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Abstract: As the most important properties in the gasoline blending process, octane number is
difficult to be measured in real time. To address this problem, a novel deep learning based soft
sensor strategy, by using the near-infrared (NIR) spectroscopy obtained in the gasoline blending
process, is proposed. First, as a network structure with hidden layer as symmetry axis, input layer
and output layer as symmetric, the denosing auto-encoder (DAE) realizes the advanced expression of
input. Additionally, the stacked DAE (SDAE) is trained based on unlabeled NIR and the weights
in each DAE is recorded. Then, the recorded weights are used as the initial parameters of back
propagation (BP) with the reason that the SDAE trained initial weights can avoid local minimums and
realizes accelerate convergence, and the soft sensor model is achieved with labeled NIR data. Finally,
the achieved soft sensor model is used to estimate the real time octane number. The performance of
the method is demonstrated through the NIR dataset of gasoline, which was collected from a real
gasoline blending process. Compared with PCA-BP (the dimension of datasets of BP reduced by
principal component analysis) soft sensor model, the prediction accuracy was improved from 86.4%
of PCA-BP to 94.8%, and the training time decreased from 20.1 s to 16.9 s. Therefore, SDAE-BP is
proposed as a novel method for rapid and efficient determination of octane number in the gasoline
blending process.

Keywords: octane number; soft sensor; near-infrared (NIR) spectroscopy; stacked denosing
auto-encoder (SDAE); deep learning

1. Introduction

Since the gasoline engine became vehicle power in the 19th century, the importance of gasoline
has been increasing. In industry, gasoline is produced by fractionation and heavy-distillation of crude
oil. Fractionated gasoline usually has a low octane number. In order to obtain better performance of
gasoline, high-octane components are usually added to gasoline for blending. The most important
indicator of gasoline during blending is the octane number, which reflects the performance of the
gasoline. The higher the octane number is, the better antiknock performance it possesses. In the
process of online gasoline blending, NIR spectrometers are often used to quickly detect the octane
number through the appropriate soft sensor model [1] since it captures a wealth of information [2].
Near-infrared light refers to electromagnetic waves with wavelengths between the visible and
mid-infrared ranges of 780 nm to 2526 nm, as shown in Figure 1.
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Figure 1. Spectral wavelength diagram. 

Soft sensor technology has gradually developed in these days [3]. It can be divided into two 
categories: The first principles method, which is practical under the laws of variable physics and 
explicit interpretation, is difficult to build accurate mathematical models for complex industrial 
processes [4]. Therefore, another modeling method: A data-driven modeling method came into being. 
This model has always been regarded as a black box model. There is no need to study the internal 
laws, but the most sufficient sample data matters [5]. Research on data-driven soft sensing of octane 
has been carried out for decades and many excellent methods have been proposed. For instance, 
Andrade JM et al. [6] put partial least-squares (PLS) in the modeling of soft sensor for octane. Creton 
B et al. [7] proposed a quantitative structure property relationship (QSPR) method to predict the 
octane. Yao X et al. [8] used the least square support vector machine (LSSVM) for octane soft sensor. 
Wang T et al. [9] put forward a octane soft sensing method of backward interval partial least squares 
(BiPLS). They all used the date-driven methods to predict the octane, but these methods are slightly 
inferior in accuracy and timeliness. 

Meanwhile, researches showed that the neural network soft-sensing model is considerably 
splendid in addressing the nonlinear relationship between the input and output variables [10,11]. 
Gao J et al. [12] used the neural network to predict the octane number and good prediction results 
have been achieved. This indicates that neural networks have potential for further research in 
predicting regression. The disadvantage is that the neural network is easy to overfit, and the 
generalization ability is not quite excellent. Some studies [13–16] presented the improvement method, 
for example, the adaptive method, fuzzy neural network, and so on. Moreover, considering that deep 
learning is superior to other nonlinear methods, it has become a research hotspot to use deep learning 
to compensate for the shortcomings of ordinary neural networks soft sensor. 

