
Article

Relation Theoretic (Θ,R) Contraction Results with
Applications to Nonlinear Matrix Equations

Hamed H. Al-Sulami 1, Jamshaid Ahmad 2,*, Nawab Hussain 1 and Abdul Latif 1

1 Department of Mathematics, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia;
hhaalsalmi@kau.edu.sa (H.H.A.-S.); nhusain@kau.edu.sa (N.H.); alatif@kau.edu.sa (A.L.)

2 Department of Mathematics, University of Jeddah, P.O.Box 80327, Jeddah 21589, Saudi Arabia
* Correspondence: jkhan@uj.edu.sa; Tel.: +966-569-765-680

Received: 19 October 2018; Accepted: 21 November 2018; Published: 18 December 2018
����������
�������

Abstract: Using the concept of binary relation R, we initiate a notion of ΘR-contraction and obtain
some fixed point results for such mappings in the setting of complete metric spaces. Furthermore,
we establish some new results of fixed points of N-order. Consequently, we improve and generalize
the corresponding known fixed point results. As an application of our main result, we provide
the existence of a solution for a class of nonlinear matrix equations. A numerical example is also
presented to illustrate the theoretical findings.
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1. Introduction and Preliminaries

The conventional Banach contraction principle (BCP), which declares that a contraction on
a complete metric space has a unique fixed point and plays an intermediate role in nonlinear
analysis. Because of its significance and accessibility, various authors have established numerous
interesting supplements and modifications of the BCP; see References [1–28] and the references therein.
Edelstein [13] obtained the following result for compact metric space.

Theorem 1 ([13]). Let (M, d) be a compact metric space and let F : M→ M be a self-mapping. Assume that

d(Fu, Fv) < d(u, v) (1)

holds for all u, v ∈ M with u 6= v. Then, there exists a unique u∗ in M such that u∗ = F(u∗).

Jleli et al. [20] initiated a new version of the contraction which is known as an Θ-contraction and
proved the new results for such contractions in the setting of generalized metric spaces.

Definition 1. Let Θ : R+ → (1, ∞) be a mapping satisfying:

(Θ1) Θ is nondecreasing;
(Θ2) for any sequence {αn} ⊆ R+, limn→∞ Θ(αn) = 1⇐⇒ limn→∞(αn) = 0;

(Θ3) there exists 0 < h < 1 and l ∈ (0, ∞] such that limα→0+
Θ(α)−1

αh = l.

A self mapping F : M→ M is an Θ-contraction if there exists a function Θ satisfying (Θ1)–(Θ3)
and a constant λ ∈ (0, 1) such that

d(Fu, Fv) 6= 0 =⇒ Θ(d(Fu, Fv)) ≤ [Θ(d(u, v))]λ (2)

for all u, v ∈ M.
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Theorem 2 ([20]). Let (M, d) be a complete metric space and F : M → M be an Θ-contraction, then there
exists a unique u∗ in M such that u∗ = F(u∗).

The authors in Reference [20] manifested that a Banach contraction is a specific case of an
Θ-contraction although there are many Θ-contractions which need not be Banach contractions.
We express by the Ω, the set of all functions Θ : (0, ∞) → (1, ∞) satisfying the above conditions
(Θ1)–(Θ3).

Recently, Sawangsup et al. [28] defined a FR-contraction and proved some fixed point theorems
including binary relations. Now we give some definitions regarding binary relation.

Definition 2 ([22]). A binary relation on M is a nonempty subset R of M×M. It is transitive if (u, w) ∈ R
for all u, v, w ∈ M whenever (u, v) ∈ R and (v, w) ∈ R.

If (u, v) ∈ R, then we express it by uRv and it is said that “u is related to v”. Throughout this
paper, we take R as a binary relation on a nonempty subset M and (M, d) as a metric space equipped
with a binary relation R.

Definition 3 ([8]). If F : M → M is a self mapping. Then, R is said to be F-closed if for each u, v ∈ M,
(u, v) ∈ R implies (Fu, Fv) ∈ R .

According to Reference [26], the foregoing property F-closed holds if F is nondecreasing.

Definition 4 ([21]). For u, v ∈ M, a path of length k in R from u to v (where k is a natural number) is a finite
sequence {w0, w1, w2, . . . , wk} ⊆ M satisfying the following assertions:

(i) w0 = u and wk = v;
(ii) (wj, wj+1) ∈ R for all j ∈ {0, 1, 2, 3, 4, . . . , k− 1}.
We express by Υ(u, v, R) the family of all paths in binary relations R from u to v.

