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Abstract: Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories, which
can be made finite to all orders in perturbation theory, based on the principle of the reduction of
couplings. The latter consists of searching for renormalization group invariant relations among
parameters of a renormalizable theory holding to all orders in perturbation theory. FUTs have proven
very successful so far. In particular, they predicted the top quark mass one and half years before its
experimental discovery, while around five years before the Higgs boson discovery, a particular FUT
was predicting the light Higgs boson in the mass range ∼121–126 GeV, in striking agreement with
the discovery at LHC. Here, we review the basic properties of the supersymmetric theories and in
particular finite theories resulting from the application of the method of reduction of couplings in
their dimensionless and dimensionful sectors. Then, we analyze the phenomenologically-favored
FUT, based on SU(5). This particular FUT leads to a finiteness constrained version of the Minimal
SUSY Standard Model (MSSM), which naturally predicts a relatively heavy spectrum with colored
supersymmetric particles above 2.7 TeV, consistent with the non-observation of those particles at
the LHC. The electroweak supersymmetric spectrum starts below 1 TeV, and large parts of the
allowed spectrum of the lighter might be accessible at CLIC. The FCC-hhwill be able to fully test the
predicted spectrum.

Keywords: Finiteness; Supersymmetry; Unification; Reduction; Gauge-Yukawa; Higgs

1. Introduction

In 2012, the discovery of a new particle at the LHC was announced [1,2]. Within theoretical and
experimental uncertainties, the new particle is compatible with predictions for the Higgs boson of
the Standard Model (SM) [3,4], constituting a milestone in the quest for understanding the physics of
Electroweak Symmetry Breaking (EWSB). However, taking the experimental results and the respective
uncertainties into account, also many models beyond the SM can accommodate the data. Furthermore,
the hierarchy problem, the neutrino masses, the dark matter, the over twenty free parameters of the
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model, just to name some questions, ask for a more fundamental theory to answer some, if not all,
of those.

Therefore, one of the main aims of this fundamental theory is to relate these free parameters,
or rephrasing it, to achieve a reduction of these parameters in favor of a smaller number (or ideally
only one). This reduction is usually based on the introduction of a larger symmetry, rendering the
theory more predictive. Very good examples are the Grand Unified Theories (GUTs) [5–9] and their
supersymmetric extensions [10,11]. The case of minimal SU(5)is one example, where the number
of couplings is reduced to one due to the corresponding unification. Data from LEP [12] suggested
that a N = 1 global Supersymmetry (SUSY) [10,11] is required in order for the prediction to be
viable. Relations among the Yukawa couplings are also suggested in GUTs. For example, the SU(5)
predicts the ratio of the tau to the bottom mass Mτ/Mb [13] in the SM. GUTs introduce, however,
new complications such as the different ways of breaking this larger symmetry, as well as new degrees
of freedom.

A way to relate the Yukawa and the gauge sector, in other words achieving Gauge-Yukawa
Unification (GYU) [14–16], seems to be a natural extension of the GUTs. The possibility that N = 2
SUSY [17] plays such a role is highly limited due to the prediction of light mirror fermions. Other
phenomenological drawbacks appear in composite models and superstring theories.

A complementary approach is to search for all-loop Renormalization Group Invariant (RGI)
relations [18,19], which hold below the Planck scale and are preserved down to the unification
scale [14–16,20–25]. With this approach, Gauge-Yukawa Unification (GYU) is possible. A remarkable
point is that, assuming finiteness at one-loop in N = 1 gauge theories, RGIrelations that guarantee
finiteness to all orders in perturbation theory can be found [26–28].

The above approach seems to need SUSY as an essential ingredient. However, the breaking
of SUSY has to be understood as well, since it provides the SM with several predictions for its free
parameters. Actually, the RGI relation searches have been extended to the Soft SUSY Breaking (SSB)
sector [25,29–31] relating parameters of mass dimension one and two. This is indeed possible to be
done on the RGI surface, which is defined by the solution of the reduction equations.

Applying the reduction of couplings method to N = 1 SUSY theories has led to very interesting
phenomenological developments. Previously, an appealing “universal” set of soft scalar masses was
assumed in the SSB sector of SUSY theories, given that, apart from economy and simplicity: (1) they
are part of the constraints that preserve finiteness up to two loops [32,33]; (2) they are RGI up to
two loops in more general SUSY gauge theories, subject to the condition known as P = 1/3Q [29];
and (3) they appear in the attractive dilaton-dominated SUSY breaking superstring scenarios [34–36].
However, further studies exhibited problems all due to the restrictive nature of the “universality”
assumption for the scalar masses. For instance: (a) in Finite Unified Theories (FUTs) the universality
predicts that the lightest SUSY particle is a charged particle, namely the superpartner of the τ lepton
τ̃; (b) the Minimal SUSY Standard Model (MSSM) with universal soft scalar masses is inconsistent
with the attractive radiative electroweak symmetry breaking; and worst of all, (c) the universal soft
scalar masses lead to charge and/or color breaking minima deeper than the standard vacuum [37].
Therefore, there have been attempts to relax this constraint without loosing its attractive features. First,
an interesting observation was made that in N = 1 GYU theories, there exists an RGI sum rule for the
soft scalar masses at lower orders; at one loop for the non-finite case [38] and at two loops for the finite
case [39]. The sum rule manages to overcome the above unpleasant phenomenological consequences.
Moreover, it was proven [40] that the sum rule for the soft scalar masses is RGI to all orders for
both the general and the finite case. Finally, the exact β-function for the soft scalar masses in the
Novikov–Shifman–Vainshtein–Zakharov (NSVZ) scheme [41–43] for the softly-broken SUSY QCDhas
been obtained [40]. The use of RGI both in the dimensionful and dimensionless sector, together with
the above-mentioned sum rule, allows for the construction of realistic and predictive N = 1 all-loop
finite SU(5) SUSY GUTs, also with interesting predictions, as was shown in [14,20,22,31,44–48].
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This paper is organized as follows. In Section 2, we review the theoretical basis of the method of
the reduction of couplings, which is extended in Section 2 to the dimensionful parameters. Section 3
is devoted to finiteness in the dimensionless sector of a SUSY theory in some detail. In Section 4, we
discuss the implications of the method of reduction of couplings in the SUSY breaking sector of an
N = 1 SUSY theory including the finite case. Then, in Section 5, we review the best Finite Unified
Modelselected previously on the basis of agreement with the known experimental data at the time [45].
The current setup of experimental constraints and predictions is briefly reviewed in Section 6 and
applied to our best Finite Unified Model in Section 7, including in particular the latest improvements
in the prediction of the light Higgs boson mass (as implemented in FeynHiggs). Our conclusions can
be found in Section 8.