As an unsupervised feature learning neural network, deep learning can get a very complex 
nonlinear relationship between the input and output through a series of transformations without 
prior knowledge. The advantage of deep learning lies in the adjustment of its structure, optimization 
of weights, and strong fitting ability and quick response. The existing methods for deep learning 
include convolutional neural networks (CNN), recurrent neural networks (RNN), deep belief 
networks (DBN), generative adversarial networks (GAN), and stacked auto-encoding networks 
(SAE). For instance, to extract deeper features, Lee et al. [17] introduced sparsity into auto-encoding 
networks based on the nature of the human visual cortex v2, which proved that the sparse 
performance enables auto-encoding networks to learn deeper features. To extract higher level 
abstract features, Vincent et al. [18] proposed a denoising auto-encoder (DAE), which also indicated 
that DAE should be able to efficiently reconstruct the original data from missing or noise-containing 
input data. Rifai et al. [19] further improved the robustness of feature extraction via proposed a 
contractive auto-encoder (CAE) that can generate local spatial contraction. CAE uses the Frobenius 
norm of the Jacobian matrix in the loss function of the auto-encoding network as a penalty. To solve 
the phenomenon of over-fitting caused by the synergetic action between neurons in the network, 
Hinton et al. [20] proposed the dropout technique to make a certain proportion of hidden layer nodes 
temporarily fail in the process of neural network training, aiming at the deep network training of 
small sample data sets, and the phenomenon of over-fitting is reduced significantly. 

Based on deep learning technology, this study establishes a soft-sensing model of octane number 
by using NIR data. In the proposed method, the stacked denosing auto-encoder (SDAE) is trained 
based on unlabeled NIR and the weights in each DAE is recorded with the high level feature 
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Soft sensor technology has gradually developed in these days [3]. It can be divided into two
categories: The first principles method, which is practical under the laws of variable physics and
explicit interpretation, is difficult to build accurate mathematical models for complex industrial
processes [4]. Therefore, another modeling method: A data-driven modeling method came into being.
This model has always been regarded as a black box model. There is no need to study the internal
laws, but the most sufficient sample data matters [5]. Research on data-driven soft sensing of octane
has been carried out for decades and many excellent methods have been proposed. For instance,
Andrade JM et al. [6] put partial least-squares (PLS) in the modeling of soft sensor for octane. Creton
B et al. [7] proposed a quantitative structure property relationship (QSPR) method to predict the
octane. Yao X et al. [8] used the least square support vector machine (LSSVM) for octane soft sensor.
Wang T et al. [9] put forward a octane soft sensing method of backward interval partial least squares
(BiPLS). They all used the date-driven methods to predict the octane, but these methods are slightly
inferior in accuracy and timeliness.

Meanwhile, researches showed that the neural network soft-sensing model is considerably
splendid in addressing the nonlinear relationship between the input and output variables [10,11].
Gao J et al. [12] used the neural network to predict the octane number and good prediction results have
been achieved. This indicates that neural networks have potential for further research in predicting
regression. The disadvantage is that the neural network is easy to overfit, and the generalization
ability is not quite excellent. Some studies [13–16] presented the improvement method, for example,
the adaptive method, fuzzy neural network, and so on. Moreover, considering that deep learning
is superior to other nonlinear methods, it has become a research hotspot to use deep learning to
compensate for the shortcomings of ordinary neural networks soft sensor.

As an unsupervised feature learning neural network, deep learning can get a very complex
nonlinear relationship between the input and output through a series of transformations without prior
knowledge. The advantage of deep learning lies in the adjustment of its structure, optimization of
weights, and strong fitting ability and quick response. The existing methods for deep learning include
convolutional neural networks (CNN), recurrent neural networks (RNN), deep belief networks (DBN),
generative adversarial networks (GAN), and stacked auto-encoding networks (SAE). For instance, to
extract deeper features, Lee et al. [17] introduced sparsity into auto-encoding networks based on the
nature of the human visual cortex v2, which proved that the sparse performance enables auto-encoding
networks to learn deeper features. To extract higher level abstract features, Vincent et al. [18] proposed
a denoising auto-encoder (DAE), which also indicated that DAE should be able to efficiently reconstruct
the original data from missing or noise-containing input data. Rifai et al. [19] further improved the
robustness of feature extraction via proposed a contractive auto-encoder (CAE) that can generate local
spatial contraction. CAE uses the Frobenius norm of the Jacobian matrix in the loss function of the
auto-encoding network as a penalty. To solve the phenomenon of over-fitting caused by the synergetic
action between neurons in the network, Hinton et al. [20] proposed the dropout technique to make a
certain proportion of hidden layer nodes temporarily fail in the process of neural network training,
aiming at the deep network training of small sample data sets, and the phenomenon of over-fitting is
reduced significantly.