Definition 5 ([26]). A (M, d) is said to be R-nondecreasing-regular if for any {un} ⊆ M,

(un, un+1) ∈ R , ∀n ∈ N,
un → u∗ ∈ M

}
=⇒ (un, u∗) ∈ R , ∀n ∈ N.

Definition 6 ([27]). Let F : MN → M. An element (u1, u2, . . . , uN) ∈ MN is a fixed point of the mapping F
of N-order if 

F(u1, u2, . . . , uN) = u1

F(u2, u3, . . . , uN , u1) = u2

.

.

.
F(uN , u1, . . . , uN−1) = uN .

Let F : M→ M be a self mapping. We express by M(F, R) = {u ∈ M : (u, Fu) ∈ R}.

The purpose of this article is to introduce the idea of an ΘR-contraction where R is a binary
relation and then establish some results in this way. We also apply our main results to examine a family
of nonlinear matrix equation as an application.

2. Results

We begin this section by defining an ΘR-contraction for the class of functions Ω and obtain
confident results involving a binary relation.
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Definition 7. For (M, d) and R, let

Y = {(u, v) ∈ R :d(Fu, Fv) > 0}.

A self-mapping F : M→ M is said to be an ΘR-contraction if there are Θ ∈ Ω and λ ∈ (0, 1) such that

Θ(d(Fu, Fv)) ≤ [Θ(d(u, v))]λ (3)

for all (u, v) ∈ Y .

Now, we present our main result.

Theorem 3. Let F : (M, d)→ (M, d) be a self-mapping satisfying the following properties:

(i) M(F, R) 6= ∅;
(ii) R is F-closed’;
(iii) F is continuous;
(iv) F is a ΘR-contraction.

Then, there exists u∗ in M such that u∗ = F(u∗).

Proof. Let u0 ∈ M(F, R) be an arbitrary point. For such u0, we construct the sequence {un} by
un = Fnu0 = Fun−1 for all n ∈ N0. If there exists n0 ∈ N0 such that un0 = un0+1, then un0 is a fixed
point of F and we are done. Hence, we suppose, un 6= un+1 and so d(Fun−1, Fun) > 0 for all n ∈ N0.
As (u0,Fu0) ∈ R and R is F-closed, so we have (un, un+1) ∈ R for all n ∈ N0. Thus, (un, un+1) ∈ Y for
all n ∈ N0. Since F is a ΘR-contraction, we get

1 < Θ(d(un, un+1)) = Θ(d(Fun−1, Fun)) ≤ [Θ(d(un−1, un))]
λ

= [Θ(d(Fun−2, Fun−1))]
λ ≤ [Θ(d(un−2, un−1))]

λ2 · ··

≤ [Θ(d(u0, u1))]
λn

(4)

for all n ∈ N. Letting n→ ∞ in (4), we get

lim
n→∞

Θ(d(un, un+1)) = 1⇐⇒ lim
n→∞

d(un, un+1) = 0. (5)

By (Θ3), there exist 0 < h < 1 and l ∈ (0, ∞] such that

lim
n→∞

Θ(d(Fun, Fun+1))− 1
d(Fun, Fun+1)h = l. (6)

Let l < ∞. In this case, let β = l
2 > 0. So there exists n1 ∈ N such that

|Θ(d(Fun, Fun+1))− 1
d(Fun, Fun+1)h − l| ≤ β

for all n > n1. This implies that

Θ(d(Fun, Fun+1))− 1
d(Fun, Fun+1)h ≥ l − β =

l
2
= β

for all n > n1. Then,
nd(Fun, Fun+1)

h ≤ γn[Θ(d(Fun, Fun+1))− 1] (7)
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for all n > n1, where γ = 1
β . Now, we suppose that l = ∞. Let β > 0 be an arbitrary positive number.

Then, there exists n1 ∈ N such that

β ≤ Θ(d(Fun, Fun+1))− 1
d(Fun, Fun+1)h

for all n > n1. This implies that

nd(Fun, Fun+1)
h ≤ γn[Θ(d(Fun, Fun+1))− 1]

for all n > n1, where γ = 1
β . Hence, in all ways, there exist γ > 0 and n1 ∈ N such that

nd(Fun, Fun+1)
h ≤ γn[Θ(d(Fun, Fun+1))− 1] (8)

for all n > n1. Thus, by Equations (4) and (8), we get

nd(Fun, Fun+1)
h ≤ γn([(Θd(u0, u1))]

λn − 1). (9)

Letting n→ ∞, we have
lim

n→∞
nd(Fun, Fun+1)

h = 0.