2. Theoretical Basis

In this section, we outline the idea of the reduction of couplings. Any RGI relation among
couplings (which does not depend on the renormalization scale µ explicitly) can be expressed, in the
implicit form Φ(g1, · · · , gA) = const., which has to satisfy the Partial Differential Equation (PDE):

µ
dΦ
dµ

= ~∇ · ~β =
A

∑
a=1

βa
∂Φ
∂ga

= 0 , (1)

where βa is the β-function of ga. This PDE is equivalent to a set of ordinary differential equations,
the so-called Reduction Equations (REs) [18,19,49],

βg
dga

dg
= βa , a = 1, · · · , A , (2)

where g and βg are the primary coupling and its β-function, and the counting on a does not include g.
Since maximally (A− 1) independent RGI “constraints” in the A-dimensional space of couplings can
be imposed by the Φa’s, one could in principle express all the couplings in terms of a single coupling g.
However, a closer look at the set of Equation (2) reveals that their general solutions contain as many
integration constants as the number of equations themselves. Thus, using such integration constants,
we have just traded an integration constant for each ordinary renormalized coupling, and consequently,
these general solutions cannot be considered as reduced ones. The crucial requirement in the search
for RGE relations is to demand power series solutions to the REs,

ga = ∑
n

ρ
(n)
a g2n+1 , (3)

which preserve perturbative renormalizability. Such an ansatz fixes the corresponding integration
constant in each of the REs and picks up a special solution out of the general one. Remarkably,
the uniqueness of such power series solutions can be decided already at the one-loop level [18,19,49].
To illustrate this, let us assume that the β-functions have the form:

βa =
1

16π2 [ ∑
b,c,d 6=g

β
(1) bcd
a gbgcgd + ∑

b 6=g
β
(1) b
a gbg2] + · · · ,

βg =
1

16π2 β
(1)
g g3 + · · · ,

(4)

where · · · stands for higher order terms and β
(1) bcd
a ’s are symmetric in b, c, d. We then assume that

the ρ
(n)
a ’s with n ≤ r have been uniquely determined. To obtain ρ

(r+1)
a ’s, we insert the power series (3)

into the REs (2) and collect terms of O(g2r+3) and find:

∑
d 6=g

M(r)d
a ρ

(r+1)
d = lower order quantities ,
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where the r.h.s. is known by assumption, and:

M(r)d
a = 3 ∑

b,c 6=g
β
(1) bcd
a ρ

(1)
b ρ

(1)
c + β

(1) d
a − (2r + 1) β

(1)
g δd

a , (5)

0 = ∑
b,c,d 6=g

β
(1) bcd
a ρ

(1)
b ρ

(1)
c ρ

(1)
d + ∑

d 6=g
β
(1) d
a ρ

(1)
d − β

(1)
g ρ

(1)
a , (6)

Therefore, the ρ
(n)
a ’s for all n > 1 for a given set of ρ

(1)
a ’s can be uniquely determined if

det M(n)d
a 6= 0 for all n ≥ 0.

As will be clear later by examining specific examples, the various couplings in SUSY theories
have the same asymptotic behavior. Therefore, searching for a power series solution of the form (3) to
the REs (2) is justified. This is not the case in non-SUSY theories, although the deeper reason for this
fact is not fully understood.

The possibility of coupling unification described in this section is without any doubt attractive,
because the “completely reduced” theory contains only one independent coupling, but it can be
unrealistic. Therefore, one often would like to impose fewer RGI constraints, and this is the idea of
partial reduction [50,51].

Reduction of Dimension One and Two Parameters

The reduction of couplings was originally formulated for massless theories on the basis of
the Callan–Symanzik equation [18,19]. The extension to theories with massive parameters is not
straightforward if one wants to keep the generality and the rigor on the same level as for the massless
case; one has to fulfill a set of requirements coming from the renormalization group equations,
the Callan–Symanzik equations, etc. along with the normalization conditions imposed on irreducible
Green’s functions [52]. There has been much progress in this direction starting from [25], where it
was assumed that a mass-independent renormalization scheme could be employed so that all the
RGfunctions have only trivial dependencies on dimensional parameters, and then, the mass parameters
were introduced similarly to couplings (i.e., as a power series in the couplings). This choice was justified
later in [30,53], where the scheme independence of the reduction principle has been proven generally,
i.e., it was shown that apart from dimensionless couplings, pole masses and gauge parameters,
the model may also involve coupling parameters carrying a dimension and masses. Therefore, here, to
simplify the analysis, we follow [25], and we also use a mass-independent renormalization scheme.

We start by considering a renormalizable theory that contains a set of (N + 1) dimension zero
couplings, (ĝ0, ĝ1, ..., ĝN), a set of L parameters with mass-dimension one,

(
ĥ1, ..., ĥL

)
, and a set of M

parameters with mass-dimension two,
(
m̂2

1, ..., m̂2
M
)
. The renormalized irreducible vertex function Γ

satisfies the RG equation:

DΓ
[
Φ′s; ĝ0, ĝ1, ..., ĝN ; ĥ1, ..., ĥL; m̂2

1, ..., m̂2
M; µ

]
= 0 , (7)

where:

D = µ
∂

∂µ
+

N

∑
i=0

βi
∂

∂ĝi
+

L

∑
a=1

γh
a

∂

∂ĥa
+

M

∑
α=1

γm2

α
∂

∂m̂2
α
+ ∑

J
ΦIγ

φI
J

δ

δΦJ
, (8)

where µ is the energy scale, while βi are the β-functions of the various dimensionless couplings gi, ΦI

are the various matter fields and γm2
α , γh

a and γ
φI

J are the mass, trilinear coupling and wave function
anomalous dimensions, respectively (where I enumerates the matter fields). In a mass independent
renormalization scheme, the γ’s are given by:
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γh
a =

L

∑
b=1

γh,b
a (g0, g1, ..., gN)ĥb,

γm2

α =
M

∑
β=1

γ
m2,β
α (g0, g1, ..., gN)m̂2

β +
L

∑
a,b=1

γm2,ab
α (g0, g1, ..., gN)ĥa ĥb,

(9)

where γh,b
a , γ

m2,β
α and γm2,ab

α are power series of the g’s (which are dimensionless) in perturbation theory.