Based on deep learning technology, this study establishes a soft-sensing model of octane number
by using NIR data. In the proposed method, the stacked denosing auto-encoder (SDAE) is trained
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based on unlabeled NIR and the weights in each DAE is recorded with the high level feature extraction
and reduction of input data. Then, the recorded weights are used as the initial parameters of back
propagation (BP) with the reason that the SDAE trained initial weights can avoid local minimums and
realize accelerate convergence, and the soft sensor model is achieved with labeled NIR data. In the
training process, the gradient descent strategy is applied to update parameter and L2 regularization
tragic, which can avoid overfitting, and is used to optimize the loss function. Finally, the achieved soft
sensor model is used to estimate the real time octane number.

The structure of this paper is as follows: Section 1 summarizes the development of soft-sensing
and deep learning; Section 2 introduces SDAE deep neural network; Section 3 proposes SDAE-BP
model and summarizes gradient descent methods; Section 4 shows the research results of octane
number soft sensing; and finally, conclusions are drawn in Section 5.

2. SDAE Neural Network

2.1. Auto-Encoder

As an unsupervised learning method, auto-encoding (AE) is a three-layer neural network model
that includes a data input layer, a hidden layer, and an output target reconstruction layer. As a network
structure with then hidden layer as symmetry axis, the input layer and output layer are symmetric,
the AE realizes the advanced expression of input. The structure is shown in Figure 2.
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As shown in Figure 2, the input of AE is xi ∈ [0, 1]n, (i = 1, 2, . . . , n), the hidden layer in the
middle is yi ∈ [0, 1]m, (i = 1, 2, . . . m), and the network output is zi ∈ [0, 1]n, (i = 1, 2, . . . n). The special
nature of the auto-encoding network is that the number of input neurons and the number of output
neurons are equal. Therefore, z is considered as a reconstruction representation of x. From the input
layer to the hidden layer is called the encoding process, so that the hidden layer gets a more advanced
input feature expression, and the encoding function is fθ ; the hidden layer to the output layer is called
the decoding process, and the decoding function is gθ .

From the i-th layer mapping to the (i + 1)-th layer, the neural network needs the activation function
to provide the learning ability for the nonlinear mapping. The sigmoid function is generally used as
the activation function.

Moreover, in the AE network, the number of neurons in the hidden layer is less than the input
layer, so the encoding process is to compress the data and the hidden layer has a higher level of
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expression, which is equivalent to the dimension reduction of the PCA. The encoding function fθ from
x to y is:

y = fθ(x) = S(WTx + b)
S(x) = 1

1+exp(−x)
(1)

in the formula:
b—Bias term. The default value is 1;
S—Activation function (sigmoid);
W—n ×m weight matrix of input to hidden layer;
θ—Parameters of the scalar, θ = {W, b}.
From the hidden layer y to the reconstructed output layer z, this mapping process is called

decoding and the decoding function is gθ :

z = gθ(y) = gθ( fθ(x)) = S(W ′y + b′)
W ′ = W
b′ = bT

(2)

in the formula:
b′—Bias terms;
W ′—m × n weight matrix from the hidden layer to the output layer.
The output of AE is a reconstruction expression of input, and the error is used to describe the

reconstruction result. The relationship between the output and the input is shown as follows:

x = z + ε (3)

2.2. Denosing Auto-Encoder

In the encoding process of AE, in order to simulate the effect of the transformation, the nonlinear
W needs to set at a very small value; at the same time, for the decoding process, a very large W ′ is
needed to effectively reconfigure the original input x, these settings have increased the convergence
rate empirically. However, it is difficult to produce particularly large weights with the general
optimization algorithm. As the research progresses, scientists have found that randomly changing
the values of some dimensions of the input data x to 0 can enhance the generalization and refactoring
capabilities of the mode and restore a more expressive x [21]. In special cases, even up to half of
the dimensions of x are set to 0. This practice is called adding noise and this is the prototype of the
denosing auto-encoder (DAE). The structure of DAE is shown in Figure 3. The method for adding
noise is to add a certain proportion of Gaussian noise x̂ (x̂ satisfied x̂

∣∣x ∼ N(µ, σ2) ) to the input data x,
and control the proportion of added noise by setting different values. The noises are input into the
auto-encoder, and the error between the output date z and the original input x were calculated. The
stochastic gradient descent algorithm [22] is used to adjust the weight to minimize the error and to
optimize the parameter θ.
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When learning big data, the coding capacity of three-layer neural network of DAE is limited,
and the training effect can not meet the demand. In order to learn a more effective feature
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representation, multiple DAEs are stacked together to form a new deep learning framework: Stack
denoising auto-encoder (SDAE), which was proposed by Hitton in 2006 [23]. SDAE has good
performance in data reduction, classification, and clustering, and it uses layer-by-layer unsupervised
greedy training. The SDAE structure is shown in Figure 4.
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Figure 4. Schematic diagram of stacked denosing auto-encoder (SDAE).