Thus, there exists n2 ∈ N such that

d(Fun, Fun+1) ≤
1

n1/h (10)

for all n > n2. For m > n > n2 we obtain

d(un, um) ≤
m−1

∑
i=n

d(ui, ui+1) ≤
m−1

∑
i=n

1
i1/h . (11)

Since 0 < λ < 1, then ∑∞
i=1

1
i1/h converges. Therefore, d(un, um) → 0 as m, n → ∞. Thus, we

proved that {un} is a Cauchy sequence in M. The completeness of M assures that there exists u∗ ∈ M
such that, limn→∞ un = u∗. Now, by the continuity of F, we get Fu∗ = u∗ and so u∗ is a fixed point
of F.

Remark 1. From the proof of Theorem 3, we observe that for each u0 ∈ M(F, R), the Picard sequence {Fnu0}
converges to the fixed point of F.

By avoiding the continuity of F, we have the following result.

Theorem 4. Theorem 3 also holds if we replace hypotheses (iii) with following one:

(iii)
′
(M, d) is R-nondecreasing-regular.

Proof. By Theorem 3, we have proved that there exists u∗ ∈ M such that, limn→∞ un = u∗.
As (un, un+1) ∈ R for all n ∈ N, then (un, u∗) ∈ R for all n ∈ N. We review the following two
cases counting on set M = {n ∈ N : Fun = Fu∗}.

• If M=finite, then there exists n0 ∈ N such that Fun 6= Fu∗ for all n ≥ n0. Specifically, un 6= u∗,
d(un, u∗) > 0 and d(Fun, Fu∗) > 0 for all n ≥ n0, so

1 < Θ(d(Fun, Fu∗)) ≤ [Θ(d(un, u∗))]λ
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for each n ≥ n0. As d(un, u∗) ↘ 0+, axiom (Θ2) implies that Θ(d(Fun, Fu∗)) → 1. Hence,
Θ(d(Fun, Fu∗))→ 1, so d(Fun, Fu∗)→ 0. Thus, Fu∗ = u∗.

• If the set M is not finite, then there exists a subsequence {un(k)} of {un} such that un(k)+1 =

Fun(k) = Fu∗ for all k ∈ N. As un → u∗, then Fu∗ = u∗. In both cases, u∗ is a fixed point of F.

Now, we prove that the obtained fixed point in Theorems 3 and 4 is unique.

Theorem 5. Suppose that the binary relation R is transitive on M and Υ(u, v, R) is nonempty, for all u, v
∈ Fix(F) := {w ∈ M : w is a fixed point of F} is as an addition to the hypotheses of Theorem 3 (respectively,
Theorem 4). Then, u∗ is unique.

Proof. Let u and v be such that

F(u) = u, F(v) = v and u 6= v. (12)

Then, d(Fu, Fv) > 0. Since Υ(u, v, R) 6= ∅. So there exists a {w0, w1, w2, . . . , wk} from u to v in R ,
so that

w0 = u, wk = v, (wi, wi+1) ∈ R for each i = 1, 2, . . . ., k− 1.

As R is transitive, so we have

(u, w1) ∈ R,(w1, w2) ∈ R, . . . ,(wk−1, v) ∈ R =⇒ (u, v) ∈ R.

Thus from Equation (12), we have

Θ(d(u, v)) = Θ(d(Fu, Fv)) ≤ [Θ(d(u, v))]λ

a contradiction because λ < 1. Thus, u = v.

3. Multidimensional Results

Now we establish some multidimensional theorems from the above-mentioned results by
identifying some very easy tools. We express by RN the binary relation on MN defined by

((u1, u2, . . . , uN), (v1, v2, . . . , vN)) ∈ RN

⇐⇒

(u1, v1) ∈ R,(u2, v2) ∈ R, . . . , (uN , vN) ∈ R.

If F : MN → M, let us express by MN(F, RN) the class of all points (u1, u2, . . . , uN) ∈ MN such that

((u1, u2, . . . , uN), (F(u1, u2, . . . , uN), F(u2, u3, . . . , uN , u1), . . . , F(uN , u1, . . . , uN−1))) ∈ RN

that is,
(uj, F(uj, uj+1, . . . , uN , u1, u2, . . . , uj−1)) ∈ R for j ∈ {1, 2, . . . , N}.

