2m

)
+(d− 4)

(
2
√

2m× 2m
2m + 2m

)
=

4(m− 1)
3m− 2

√
2m2 − 3m + 1 +

4(m− 1)
3m− 1

√
2m2 −m

+
4
√

2
3

(d− 3)(m− 1) +
d
2
(m− 1)(m− 2)

+
4
(√

4m2 − 2m
)

4m− 1
+ (d− 4).
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The proof is complete.

For Example 3, in Figure 9, 2, 3, 3, 4-tetramethylpentane can be modeled by GBG(S3, P2; 4),
so ABCe(GBG(S3, P2; 4)) ≈ 11.69568 and GAe(GBG(S3, P2; 4)) ≈ 17.24996952.

Figure 9. (a) 2, 3, 3, 4-tetramethylpentane ball and stick model graph in 3D; (b)
2, 3, 3, 4-tetramethylpentane chemical structure graph; and (c) 2, 3, 3, 4-tetramethylpentane model graph
in chemical graph theory.

Theorem 4. Let GBG(Cm, Pn; d) be the generalized bridge molecular graph for n ≥ 4, d ≥ 2 and m ≥ 3
(see Figure 10), then the ABCe and GAe of GBG(Cm, Pn; d) are

ABCe(GBG(Cm, Pn; d)) =

√
2

2
(d(m− 3) + (d− 1)(n− 4)) + (2

√
2 +

3
√

6
2

)d

−
√

2− 3
√

6 + 4,

GAe(GBG(Cm, Pn; d)) = d(m− 3) + (d− 1)(n− 4)

+(
8
√

2
3

+ 6)(d− 2) +
12
√

6
5

+ 5.

Figure 10. The generalized bridge molecular graph of GBG(Cm, Pn; d) and GBGL(Cm, Pn; d).
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Proof. In Figure 10, the degrees of vertices in line graph GL(Gd(Cm + Pn)) are displayed near by
the corresponding vertices. This line graph has d(m + n + 3)− n− 4 edges. In addition, there are
d(m− 3) + (d− 1)(n− 4) edges of type dL(G)(e1) = dL(G)(e2) = 2, 6 edges of type dL(G)(e1) = 2 and
dL(G)(e2) = 3, 6 edges of type dL(G)(e1) = dL(G)(e2) = 3, 4(d− 2) edges of type dL(G)(e1) = 2 and
dL(G)(e2) = 4, and 6(d− 2) edges of type dL(G)(e1) = dL(G)(e2) = 4. Hence, we have

ABCe(GBG(Cm, Pn; d)) =

(
d(m− 3) + (d− 1)(n− 4)

)(√
2 + 2− 2

2× 2

)
+6
(√

2 + 3− 2
2× 3

)
+ 6
(√

3 + 3− 2
3× 3

)
+4(d− 2)

(√
2 + 4− 2

2× 4

)
+ 6(d− 2)

(√
4 + 4− 2

4× 4

)
=

√
2

2
(d(m− 3) + (d− 1)(n− 4)) + (2

√
2 +

3
√

6
2

)d

−
√

2− 3
√

6 + 4,

GAe(GBG(Cm, Pn; d)) =

(
d(m− 3) + (d− 1)(n− 4)

)(
2
√

2× 2
2 + 2

)
+6
(

2
√

2× 3
2 + 3

)
+ 6
(

2
√

3× 3
3 + 3

)
+4(d− 2)

(
2
√

2× 4
2 + 4

)
+ 6(d− 2)

(
2
√

4× 4
4 + 4

)
= d(m− 3) + (d− 1)(n− 4)

+(
8
√

2
3

+ 6)(d− 2) +
12
√

6
5

+ 5.

The proof is complete.

For Example 4, in Figure 2, C24H28 is (cyclohexa-2, 4-diene-1, 1-diylbis(propane-3, 1-diyl))dibenzene,
which can be modeled by GBG(C6, P5; 3), so ABCe(GBG(C6, P5; 3)) ≈ 22.52347702 and
GAe(GBG(C6, P5; 3)) ≈ 31.65001155.