The figure reflected that SDAE is formed by superimposing multiple DAEs. In the training
process, the input is x′1 after adding noise to the input data x, and the function of the first AE that
mapping to the hidden layer is expressed as fθ1. The reconstructed output of the first AE plus noise
is x′2, which is the input data of the second AE. The function of the hidden layer of the second AE is
expressed as fθ2. The Lθ , which represents the loss function between two DAEs, is calculated by the
function expression fθ of two AEs hidden layers in order to correct the weights of the hidden layer
of the previous AE. Then, continue the above process until all AE have completed training. Then,
the SDAE network is regarded as a whole, and the error is calculated by using the original input x and
the reconstruction z of the final output. By constraining the reconstruction error, the weight value can
satisfy the mapping relation between the input and the output.

3. SDAE-BP Soft Sensor Model

In this study, to realize the soft sensor of octane number based on NIR in gasoline blending
process, a novel SDAE based soft sensor strategy is proposed, in which weights trained by SDAE will
be assigned to BP as its initial parameters with the reason that the SDAE trained initial weights can
avoid local minimums and realize accelerate convergence, then a soft sensor model will be established.
The details are as follows:
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3.1. BP Neural Network

BP is a kind of neural network with positive inflow of data and back propagation of errors to each
layer of the network to adjust the weights and other parameters. Just like AE, the BP network structure
also has three layers: Input layer with n neurons, hidden layer with m neurons, and output layer with
k neurons.

The input hw,b(x) of the weighted hidden layer is:

hw,b(x) =
n

∑
i=1

m

∑
j=1

wijxi + b (4)

in the formula:
w—Weight;
b—Bias;
n—Number of neurons in the input layer;
m—Number of neurons in the hidden layer.
The output of the hidden layer is mapped by the activation function:

f(h(x))
=

1
1 + exp−(h(x))

(5)

The output yw,b(x) of output layer is:

yw,b(x) =
1

1 + exp−(
m
∑

j=1

p
∑

k=1
wjk f(h(x)) + b′)

(6)

in the formula:
p—Number of neurons in the output layer.
Calculate the error ε between output y and expected output z:

εw,b =
1
2

n

∑
i=1

(yi − zi)
2 (7)

The weight initialization of the BP neural network is usually implemented by Nguyen-Widrow [24]
algorithm, and it obeys the Gaussian distribution. The initial weights and bias randomly appear in [0, 1]
or [−1, 1], the experiments showed that the BP soft sensor model is easy to get into the local minimums
and the speed of convergence is slow. Based on the shortage of BP, this study proposed the SDAE
network to initialize the parameters of BP to achieve stable training performance.

3.2. Gradient Descent

Gradient descent is in fact a partial derivative of the loss function to update the parameters of the
model, as shown in Figure 5.
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Figure 5 revealed that the data is mapped from the input layer to the output layer, the actual
output of the network is y, and the expected output is z. In order to optimize the error of neural
network output and expected output, each layer parameter should be adjusted by gradient descent.
Take f3 node in the figure as an example, the original weight w34 is mapped from hidden layer to
output layer. The new weight w′34 is the result of the original weight w34 minus the partial derivative
of the output layer to the weight. The weight update formula is:

w′34 = w34 − η ∂
∂w ε

= w34 + η(z− y) f3
(8)

in the formula:
η—Learning rate, constraints to control fitting ability;
ε—Mean square error.
There are two main methods for gradient descent: stochastic gradient descent and batch gradient

descent [25].

3.3. Optimization Term

3.3.1. Optimization of Loss Function

According to the principle of statistics, we assume that the error (in Equations (3) and (7)) is based
on Gaussian distribution: P{ε} = 1√

2πσ
exp

(
− ε2

2σ2

)
, so the error likelihood function is p{y|x; w} =

∑ log
{

1√
2πσ

exp
(
− (x−z)2

2σ2

)}
, and its expansions are: p{y|x; w} = log( 1√

2πσ
)− 1

σ2
1
2 ∑(x− z)2.

In the error logarithmic likelihood formula, we can get the objective function. The construction
of the loss function is to make the error logarithmic likelihood result as large as possible, so the loss
function will be:

L(θ) =
1
2 ∑ (x− z)2 (9)

where, the L(θ) is actually the least square method, During the training process, the loss function
should be continuously minimized to update the parameters of the model.