We look for a reduced theory where:

g ≡ g0, ha ≡ ĥa for 1 ≤ a ≤ P, m2
α ≡ m̂2

α for 1 ≤ α ≤ Q

are independent parameters and the reduction of the parameters left:

ĝi = ĝi(g), (i = 1, ..., N),

ĥa =
P

∑
b=1

f b
a (g)hb, (a = P + 1, ..., L),

m̂2
α =

Q

∑
β=1

eβ
α(g)m2

β +
P

∑
a,b=1

kab
α (g)hahb, (α = Q + 1, ..., M)

(10)

is consistent with the RG Equations (7) and (8). It turns out that the following relations should
be satisfied:

βg
∂ĝi
∂g

= βi, (i = 1, ..., N),

βg
∂ĥa

∂g
+

P

∑
b=1

γh
b

∂ĥa

∂hb
= γh

a , (a = P + 1, ..., L),

βg
∂m̂2

α

∂g
+

P

∑
a=1

γh
a

∂m̂2
α

∂ha
+

Q

∑
β=1

γm2

β

∂m̂2
α

∂m2
β

= γm2

α , (α = Q + 1, ..., M).

(11)

Using Equations (9) and (10), the above relations reduce to:

βg
d f b

a
dg

+
P

∑
c=1

f c
a

[
γh,b

c +
L

∑
d=P+1

γh,d
c f b

d

]
− γh,b

a −
L

∑
d=P+1

γh,d
a f b

d = 0,

(a = P + 1, ..., L; b = 1, ..., P),

βg
deβ

α

dg
+

Q

∑
γ=1

eγ
α

[
γ

m2,β
γ +

M

∑
δ=Q+1

γm2,δ
γ eβ

δ

]
− γ

m2,β
α −

M

∑
δ=Q+1

γm2,d
α eβ

δ = 0,

(α = Q + 1, ..., Mq β = 1, ..., Q),

βg
dkab

α

dg
+ 2

P

∑
c=1

(
γh,a

c +
L

∑
d=P+1

γh,d
c f a

d

)
kcb

α +
Q

∑
β=1

eβ
α

[
γm2,ab

β +
L

∑
c,d=P+1

γm2,cd
β f a

c f b
d

+2
L

∑
c=P+1

γm2,cb
β f a

c +
M

∑
δ=Q+1

γm2,d
β kab

δ

]
−
[

γm2,ab
α +

L

∑
c,d=P+1

γm2,cd
α f a

c f b
d

+2
L

∑
c=P+1

γm2,cb
α f a

c +
M

∑
δ=Q+1

γm2,δ
α kab

δ

]
= 0,

(α = Q + 1, ..., M; a, b = 1, ..., P) .

(12)
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The above relations ensure that the irreducible vertex function of the reduced theory:

ΓR

[
Φ’s; g; h1, ..., hP; m2

1, ..., m2
Q; µ

]
≡

Γ
[
Φ’s; g, ĝ1(g)..., ĝN(g); h1, ..., hP, ĥP+1(g, h), ..., ĥL(g, h);

m2
1, ..., m2

Q, m̂2
Q+1(g, h, m2), ..., m̂2

M(g, h, m2); µ
] (13)

has the same renormalization group flow as the original one.
The assumptions that the reduced theory is perturbatively renormalizable means that the functions

ĝi, f b
a , eβ

α and kab
α , defined in (10), should be expressed as a power series in the primary coupling g:

ĝi = g
∞

∑
n=0

ρ
(n)
i gn, f b

a = g
∞

∑
n=0

η
b(n)
a gn

eβ
α =

∞

∑
n=0

ξ
β(n)
α gn, kab

α =
∞

∑
n=0

χ
ab(n)
α gn.

(14)

The above expansion coefficients can be found by inserting these power series into Equations (11)
and (12) and requiring the equations to be satisfied at each order of g. It should be noted that the
existence of a unique power series solution is a non-trivial matter: it depends on the theory, as well as
on the choice of the set of independent parameters.

It should also be noted that in the case that there are no independent mass-dimension one
parameters (ĥ), the reduction of these terms takes naturally the form:

ĥa =
L

∑
b=1

f b
a (g)M,

where M is a mass-dimension one parameter, which could be a gaugino mass, which corresponds to
the independent (gauge) coupling. In case, on top of that, there are no independent mass-dimension
two parameters (m̂2), the corresponding reduction takes the analogous form:

m̂2
a =

M

∑
b=1

eb
a(g)M2.

3. Finiteness in N = 1 Supersymmetric Gauge Theories

Let us consider a chiral, anomaly-free, N = 1 globally SUSY gauge theory based on a group
Gwith gauge coupling constant g. The superpotential of the theory is given by:

W =
1
2

mij φi φj +
1
6

Cijk φi φj φk , (15)

where mij and Cijk are gauge invariant tensors and the matter field φi transforms according to the
irreducible representation Ri of the gauge group G. The renormalization constants associated with the
superpotential (15), assuming that SUSY is preserved, are:

φ0
i = (Zj

i )
(1/2) φj , (16)

m0
ij = Zi′ j′

ij mi′ j′ , (17)

C0
ijk = Zi′ j′k′

ijk Ci′ j′k′ . (18)
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The N = 1 non-renormalization theorem [54–56] ensures that there are no mass and
cubic-interaction-term infinities, and therefore:

Zi′ j′k′

ijk Z1/2 i′′
i′ Z1/2 j′′

j′ Z1/2 k′′
k′ = δi′′

(i δ
j′′

j δk′′
k) ,

Zi′ j′

ij Z1/2 i′′
i′ Z1/2 j′′

j′ = δi′′
(i δ

j′′

j) .
(19)

As a result, the only surviving possible infinities are the wave-function renormalization constants
Zj

i , i.e., one infinity for each field. The one-loop β-function of the gauge coupling g is given by [57]:

β
(1)
g =

dg
dt

=
g3

16π2 [∑
i

l(Ri)− 3 C2(G) ] , (20)

where l(Ri) is the Dynkin index of Ri and C2(G) is the quadratic Casimir invariant of the adjoint
representation of the gauge group G. The β-functions of Cijk, by virtue of the non-renormalization
theorem, are related to the anomalous dimension matrix γij of the matter fields φi as:

βijk =
dCijk

dt
= Cijl γl

k + Cikl γl
j + Cjkl γl

i . (21)

At one-loop level, γij is [57]:

γ
i(1)
j =

1
32π2 [Cikl Cjkl − 2 g2 C2(R)δi

j ], (22)

where C2(R) is the quadratic Casimir invariant of the representation Ri, and Cijk = C∗ijk.
Since dimensional coupling parameters such as masses and couplings of cubic scalar field terms
do not influence the asymptotic properties of a theory that we are interested in here, it is sufficient to
take into account only the dimensionless SUSY couplings such as g and Cijk. Therefore, we neglect the
existence of dimensional parameters and assume furthermore that Cijk are real so that C2

ijk are always
positive numbers.