Definition 8 ([28]). If N ≥ 2 and F : MN → M. A binary relation R on M is said to be FN-closed if for any
(u1, u2, . . . , uN), (v1, v2, . . . , vN) ∈ MN ,
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

(u1, v1) ∈ R,
(u2, v2) ∈ R,

·
·
·

(uN , vN) ∈ R


=⇒



(F(u1, u2, . . . , uN), F(v1, v2, . . . , vN)) ∈ R,
(F(u2, u3, . . . , uN , u1), F(v2, v3, . . . , vN , v1)) ∈ R,

·
·
·

(F(uN , u1, . . . , uN−1), F(vN , v1, . . . , vN−1)) ∈ R


.

Let us express by GN
F : MN → MN the mapping

GN
F (u1, u2, . . . , uN) = (F(u1, u2, . . . , uN), F(u2, u3, . . . , uN , u1), . . . , F(uN , u1, . . . , uN−1)).

Lemma 1 ([28]). Given N ≥ 2 and F : MN → M, a point (u1, u2, . . . , uN) ∈ MN is a fixed point of N-order
of F if it is a fixed point of GN

F .

Lemma 2 ([28]). Given N ≥ 2 and F : MN → M, then R is FN-closed if it is GN
F -closed defined on MN .

Lemma 3 ([28]). Given N ≥ 2 and F : MN → M, a point (u1, u2, . . . , uN) ∈ MN(F, RN) if and only if
(u1, u2, . . . , uN) ∈ MN(GN

F , RN).

Lemma 4 ([28]). Let DN : MN ×MN → R given by

DN(V, W) =
N

∑
j=1

d(vj, wj)

for all V = (v1, v2, . . . , vN), W = (w1, w2, . . . , wN) ∈ MN . Then, the following assertions hold.

1. (MN , DN) is also a metric space.
2. Let {Vn = (v1

n, v2
n, . . . , vN

n )} be a sequence in MN and let V = (v1, v2, . . . , vN) ∈ MN .

Then, {Vn}
DN
→ V ⇔ {vj

n}
d→ vj for all j ∈ {1, 2, 3, . . . , N}.

3. If {Vn = (v1
n, v2

n, . . . , vN
n )} is a sequence in MN , then {Vn} is DN-Cauchy⇔ {vj

n} is Cauchy for all
j ∈ {1, 2, 3, . . . , N}.

4. (M, d) is complete⇔ (MN , DN) is complete.

Definition 9 ([28]). For (u1, u2, . . . , uN), (v1, v2, . . . , vN)∈ MN, a path of length k in RN from (u1, u2, . . . , uN)

to (v1, v2, . . . , vN) is a finite sequence {(w1
0, w2

0, . . . , wN
0 ), (w1

1, w2
1, . . . , wN

1 ), . . . , (w1
k, w2

k, . . . , wN
k )} ⊂ MN

satisfying the following conditions:

(i) (w1
0, w2

0, . . . , wN
0 ) = (u1, u2, . . . , uN) and (w1

k , w2
k , . . . , wN

k ) = (v1, v2, . . . , vN);
(ii) ((w1

i , w2
i , . . . , wN

i ), (w1
i+1, w2

i+1, . . . , wN
i+1))∈ RN for all i = 0, 1, 2, . . . , k− 1.

Consistent with Reference [28], we denote by Υ((u1, u2, . . . , uN), (v1, v2, . . . , vN), RN) the class of
all paths in RN from (u1, u2, . . . , uN) to (v1, v2, . . . , vN).

Definition 10. Let F : MN → M be a given mapping and let us denote

YN =
{
((u1, u2, . . . , uN), (v1, v2, . . . , vN)) ∈ RN : d(F(u1, u2, . . . , uN), F(v1, v2, . . . , vN)) > 0

}
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We say that F is an ΘRN -contraction if there are some Θ ∈ Ω and λ ∈ (0, 1) such that

Θ



d(F(u1, u2, . . . , uN), F(v1, v2, . . . , vN))+

d(F(u2, u3, . . . , uN , u1), F(v2, v3, . . . , vN , v1))+

·
·
·

+d(F(uN , u1, . . . , uN−1), F(vN , v1, . . . , vN−1))


≤
[

Θ

(
N

∑
i=1

d(ui, vi)

)]λ

(13)

for each ((u1, u2, . . . , uN), (v1, v2, . . . , vN)) ∈ YN .

Theorem 6. Let F : MN → M be a mapping. Suppose that the following assertions hold:

(i) MN(F, RN) = ∅;
(ii) R is FN-closed’;
(iii) F is continuous;
(iv) F is a ΘRN -contraction.