To avoid the problem of decreasing the learning rate of the objective function, we use
cross-entropy [26] to optimize the objective function. At this time, the loss function is settled:

L(θ) = −
n
∑

i=1

m
∑

j=1
(xj × log(zj)

+(1− xj)× log(1− zj))

(10)

To further optimize the loss function between the input and reconstructed output of SDAE, a more
refined model should consider overfitting problems by minimizing the variance and deviation of
training error and generalization error. We applied the L2 regularization tragic and the optimized loss
function at this time is expressed as:

L(θ) = 1
n

n
∑

i=1
( 1

2‖xi − zi‖2)

+ λ
2

nl−1
∑

l=1

sl
∑

i=1

sl+1
∑

j=1
(wji(l))

2
(11)

in the formula:
λ—Regularization parameters. The latter part of the formula is a regularization weight attenuation

term to prevent over-fitting;
nl−1—Number of layers;
sl—Number of neural nodes in the l-th layer without bias terms;
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xi—Input of SDAE;
zi—Reconstructive output of SDAE.

3.3.2. Determination of Gradient Descent Method

There are generally two methods for gradient descent: Stochastic gradient descent and batch
gradient descent.

The first step of the stochastic gradient descent method is that only one randomized training
sample is selected to calculate the gradient of the loss function at each iteration, and then the parameters
are updated. Therefore, the training speed is fast, but the disadvantage is that the accuracy will be
reduced and the result is not a global optimum, but is near the global optimal solution. Stochastic
gradient descent is a supervised gradient descent method. The formula is as follows:

w′ = w− η · 1
n

n
∑

i=1
∇wL(wi; yi; zi)

b′ = b− η · 1
n

n
∑

i=1
∇bL(b; yi; zi)

(12)

in the formula:
∇wL(w; yi; zi)—The gradient of the error function L of the output data y and the tag data z respect

to w;
∇bL(b; yi; zi)—The gradient of the error function L of the output data y and the tag data z respect

to b.
The batch gradient descent method is an optimization of stochastic gradient descent. Using the

entire training data sample to calculate the gradient of the loss function to update the parameters,
although it takes a long time to converge, a more accurate loss function optimal value can be obtained.

In the SDAE training process of layer-by-layer, the parameters are updated using the batch
gradient descent. When fine-tuning SDAE, the entire SDAE uses stochastic gradient descent, and it
has also been used in the regression process of BP.

At this point, the weights of SDAE are updated to satisfied the minimum training error.
Additionally, the updated weights of the first SDAE will be assigned to BP as its initial weights
to avoid overfitting and speed up convergence.

3.4. SDAE-BP Soft Sensor Model

To improve the accuracy and robustness, SDAE-BP soft sensor model is proposed to estimate the
octane number. A schematic diagram of the model is shown in Figure 6.
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The sample data is divided into a training dataset and testing dataset. The whole process consists
of two parts: The first part is the pre-training of the train_x (training sets) by SDAE, through which the
weight is obtained and will be assigned as the initial weight value of BP; the second part is the soft
sensor training between the data Train_x, and the target Train_y in a supervised BP learning, whose
initial parameter is given by the first part.

Moreover, since the input and output of each neuron can only be in [0, 1], which can prevent the
absolute value of the input data from being too large to saturate the output of the neural network,
therefore, before training, the input data must be normalized:

xnorm =
x−min(x)

max(x)−min(x)
(13)

After satisfying the constraints of Equations (4) and (9) in the pre-training stage and soft sensor
training stage, SDAE-BP soft sensor model is trained, the input test data sets will be tested, and R2

regression coefficient [27] and mean square error (MSE) are used as the prediction performance of
the model.

The formula for R2 is:

R2 =

(n×
n
∑

i=1
yi ×Yi −

n
∑

i=1
yi ×

n
∑

i=1
Yi)

2

(n×
n
∑

i=1
yi

2 − (
n
∑

i=1
Yi)2)× (n×

n
∑

i=1
Yi

2 − (
n
∑

i=1
yi)2)

(14)

in the formula:
n— Number of test samples;
yi— Model predicted octane number;
Yi— Expected octane number output.
And the MSE is:

MSE =
1
n

n

∑
i=1

(y− z)2 (15)

y—Predicted output of SDAE-BP;
z—Expected output of SDAE-BP.
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4. Experiment Results Analysis

4.1. Experiment Description

The soft sensor model of octane in this study is established based on the real gasoline NIR spectrum
data, whose dimension is 201. Additionally, for the training dataset and test dataset, the corresponding
octane number of NIR sample is obtained through laboratory testing.