As one can see from Equations (20) and (22), all the one-loop β-functions of the theory vanish if
β
(1)
g and γ

(1)
ij vanish, i.e.,

∑
i
`(Ri) = 3C2(G) , (23)

CiklCjkl = 2δi
jg

2C2(Ri) , (24)

The conditions for finiteness for N = 1 field theories with SU(N) gauge symmetry are discussed
in [58], and the analysis of the anomaly-free and no-charge renormalization requirements for these
theories can be found in [59]. A very interesting result is that Conditions (23) and (24) are necessary
and sufficient for finiteness at the two-loop level [57,60–63].

In the case that SUSY is broken by soft terms, the requirement of finiteness in the one-loop
soft breaking terms imposes further constraints among themselves [32]. In addition, the same set of
conditions that are sufficient for one-loop finiteness of the soft breaking terms renders the soft sector of
the theory two-loop finite [33].

The one- and two-loop finiteness Conditions (23) and (24) restrict considerably the possible choices
of the irreducible representations (irreps) Ri for a given group G, as well as the Yukawa couplings
in the superpotential (15). Note in particular that the finiteness conditions cannot be applied to the
Minimal SUSY Standard Model (MSSM), since the presence of a U(1) gauge group is incompatible
with the condition (23), due to C2[U(1)] = 0. This naturally leads to the expectation that finiteness
should be attained at the grand unified level only, the MSSM being just the corresponding, low-energy,
effective theory.
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Another important consequence of one- and two-loop finiteness is that SUSY (most probably)
can only be broken due to the soft breaking terms. Indeed, due to the unacceptability of gauge
singlets, F-type spontaneous symmetry breaking [64] terms are incompatible with finiteness, as well as
D-type [65] spontaneous breaking, which requires the existence of a U(1) gauge group.

A natural question to ask is what happens at higher-loop orders. The answer is contained in a
theorem [27,66] that states the necessary and sufficient conditions to achieve finiteness at all orders.
Before we discuss the theorem, let us make some introductory remarks. The finiteness conditions
impose relations between gauge and Yukawa couplings. To require such relations that render the
couplings mutually dependent at a given renormalization point is trivial. What is not trivial is to
guarantee that relations leading to a reduction of the couplings hold at any renormalization point.
As we have seen, the necessary and also sufficient condition for this to happen is to require that such
relations are solutions to the REs:

βg
dCijk

dg
= βijk (25)

and hold at all orders. Remarkably, the existence of all-order power series solutions to (25) can be
decided at the one-loop level, as already mentioned.

Let us now turn to the all-order finiteness theorem [27,66], which states the conditions under which
an N = 1 SUSY gauge theory can become finite to all orders in the sense of vanishing β-functions, that is
of physical scale invariance. It is based on (a) the structure of the supercurrent in N = 1 SUSY gauge
theory [67–69] and on (b) the non-renormalization properties of N = 1 chiral anomalies [26,27,66,70,71].
Details on the proof can be found in [27,66] and further discussion in [26,28,70–72]. Here, following
mostly [72], we present a comprehensible sketch of the proof.

Consider an N = 1 SUSY gauge theory, with simple Lie group G. The content of this theory is
given at the classical level by the matter supermultiplets Si, which contain a scalar field φi and a Weyl
spinor ψia, and the vector supermultiplet Va, which contains a gauge vector field Aa

µ and a gaugino
Weyl spinor λa

α.
Let us first recall certain facts about the theory:

(1) A massless N = 1 SUSY theory is invariant under a U(1) chiral transformation R under which the
various fields transform as follows:

A′µ = Aµ, λ′α = exp(−iθ)λα

φ′ = exp(−i
2
3

θ)φ, ψ′α = exp(−i
1
3

θ)ψα, · · ·
(26)

The corresponding axial Noether current Jµ
R(x):

Jµ
R(x) = λ̄γµγ5λ + · · · (27)

is conserved classically, while in the quantum case, it is violated by the axial anomaly:

∂µ Jµ
R = r(εµνσρFµνFσρ + · · · ). (28)

From its known topological origin in ordinary gauge theories [73–75], one would expect the axial
vector current Jµ

R to satisfy the Adler–Bardeen theorem and receive corrections only at the one-loop
level. Indeed, it has been shown that the same non-renormalization theorem holds also in SUSY
theories [26,70,71]. Therefore:

r = h̄β
(1)
g . (29)

(2) The massless theory we consider is scale invariant at the classical level, and in general, there is
a scale anomaly due to radiative corrections. The scale anomaly appears in the trace of the energy
momentum tensor Tµν, which is traceless classically. It has the form



Symmetry 2018, 10, 62 9 of 26

Tµ
µ = βgFµνFµν + · · · (30)

(3) Massless, N = 1 SUSY gauge theories are classically invariant under the SUSY extension of the
conformal group: the superconformal group. Examining the superconformal algebra, it can be seen
that the subset of superconformal transformations consisting of translations, SUSY transformations
and axial R transformations is closed under SUSY, i.e., these transformations form a representation
of SUSY. It follows that the conserved currents corresponding to these transformations make up a
supermultiplet represented by an axial vector superfield called the supercurrent J,

J ≡ {J′µR , Qµ
α , Tµ

ν , ...}, (31)

where J′µR is the current associated with Rinvariance, Qµ
α is the one associated with SUSY invariance

and Tµ
ν the one associated with translational invariance (energy-momentum tensor).