Then, F has a fixed point of N-order.

Proof. (MN , DN) is a complete metric space by 1 and 4 of Lemma 4. By Lemma 2, the binary relation
RN defined on MN is GN

F -closed. Suppose that (u1
0, u2

0, . . . , uN
0 ) ∈ MN(F, RN). By Lemma 3, we obtain

that (u1
0, u2

0, . . . , uN
0 ) ∈ MN(GN

F , RN). Since F is continuous, we conclude that GN
F is also continuous.

From the ΘRN -contractive condition of F, we conclude that GN
F is also ΘRN -contraction. By Theorem 3,

there exists
ˆ

M = (û1, û2, . . . , ûN) ∈ MN such that GN
F (

ˆ
M) =

ˆ
M, that is (û1, û2, . . . , ûN) is a fixed point

of GN
F . Using Lemma 2, (û1, û2, . . . , ûN) is a fixed point of F of N-order.

Theorem 7. Let F : MN → M be a mapping. Assume that the following assertions hold:

(i) MN(F, RN) = ∅;
(ii) R is FN-closed’;
(iii) MN is N-nondecreasing-regular;
(iv) F is a ΘRN -contraction.

Then, F has a fixed point of N-order.

Theorem 8. In addition to the hypotheses of Theorem 6 (respectively, Theorem 7), assume that R is a transitive
relation on M and Υ((u1, u2, . . . , uN), (v1, v2, . . . , vN), RN) is nonempty for each

(u1, u2, . . . , uN), (v1, v2, . . . , vN) ∈ Fix(F)

=
{

w ∈ MN : w is a fixed point of Fof N-order
}

.

Then, F has a unique fixed point of N-order.

4. Applications in Relation to Nonlinear Matrix Equations

Fixed point theorems for various functions in ordered metric spaces have been broadly explored
and many applications in different branches of the sciences and mathematics have been found
especially relating to differential, integral, and matrix equations (see References [6,14,25] and
references therein).

Let us denoteM(n) = set of all n× n complex matrices, H(n) = set of all Hermitian matrices
in M(n), P(n) = the family of all positive definite matrices in M(n), and H+(n) = the class of
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all positive semidefinite matrices in M(n). For E ∈ P(n)(E ∈ H+(n)), we write E � 0(E � 0).
Furthermore, E1 � E2(E1 � E2) means E1 − E2 � 0(E1 − E2 � 0). The symbol ‖·‖ is used for the
spectral norm of A defined by ‖A‖ =

√
λ+(A∗A), where λ+(A∗A) is the largest eigenvalue of A∗A,

where A∗ is the conjugate transpose of A. In addition, ‖A‖tr = ∑n
k=1 sk(A), where sk(A) (1 ≤ k ≤ n)

are the singular values of A ∈ M(n). Here, (H(n), ‖·‖tr) is complete metric space (for more details see
References [11,12,25]). Moreover, the binary relation � onH(n) defined by: E1 � E2 ⇔ E2 � E for all
E1, E2 ∈ H(n).

In this section, we apply our results to establish a solution of the nonlinear matrix equation.

X = Q +
n

∑
k=1

A∗kG(E)Ak (14)

where G is a continuous order preserving mapping with G(0) = 0, Q is a Hermitian positive definite
matrix, and Ak are any n× n matrices and A∗k their conjugates.

Now we state the the following lemmas which are helpful in the next results.

Lemma 5 ([25]). Let C, E ∈ H(n) such that C � 0 and E � 0. Then,

0 ≤ tr(CE) ≤ ‖C‖ tr(E).

Lemma 6 ([23]). If C ∈ H(n) such that C ≺ In, then ‖C‖ < 1.

Theorem 9. Consider the matrix Equation (14). Assume that there are positive real numbers L and λ ∈ (0, 1)
such that:

(i) For E1, E2 ∈ H(n) with E1 � E2 and ∑n
i=1 A∗i G(E1)Ai 6= ∑n

i=1 A∗i G(E2)Ai, we have

|tr(G(E2)− G(E1))| ≤
λ2 |tr(E2 − E1)|

L
;

(ii) ∑m
i=1 Ai A∗i ≺ LIn and ∑m

i=1 A∗i G(E1)Ai � 0.

Then, Equation (12) has a solution. Moreover, the iteration

En = Q +
n

∑
i=1

A∗i G(En−1)Ai

where E0 ∈ H(n) satisfies E0 � Q + ∑n
i=1 A∗i G(E0)Ai converges to the solution of Equation (12).