In the course of SDAE-BP training, 400 sets of samples are selected as the training samples (train_x
and train_y). The SDAE is used firstly for pre-training with train_x to obtain parameters with good
fitting performance. Then, assign the trained weights to BP neural network as initial parameter for
the regression relationship learning between train_x and train_y. During training, verification sets are
also generated in training samples. After training, the model will be tested with 66 test sample sets,
and the performance of the soft measurement model was measured by MSE and R2.

4.2. Model Selection

In the simulation experiment, the hyperparameter [28] selects the following requirements: Active
function, optimized epoch numbers, optimized batch size, learning rate, scaling learning rate(for each
epoch), momentum, zero masked fraction, and sparsity target are {‘sigmoid’, 1, 10, 0.01, 1, 0.5, 0.5, and
0.05}.

The trained SDAEs with different hidden layers were, respectively, constructed with BP neural
networks, and SDAE-BP soft sensor models with different hidden layers were established. After
training the model, testing will be executed to estimate the model with the test sets, and the R2 as
well as MSE will be used to measure the prediction accuracy. In order to verify the superiority of the
proposed method, we chose the existing method for comparison. Therefore, the PCA-BP soft sensing
(dimension reduced by PCA) is compared with SDAE-BP. The model performance of different layers
of SDAE-BP is shown in Table 1.

Table 1. The comparison diagram of soft sensor models.

Model Type Time (s) R2 MSE

PCA-BP 20.1 0.86358 0.04271
SDAE-BP(1 layers)

9 17.9 0.92576 0.02335

SDAE-BP(2 layers)
9-9 21.5 0.92941 0.02284

SDAE-BP(3 layers)
9-9-9 19.8 0.89140 0.035684

SDAE-BP(4 layers)
9-9-9-9 16.9 0.94752 0.02334

SDAE-BP(5 layers)
9-9-9-9-9 24.2 0.72975 0.08730

In the experiment, the hidden layer neurons of BP are all set at 9, the validation sets of PCA-BP
and SDAE-BP are both set at six, and the hidden layer nodes of SDAE with different layers are shown
in the table (i.e., three layers, respectively, represent the number of neurons in the hidden layer: 9-9-9).
From the table, the best structure of SDAE-BP is 9-9-9-9 with the highest regression coefficient R2 at
0.94752 and the lowest MSE at 0.02334 in experiments.

4.3. Results and Discussion

As shown in Figure 7, in the process of training, the training error of SDAE-BP is obviously
lower than the PCA-BP. The Figure 8 reveals that the test error of SDAE-BP is also lower than PCA-BP.
Additionally, Figure 9 shows the line charts of the predicted value of the predicted value and the real
octane number of the two methods and the real octane number, the SDAE-BP is closer to the real one.
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Table 2 compares SDAE-BP and PCA-BP in several details, and shows that SDAE-BP is superior both
in speed and accuracy. The results also mean that applying the model to octane online prediction is
more effective.
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Training time (s) 20.1 16.9
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The four groups of regression curves with different predictions are shown in Figure 10, in the
training and validation process, the regression performance is significant (R at 0.99168 in training and
R at 0.96943 in validation), which may cause overfitting. However, the test result dispels our doubt,
the model generalization ability is very strong (the R is as high as 0.9734). The lines of fit are almost
consistent with the target lines of fit, and the average R value is as high as 0.98556, which means that
the prediction results are accurate and robust.
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To sum up, from the perspective of training error, test error, R2, and other details, the robustness
and performance of octane number soft sensor is greatly improved by using the SDAE-BP method.

5. Conclusions

To realize the prediction of octane number in the gasoline blending process, considering the
efficiency of deep learning for parameter expression, a novel deep learning based soft sensor strategy
by using the NIR spectroscopy obtained in the gasoline blending process is proposed. In this method,
the stacked denosing auto-encoder (SDAE) is trained based on unlabeled NIR. In the training process,
the gradient descent strategy is applied to update parameter and L2 regularization tragic, which can
avoid overfitting, is used to optimize the loss function. Then, BP is initialized by trained SDAE, which
can avoid to local minimums and accelerate convergence. For online dynamic data, SDAE-BP achieves
fast and accurate prediction. In the future, SDAE may realize dimension reduction in the complex
industry process to accurately predict results.
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