The anomalies of the R current J′µR , the trace anomalies of the SUSY current and the
energy-momentum tensor form also a second supermultiplet, called the supertrace anomaly:

S = {Re S, Im S, Sα} =

{Tµ
µ , ∂µ J′µR , σ

µ

αβ̇
Q̄β̇

µ + · · · }

where Tµ
µ is given in Equation (30) and:

∂µ J′µR = βgεµνσρFµνFσρ + · · · (32)

σ
µ

αβ̇
Q̄β̇

µ = βgλβσ
µν
αβ Fµν + · · · (33)

(4) It is very important to note that the Noether current defined in (27) is not the same as the current
associated with R invariance that appears in the supercurrent J in (31), but they coincide in the tree
approximation. Therefore, starting from a unique classical Noether current Jµ

R(class), the Noether

current Jµ
R is defined as the quantum extension of Jµ

R(class), which allows for the validity of the

non-renormalization theorem. On the other hand, J′µR , is defined to belong to the supercurrent J,
together with the energy-momentum tensor. The two requirements cannot be fulfilled by a single
current operator at the same time.

Although the Noether current Jµ
R, which obeys (28), and the current J′µR belonging to the

supercurrent multiplet J are not the same, there is a relation [27,66] between quantities associated
with them:

r = βg(1 + xg) + βijkxijk − γArA (34)

where r was given in Equation (29). The rA are the non-renormalized coefficients of the anomalies of
the Noether currents associated with the chiral invariances of the superpotential and (like r) are strictly
one-loop quantities. The γA’s are linear combinations of the anomalous dimensions of the matter
fields, and xg and xijk are radiative correction quantities. The structure of Equality (34) is independent
of the renormalization scheme.

One-loop finiteness, i.e., vanishing of the β-functions at one loop, implies that the Yukawa
couplings Cijk must be functions of the gauge coupling g. To find a similar condition to all orders, it
is necessary and sufficient for the Yukawa couplings to be a formal power series in g, which is the
solution of the REs (25).

We can now state the theorem for all-order vanishing β-functions [26,27,72].

Theorem 1. Consider an N = 1 SUSY Yang–Mills theory, with the simple gauge group. If the following
conditions are satisfied:
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1. There is no gauge anomaly.
2. The gauge β-function vanishes at one loop:

β
(1)
g = 0 = ∑

i
l(Ri)− 3 C2(G). (35)

3. There exist solutions of the form:
Cijk = ρijkg, ρijk ∈ IC (36)

to the conditions of vanishing one-loop matter fields’ anomalous dimensions:

γ
i (1)
j = 0

=
1

32π2 [ Cikl Cjkl − 2 g2 C2(R)δi
j].

(37)

4. These solutions are isolated and non-degenerate when considered as solutions of vanishing one-loop Yukawa
β-functions:

βijk = 0. (38)

Then, each of the solutions (36) can be uniquely extended to a formal power series in g, and the
associated super Yang–Mills models depend on the single coupling constant g with a β function, which
vanishes at all orders.

It is important to note a few things: The requirement of isolated and non-degenerate solutions
guarantees the existence of a unique formal power series solution to the reduction equations.
The vanishing of the gauge β function at one loop, β

(1)
g , is equivalent to the vanishing of the R

current anomaly (28). The vanishing of the anomalous dimensions at one loop implies the vanishing
of the Yukawa coupling β functions at that order. It also implies the vanishing of the chiral anomaly
coefficients rA. This last property is a necessary condition for having β functions vanishing at all orders.
For an alternative way to find finite theories see ref. [76].

Proof. Insert βijk as given by the REs into the relationship (34) between the axial anomalies coefficients
and the β-functions. Since these chiral anomalies vanish, we get for βg a homogeneous equation of
the form:

0 = βg(1 + O(h̄)). (39)

The solution of this equation in the sense of a formal power series in h̄ is βg = 0, order by order.
Therefore, due to the REs (25), βijk = 0, as well.

Thus, we see that finiteness and reduction of couplings are intimately related. Since an equation
like Equation (34) is lacking in non-SUSY theories, one cannot extend the validity of a similar theorem
in such theories.

4. The SSB Sector of Reduced N = 1 SUSY and Finite Theories

As we have seen in Section 2, the method of reducing the dimensionless couplings has been
extended [25], to the Soft SUSY Breaking (SSB) dimensionful parameters of N = 1 SUSY theories.
In addition, it was found [38] that RGI SSB scalar masses in GYU models satisfy a universal sum rule.

Consider the superpotential given by (15) along with the Lagrangian for SSB terms:

−LSSB =
1
6

hijk φiφjφk +
1
2

bij φiφj

+
1
2
(m2)

j
i φ∗ iφj +

1
2

M λλ + h.c.,
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where the φi are the scalar parts of the chiral superfields Φi, λ are the gauginos and M their
unified mass.

We assume that the reduction equations admit power series solutions of the form:

Cijk = g ∑
n

ρ
ijk
(n)g

2n . (40)

If we knew higher-loop β-functions explicitly, we could follow the same procedure and find
higher-loop RGI relations among SSB terms. However, the β-functions of the soft scalar masses are
explicitly known only up to two loops. In order to obtain higher-loop results, some relations among
β-functions are needed.

In the case of finite theories, we assume that the gauge group is a simple group, and the one-loop
β-function of the gauge coupling g vanishes. According to the finiteness theorem of [27,66] and the
assumption given in (40), the theory is then finite to all orders in perturbation theory, if, among others,
the one-loop anomalous dimensions γ

j(1)
i vanish. The one- and two-loop finiteness for hijk can be

achieved by [33]:
hijk = −MCijk + · · · = −Mρ

ijk
(0) g + O(g5) , (41)

where . . . stand for higher order terms.
Now, to obtain the two-loop sum rule for soft scalar masses, we assume that the lowest order

coefficients ρ
ijk
(0) and also (m2)i

j satisfy the diagonality relations:

ρipq(0)ρ
jpq
(0) ∝ δ

j
i for all p and q and (m2)i

j = m2
j δi

j , (42)

respectively. Then, we find the following soft scalar-mass sum rule [16,39,77]:

( m2
i + m2

j + m2
k )/MM† = 1 +

g2

16π2 ∆(2) + O(g4) (43)

for i, j, k with ρ
ijk
(0) 6= 0, where ∆(2) is the two-loop correction:

∆(2) = −2 ∑
l
[(m2

l /MM†)− (1/3)] T(Rl), (44)

which vanishes for the universal choice in accordance with the previous findings of [33] (in the above
relation, T(Rl) is the Dynkin index of the Rl irrep).