Proof. Define J : H(n)→ H(n) by

J (E) =Q +
m

∑
i=1

A∗i G(E)Ai

for all E ∈ H(n). Then, J is well defined, the order � on H(n) is J -closed. Here, the solution of
Equation (14) is actually a fixed point of J and we have to show that J is an Θ�-contraction mapping
due to some λ ∈ (0, 1) and Θ defined by

Θ(t) = e
λ√t

for all t ∈ (0, ∞). Let E1, E2 ∈ H(n) be such that E1 � E2 and G(E1) 6= G(E2) which further implies
that E1 ≺ E2. Since G is an order preserving , we have G(E1) ≺ G(E2). Thus,
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‖J (E2)−J (E1)‖tr = tr(J (E2)−J (E1))

= tr

(
m

∑
i=1

A∗i (G(E2)− G(E1))Ai

)

=
m

∑
i=1

tr (A∗i (G(E2)− G(E1))Ai)

=
m

∑
i=1

tr (Ai A∗i (G(E2)− G(E1)))

= tr

((
m

∑
i=1

Ai A∗i

)
(G(E2)− G(E1))

)

≤
∥∥∥∥∥ m

∑
i=1

Ai A∗i

∥∥∥∥∥ ‖G(E2)− G(E1)‖tr

≤
∥∥∑m

i=1 Ai A∗i
∥∥

L

(
λ2 ‖E2 − E1‖tr

)
< λ2 ‖E2 − E1‖tr .

which further implies that

e
√
‖J (E2)−J (E1)‖tr ≤ e

λ
√
‖E2−E1‖tr .

We have
Θ(‖J (E2)−J (E1)‖tr) ≤ [Θ(‖E2 − E1‖tr)]

λ

which proves that J is an Θ�-contraction. By ∑m
i=1 A∗i G(Q)Ai � 0, we get Q � J (Q). Therefore, that

Q ∈ H(n)(J ;�). Thus, by Theorem 3, ∃
ˆ
E ∈ H(n) such that J (

ˆ
E) =

ˆ
E , that is, Equation (14) has a

solution.

Example 1. Consider the matrix equation

E = Q + A∗1 EA1 + A∗2 EA2 (15)

where Q, A1 and A2 are given by

Q =


7 5 3 1
5 7 5 3
3 5 7 5
1 3 5 7

 , A1 =


0.0241 0.0124 0.0124 0.0241
0.0124 0.0241 0.0241 0.0124
0.0124 0.0241 0.0241 0.0124
0.0241 0.0124 0.0124 0.0241

 ,

A2 =


0.0521 0.0329 0.0329 0.0521
0.0871 0.68 0.0871 0.68
0.0521 0.0329 0.0329 0.0521
0.0871 0.68 0.0871 0.68

 .

Define Θ : (0, ∞)→ (1, ∞) by

Θ(t) = e
λ√t

for all t ∈ (0, ∞) and λ = 1
2 and G : H(n)→ P(n) by G(E) = E

2 . Then, conditions (i) and (ii) of Theorem 9
are satisfied for L = 2 by using the iterative sequence
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En+1 = Q +
2

∑
i=1

A∗i En Ai

with

E0 =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 .

After 19 iterations, we get the unique solution

Ê =


7.02314 5.01514 3.00561 1.00515
5.01514 13.0343 5.01729 5.58171
3.00561 5.01729 7.01166 5.02357
1.00515 5.58171 5.02357 13.0343


of the matrix Equation (15). The residual error is R19 = ||Ê−

2
∑

i=1
A∗i ÊAi|| = 6.19191× 10−6.

Theorem 10. With the assumptions of Theorem 9, Equation (15) has a unique solution
ˆ
E ∈ H(n).

Proof. Since for E1, E2 ∈ H(n) ∃ a greatest lower bound and a least upper bound. So we have
Υ(x, y, R) 6= ∅, for each x, y ∈ E. Thus, we conclude by Theorem 5 that J has a unique fixed point in
H(n) which implies that Equation (15) has a unique solution inH(n).

5. Conclusions

In this paper, we introduced the concept of ΘR-contraction and obtained some results for such
contractions in the context of complete metric spaces. Additionally, we established the theorems
which guarantee the existence and the uniqueness of a fixed point. As an application, we applied
our principal theorem to review a class of nonlinear matrix equations. We also presented a numerical
example to illustrate the theoretical findings.
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