Theorem 5. Let GBG(Cm, P3; d) be the generalized bridge molecular graph for n = 3, d ≥ 3, and m ≥ 3
(see Figure 11), then the ABCe and GAe of GBG(Cm, P3; d) are

ABCe(GBG(Cm, P3; d)) =
√

2
2 d(m− 3) + (

√
2 + 7

√
6

4 )d + 4 +
√

15
3 −

15
√

6
4 ,

GAe(GBG(Cm, P3; d)) = d(m− 3) + ( 4
√

2
3 + 7)d + 8

√
6

5 + 6 + 8
√

3
7 −

8
√

2
3 − 15.

Proof. In Figure 11, the degrees of vertices in line graph GL(GBG(Cm, P3; d)) are displayed near by
the corresponding vertices. This line graph has d(m + 6)− 7 edges. In addition, there are d(m− 3)
edges of type dL(G)(e1) = dL(G)(e2) = 2, 4 edges of type dL(G)(e1) = 2 and dL(G)(e2) = 3, 2(d− 2)
edges of type dL(G)(e1) = 2 and dL(G)(e2) = 4, 6 edges of type dL(G)(e1) = dL(G)(e2) = 3, 2 edges of
type dL(G)(e1) = 3 and dL(G)(e2) = 4, and 7d− 15 edges of type dL(G)(e1) = dL(G)(e2) = 4. Hence,
we have



Symmetry 2018, 10, 751 12 of 16

ABCe(GBG(Cm, P3; d)) = d(m− 3)
(√

2 + 2− 2
2× 2

)
+ 4
(√

2 + 3− 2
2× 3

)
+2(d− 2)

(√
2 + 4− 2

2× 4

)
+ 6
(√

3 + 3− 2
3× 3

)
+2
(√

3 + 4− 2
3× 4

)
+ (7d− 15)

(√
4 + 4− 2

4× 4

)
=

√
2

2
d(m− 3) + (

√
2 + 7

√
6

4
)d + 4

+

√
15
3
− 15

√
6

4
,

GAe(GBG(Cm, P3; d)) = d(m− 3)
(

2
√

2× 2
2 + 2

)
+ 4
(

2
√

2× 3
2 + 3

)
+2(d− 2)

(
2
√

2× 4
2 + 4

)
+ 6
(

2
√

3× 3
3 + 3

)
+2
(

2
√

3× 4
3 + 4

)
+ (7d− 15)

(
2
√

4× 4
4 + 4

)
= d(m− 3) + (

4
√

2
3

+ 7)d +
8
√

6
5

+ 6

+
8
√

3
7
− 8
√

2
3
− 15.

The proof is complete.

Figure 11. The generalized bridge molecular graph of GBG(Cm, P3; d) and GBGL(Cm, P3; d).

For Example 5, in Figure 12, (cyclohexane-1, 1-diylbis(methylene))dicyclohexane can be modeled
by GBG(C6, P3; 3), so ABCe(GBG(C6, P3; 3)) ≈ 19.57183078 and GAe(GBG(C6, P3; 3)) ≈ 28.78428831.
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Figure 12. (a) (cyclohexane-1, 1-diylbis(methylene))dicyclohexane ball and stick model graph
in 3D; (b) (cyclohexane-1, 1-diylbis(methylene))dicyclohexane chemical structure graph; and (c)
(cyclohexane-1, 1-diylbis(methylene))dicyclohexane model graph in chemical graph theory.

Theorem 6. Let GBG(Cm, P2; d) be the generalized bridge molecular graph for n = 2, d ≥ 4, and m ≥ 3
(see Figure 13), then the ABCe and GAe of GBG(Cm, P2; d) are

ABCe(GBG(Cm, P2; d)) =

√
2

2
dm + (

√
2 +

√
6

4
+

4
√

3
3

+

√
10
6
− 3
√

2
2

)d

+
4
3
+ 4

√
2
5
+ 2

√
7
5
+ 2

√
3

10
−
√

6
2
− 4
√

3− 2
√

10
3

,

GAe(GBG(Cm, P2; d)) = dm + (
4
√

2
3

+
8
√

6
5
− 1)d +

√
15 +

16
√

5
9

+
4
√

30
11

−16
√

6
5
− 8
√

2
3
− 4.