Making use of the spurion technique [56,78–81], it is possible to find the following all-loop
relations among SSB β-functions [82–87]:

βM = 2O
(

βg

g

)
, (45)

β
ijk
h = γi

lhl jk + γj
lhilk + γk

lhijl

− 2γi
1lCl jk − 2γ

j
1lCilk − 2γk

1lCijl , (46)

(βm2)i
j =

[
∆ + X

∂

∂g

]
γi

j , (47)

O =

(
Mg2 ∂

∂g2 − hlmn ∂

∂Clmn

)
, (48)

∆ = 2OO∗ + 2|M|2g2 ∂

∂g2 + C̃lmn
∂

∂Clmn
+ C̃lmn ∂

∂Clmn , (49)

where (γ1)
i
j = Oγi

j, Clmn = (Clmn)∗, and:
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C̃ijk = (m2)i
lCl jk + (m2)j

lCilk + (m2)k
lCijl . (50)

Assuming, following [83], that the relation:

hijk = −M(Cijk)′ ≡ −M
dCijk(g)

d ln g
, (51)

among couplings is all-loop RGI and using the all-loop gauge β-function of Novikov et al. [41–43]
given by:

βNSVZ
g =

g3

16π2

[
∑l T(Rl)(1− γl/2)− 3C(G)

1− g2C(G)/8π2

]
, (52)

the all-loop RGI sum rule [40] was found:

m2
i + m2

j + m2
k = |M|2{ 1

1− g2C(G)/(8π2)

d ln Cijk

d ln g
+

1
2

d2 ln Cijk

d(ln g)2 }

+ ∑
l

m2
l T(Rl)

C(G)− 8π2/g2
d ln Cijk

d ln g
.

(53)

In addition, the exact-β-function for m2 in the NSVZ scheme has been obtained [40] for the first
time and is given by:

βNSVZ
m2

i
=

[
|M|2{ 1

1− g2C(G)/(8π2)

d
d ln g

+
1
2

d2

d(ln g)2 }

+∑
l

m2
l T(Rl)

C(G)− 8π2/g2
d

d ln g

]
γNSVZ

i .
(54)

Surprisingly enough, the all-loop result (53) coincides with the superstring result for the finite
case in a certain class of orbifold models [39] if d ln Cijk/d ln g = 1.

All-Loop RGI Relations in the SSB Sector

Let us now see how the all-loop results on the SSB β-functions, Equations (45)–(50) lead to all-loop
RGI relations. We make two assumptions:

(a) the existence of an RGI surface on which C = C(g), or equivalently that:

dCijk

dg
=

β
ijk
C

βg
(55)

holds, i.e., the reduction of couplings is possible, and

(b) the existence of an RGI surface on which:

hijk = −M
dC(g)ijk

d ln g
(56)

holds, as well, in all orders.
Then, one can prove [88,89] that the following relations are RGI to all loops (note that in both

Assumptions (a) and (b) above, we do not rely on specific solutions of these equations):
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M = M0
βg

g
, (57)

hijk = −M0β
ijk
C , (58)

bij = −M0β
ij
µ , (59)

(m2)i
j =

1
2
|M0|2µ

dγi
j

dµ
(60)

where M0 is an arbitrary reference mass scale to be specified shortly. The assumption that:

Cα
∂

∂Cα
= C∗α

∂

∂Cα
(61)

for an RGI surface F(g, Cijk, C∗ijk) leads to:

d
dg

=
( ∂

∂g
+ 2

∂

∂C
dC
dg

)
=
( ∂

∂g
+ 2

βC
βg

∂

∂C

)
, (62)

where Equation (55) has been used. Now, let us consider the partial differential operator O in
Equation (48), which assuming Equation (51), becomes:

O =
1
2

M
d

d ln g
. (63)

In turn, βM given in Equation (45) becomes:

βM = M
d

d ln g
(

βg

g
) , (64)

which by integration provides us [88,90] with the generalized, i.e., including Yukawa couplings,
all-loop RGI Hisano–Shifman relation [82]:

M =
βg

g
M0 , (65)

where M0 is the integration constant and can be associated with the unification scale MU in GUTs or to
the gravitino mass m3/2 in a supergravity framework. Therefore, Equation (65) becomes the all-loop
RGE Equation (57). Note that βM using Equations (64) and (65) can be written as:

βM = M0
d
dt
(βg/g) . (66)

Similarly:

(γ1)
i

j = Oγi
j =

1
2

M0
dγi

j

dt
. (67)

Next, from Equations (51) and (65), we obtain:

hijk = −M0β
ijk
C , (68)

while β
ijk
h , given in Equation (46) and using Equation (67), becomes [88]:

β
ijk
h = M0

d
dt

β
ijk
C (69)
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which shows that Equation (68) is all-loop RGI. In a similar way, Equation (59) can be shown to be
all-loop RGI.

Finally, we would like to emphasize that under the same Assumptions (a) and (b), the sum rule
given in Equation (53) has been proven [40] to be all-loop RGI, which (using Equation (65)) gives us
a generalization of Equation (60) to be applied in considerations of non-universal soft scalar masses,
which are necessary in many cases. Moreover, the sum rule holds also in the more general cases,
discussed in Section 2, according to which exact relations among the squared scalar and gaugino
masses can be found.

5. A Successful Finite Unified Theory

We review an all-loop FUT with SU(5) as the gauge group, where the reduction of couplings
has been applied to the third generation of quarks and leptons. This FUT was selected previously
on the basis of agreement with the known experimental data at the time [45] and was predicting the
Higgs mass to be in the range 121–126 GeV almost five years before the discovery. The particle content
of the model we will study, which we denote SU(5)-FUT consists of the following supermultiplets:
three (5 + 10), needed for each of the three generations of quarks and leptons, four (5 + 5) and one 24
considered as Higgs supermultiplets. When the gauge group of the finite GUT is broken, the theory is
no longer finite, and we will assume that we are left with the MSSM [15,20–24].

A predictive GYU SU(5) model, which is finite to all orders, in addition to the requirements
mentioned already, should also have the following properties:

1. One-loop anomalous dimensions are diagonal, i.e., γ
(1) j
i ∝ δ

j
i .

2. Three fermion generations in the irreducible representations 5i, 10i (i = 1, 2, 3), which obviously
should not couple to the adjoint 24.

3. The two Higgs doublets of the MSSM should mostly be made out of a pair of Higgs quintet and
anti-quintet, which couple to the third generation.