Figure 13. The generalized bridge molecular graph of GBG(Cm, P2; d) and GBGL(Cm, P2; d).

Proof. In Figure 13, the degrees of vertices in line graph GL(GBG(Cm, P2; d)) are displayed near by
the corresponding vertices. This line graph has d(m− 5)− 6 edges. In addition, there are d(m− 3)
edges of type dL(G)(e1) = dL(G)(e2) = 2, 4 edges of type dL(G)(e1) = 2, dL(G)(e2) = 3, 2(d − 2)
edges of type dL(G)(e1) = 2,dL(G)(e2) = 4, 2 edges of type dL(G)(e1) = dL(G)(e2) = 3, 4 edges of
type dL(G)(e1) = 3, dL(G)(e2) = 5, d − 2 edges of type dL(G)(e1) = dL(G)(e2) = 4, 4 edges of type
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dL(G)(e1) = 4, dL(G)(e2) = 5, 4(d − 3) edges of type dL(G)(e1) = 4, dL(G)(e2) = 6, 2 edges of type
dL(G)(e1) = 5, dL(G)(e2) = 6, and d− 4 edges of type dL(G)(e1) = dL(G)(e2) = 6. Hence, we have

ABCe(GBG(Cm, P2; d)) = d(m− 3)
(√

2 + 2− 2
2× 2

)
+ 4
(√

2 + 3− 2
2× 3

)
+2(d− 2)

(√
2 + 4− 2

2× 4

)
+ 2
(√

3 + 3− 2
3× 3

)
+4
(√

3 + 5− 2
3× 5

)
+ (d− 2)

(√
4 + 4− 2

4× 4

)
+4
(√
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4× 5

)
+ 4(d− 3)

(√
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4× 6

)
+2
(√

5 + 6− 2
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)
+ (d− 4)

(√
6 + 6− 2

6× 6

)
=

√
2

2
dm + (

√
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√
6

4
+

4
√

3
3

+

√
10
6
− 3
√

2
2

)d

+
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3
+ 4

√
2
5
+ 2

√
7
5
+ 2

√
3

10
−
√

6
2
− 4
√

3− 2
√

10
3

,

GAe(GBG(Cm, P2; d)) = d(m− 3)
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2
√
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2 + 2
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+ 4
(

2
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2× 3
2 + 3

)
+2(d− 2)

(
2
√

2× 4
2 + 4

)
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5 + 6

)
+ (d− 4)
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√
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The proof is complete.γi(C6�Cn)

For Example 6, in Figure 14, 2′H, 2′′H-1, 1′ : 1′, 1′′ : 1′′, 1′′′-quaterphenyl can be modeled by
GBG(C6, P2; 4), so ABCe(GBG(C6, P2; 4)) ≈ 25.00131406 and GAe(GBG(C6, P2; 4)) ≈ 37.44953704.

Figure 14. (a) 2′H, 2′′H-1, 1′ : 1′, 1′′ : 1′′, 1′′′-quaterphenyl ball and stick model graph in 3D; (b)
2′H, 2′′H-1, 1′ : 1′, 1′′ : 1′′, 1′′′-quaterphenyl chemical structure graph; and (c) 2′H, 2′′H-1, 1′ : 1′, 1′′ :
1′′, 1′′′-quaterphenyl model graph in chemical graph theory.
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3. Conclusions

Topological indices are proven to be very helpful to test the chemical properties of new chemical
or physical materials. To describe more kinds of long chain polymerization products than the bridge
molecular graphs, we propose the generalized bridge molecular graph structures. In this paper,
we focus on some generalized bridge molecular graphs such as GBG(Sm, Pn; d) and GBG(Cm, Pn; d)
and give the formulas of the edge version ABC and GA indices of these generalized bridge molecular
graphs. By demonstrating the calculation of real molecules, we find that some long chain molecular
graphs can be quickly modeled and their topological indices can be calculated using generalized
bridge molecular graphs. The results of this paper also offer promising prospects in the applications
for chemical and material engineering, especially in chemical industry research.
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