After the reduction of couplings, the symmetry is enhanced, leading to the following
superpotential [39,91]:

W =
3

∑
i=1

[
1
2

gu
i 10i10i Hi + gd

i 10i5i Hi ] + gu
23 102103H4 (70)

+ gd
23 10253 H4 + gd

32 10352 H4 + g f
2 H2 24 H2 + g f

3 H3 24 H3 +
gλ

3
(24)3 .

The non-degenerate and isolated solutions to γ
(1)
i = 0 give us:

(gu
1 )

2 =
8
5

g2 , (gd
1)

2 =
6
5

g2 , (gu
2 )

2 = (gu
3 )

2 =
4
5

g2 , (71)

(gd
2)

2 = (gd
3)

2 =
3
5

g2 , (gu
23)

2 =
4
5

g2 , (gd
23)

2 = (gd
32)

2 =
3
5

g2 ,

(gλ)2 =
15
7

g2 , (g f
2 )

2 = (g f
3 )

2 =
1
2

g2 , (g f
1 )

2 = 0 , (g f
4 )

2 = 0 ,

and from the sum rule, we obtain:

m2
Hu

+ 2m2
10 = M2 , m2

Hd
− 2m2

10 = −M2

3
, m2

5 + 3m2
10 =

4M2

3
, (72)

i.e., in this case, we have only two free parameters m10 and M for the dimensionful sector.
As already mentioned, after the SU(5) gauge symmetry breaking, we assume we have the MSSM,

i.e., only two Higgs doublets. This can be achieved by introducing appropriate mass terms that allow
one to perform a rotation of the Higgs sector [20,24,92–94], in such a way that only one pair of Higgs
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doublets, coupled mostly to the third family, remains light and acquires vacuum expectation values.
To avoid fast proton decay the usual fine tuning to achieve doublet-triplet splitting is performed,
although the mechanism is not identical to minimal SU(5), since we have an extended Higgs sector.

Thus, after the gauge symmetry of the GUT theory is broken, we are left with the MSSM, with
the boundary conditions for the third family given by the finiteness conditions, while the other two
families are not restricted.

6. Phenomenological Constraints

In this section, we briefly review the relevant experimental constraints that we apply in our
phenomenological analysis.

6.1. Flavor Constraints

We consider four types of flavor constraints to apply to the SU(5)-FUT, where SUSY is known
to have significant impact. More specifically, we consider the flavor observables BR(b → sγ),
BR(Bs → µ+µ−), BR(Bu → τν) and ∆MBs .We do not use the latest experimental and theoretical
values here. However, this has a minor impact on the general form of our results. The uncertainties are
the linear combination of the experimental error and twice the theoretical uncertainty in the MSSM.
We include the MSSM uncertainty also in the ratios of exp. data and SM prediction, to apply it readily
to our prediction of the ratio of our MSSM and SM calculation. In the case that no specific estimate is
available, we use the SM uncertainty.

For the branching ratio BR(b → sγ), we take a value from the Heavy Flavor Averaging Group
(HFAG) [95–100]:

BR(b→ sγ)exp

BR(b→ sγ)SM = 1.089± 0.27 . (73)

For the branching ratio BR(Bs → µ+µ−), a combination of CMS and LHCb data [101–108] is used:

BR(Bs → µ+µ−) = (2.9± 1.4)× 10−9 . (74)

For the Bu decay to τν, we use the limit [100,109–111]:

BR(Bu → τν)exp

BR(Bu → τν)SM = 1.39± 0.69 , (75)

while for ∆MBs [112,113]:
∆Mexp

Bs

∆MSM
Bs

= 0.97± 0.2 (76)

At the end of the phenomenological discussion, we also comment on the Cold Dark Matter (CDM)
density. It is well known that the lightest neutralino, being the Lightest SUSY Particle (LSP), is an
excellent candidate for CDM [114,115]. Consequently, one can in principle demand that the lightest
neutralino is indeed the LSP, and parameters leading to a different LSP could be discarded.

The current bound, favored by a joint analysis of WMAP/Planck and other astrophysical and
cosmological data, is at the 2 σ level given by the range [116,117],

ΩCDMh2 = 0.1120± 0.0112 . (77)

6.2. The Light Higgs Boson Mass

The quartic couplings in the Higgs potential are given by the SM gauge couplings. As a
consequence, the lightest Higgs mass is not a free parameter, but rather predicted in terms of the
other parameters of the model. Higher order corrections are crucial for a precise prediction of Mh;
see [118–120] for reviews.
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The discovery of a Higgs boson at ATLAS and CMS in July 2012 [1,2] can be interpreted as the
discovery of the light CP-even Higgs boson of the MSSM Higgs spectrum [121–123]. The experimental
average for the (SM) Higgs boson mass is taken to be: [124]

Mexp
H = 125.1± 0.3 GeV , (78)

and adding in quadrature a 3 (2) GeV theory uncertainty [125–127] for the Higgs mass calculation in
the MSSM, we arrive at an allowing range of:

Mh = 125.1± 3.1 (2.1) GeV . (79)

We used the code FeynHiggs [125,127–133] (Version 2.14.0 beta) to predict the lightest Higgs
boson mass. The evaluation of the Higgs masses with FeynHiggs is based on the combination
of a Feynman-diagrammatic calculation and a resummation of the (sub)leading and logarithms
contributions of the (general) type of log (mt̃/mt) in all orders of perturbation theory. This combination
ensures a reliable evaluation of Mh also for large SUSY scales. Several refinements in the combination
of the fixed order log resummed calculation have been included w.r.t. previous versions; see [127].
They resulted not only in a more precise Mh evaluation for high SUSY mass scales, but in particular in
a downward shift of Mh at the level of O(2 GeV) for large SUSY masses.

7. Numerical Analysis

In this section, we will analyze the particle spectrum predicted in the SU(5)-FUT . Since the
gauge symmetry is spontaneously broken below MGUT, the finiteness conditions do not restrict the
renormalization properties at low energies, and all that remains are boundary conditions on the gauge
and Yukawa couplings (71), the h = −MC (41) relation and the soft scalar-mass sum rule at MGUT.

In Figure 1, we show the SU(5)-FUT predictions for mt and mb(MZ) as a function of the unified
gaugino mass M, for the two cases µ < 0 and µ > 0. We use the experimental value of the top
quark pole mass as [111]. We did not include the latest LHC/Tevatron combination, leading to
mexp

t = (173.34± 0.76) GeV [134], which would have a negligible impact on our analysis.

mexp
t = (173.2± 0.9) GeV . (80)

Figure 1. The bottom quark mass at the Z boson scale (left) and top quark pole mass (right) are shown
as a function of M for both signs of µ.

The bottom mass is calculated at MZ to avoid uncertainties that come from running down to the
pole mass; the leading SUSY radiative corrections to the bottom and tau masses have been taken into
account [135]. We use the following value for the bottom mass at MZ [111],

mb(MZ) = (2.83± 0.10) GeV. (81)
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The bounds on the mb(MZ) and the mt mass clearly single out µ < 0, as the solution most
compatible with these experimental constraints.

As was already mentioned, for the lightest Higgs boson mass, we used the code FeynHiggs
(2.14.0 beta). The prediction for Mh of SU(5)-FUT with µ < 0 is shown in Figure 2, in a range where
the unified gaugino mass varies from 0.5 TeV . M . 9 TeV. The green points include the B-physics
constraints. One should keep in mind that these predictions are subject to a theory uncertainty of
3 (2) GeV [125]. Older analysis, including in particular less refined evaluations of the light Higgs boson
mass, are given in [46,136,137].

Figure 2. The lightest Higgs mass, Mh, as a function of M for the Finite Unified Theory (FUT) model
with µ < 0. The green points are the ones that satisfy the B-physics constraints.

The allowed values of the Higgs mass put a limit on the allowed values of the SUSY masses,
as can be seen in Figure 3. In the left (right) plot, we impose Mh = 125.1± 3.1 (2.1) GeV as discussed
above. In particular, very heavy colored SUSY particles are favored (nearly independent of the Mh
uncertainty), in agreement with the non-observation of those particles at the LHC [138,139]. Overall,
the allowed colored SUSY masses would remain unobservable at the (HL-)LHC, the ILC or CLIC.
However, the colored spectrum would be accessible at the FCC-hh [140], as could the full heavy Higgs
boson spectrum. On the other hand, the Lightest Observable SUSY Particle (LSOP) is the scalar tau.
Some parts of the allowed spectrum of the lighter scalar tau or the lighter charginos/neutralinos might
be accessible at CLIC with

√
s = 3 TeV.

In Table 1, we show two example spectra of the SU(5)-FUT (with µ < 0) which span the mass
range of the parameter space that is in agreement with the B-physics observables and the Higgs-boson
mass measurement. We give the lightest and the heaviest spectrum for δMh = 2.1 and δMh = 3.1,
respectively. The four Higgs boson masses are denoted as Mh, MH , MA and MH± . mt̃1,2

, mt̃1,2
, mg̃ and

mτ̃1,2 , are the scalar top, scalar bottom, gluino and scalar tau masses, respectively. mχ̃±1,2
and mχ̃0

1,2,3,4
denote the chargino and neutralino masses.
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Figure 3. The (left,right) plots show the spectrum of the SU(5)-FUT (with µ < 0) model after imposing
the constraint Mh = 125.1± 3.1(2.1) GeV. The light (green) points are the various Higgs boson masses;
the dark (blue) points following are the two scalar top and bottom masses; the gray ones are the gluino
masses; then come the scalar tau masses in orange (light gray); the darker (red) points to the right are
the two chargino masses; followed by the lighter shaded (pink) points indicating the neutralino masses.

Table 1. Two example spectra of the SU(5)-FUT (with µ < 0) . All masses are in GeV and rounded to
1 (0.1) GeV (for the light Higgs mass).

δMh = 2.1 Mh MH MA MH± mt̃1
mt̃2

mb̃1
mb̃2

mg̃

lightest 123.1 1533 1528 1527 2800 3161 2745 3219 4077
heaviest 127.2 4765 4737 4726 10,328 11,569 10,243 11,808 15,268

mτ̃1 mτ̃2 mχ̃±1
mχ̃±2

mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

tan β

lightest 983 1163 1650 2414 900 1650 2410 2414 45
heaviest 4070 5141 6927 8237 3920 6927 8235 8237 46

δMh = 3.1 Mh MH MA MH± mt̃1
mt̃2

mb̃1
mb̃2

mg̃

lightest 122.8 1497 1491 1490 2795 3153 2747 3211 4070
heaviest 127.9 4147 4113 4103 10,734 12,049 11,077 12,296 16,046

mτ̃1 mτ̃2 mχ̃±1
mχ̃±2

mχ̃0
1

mχ̃0
2

mχ̃0
3

mχ̃0
4

tan β

lightest 1001 1172 1647 2399 899 647 2395 2399 44
heaviest 4039 6085 7300 8409 4136 7300 8406 8409 45

We find that no point of SU(5)-FUT (with µ < 0) fulfills the strict bound of Equation (77)
(for our evaluation, we have used the code MicroMegas [141–143]). Consequently, on a more general
basis, a mechanism is needed in our model to reduce the CDM abundance in the early universe.
This issue could, for instance, be related to another problem, that of neutrino masses. This type of
mass cannot be generated naturally within the class of Finite Unified Theories that we are considering
in this paper, although a non-zero value for neutrino masses has clearly been established [111].
However, the class of FUTs discussed here can, in principle, be easily extended by introducing bilinear
R-parity violating terms that preserve finiteness and introduce the desired neutrino masses [144,145].
R-parity violation [146–149] would have a small impact on the collider phenomenology presented
here (apart from the fact that SUSY search strategies could not rely on a ‘missing energy’ signature),
but remove the CDM bound of Equation (77) completely. The details of such a possibility in the
present framework attempting to provide the models with realistic neutrino masses will be discussed
elsewhere. Other mechanisms, not involving R-parity violation (and keeping the ‘missing energy’
signature), that could be invoked if the amount of CDM appears to be too large, concern the cosmology
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of the early universe. For instance, “thermal inflation” [150] or “late time entropy injection” [151] could
bring the CDM density into agreement with the WMAP measurements. This kind of modification of
the physics scenario neither concerns the theory basis nor the collider phenomenology, but could have
a strong impact on the CDM bounds (lower values than those permitted by Equation (77) are naturally
allowed if a particle other than the lightest neutralino constitutes CDM).

8. Conclusions

The MSSM is considered a very attractive candidate for describing physics beyond the SM.
However, the serious problem of the SM having too many free parameters is further proliferated in
the MSSM. Assuming a GUT beyond the scale of gauge coupling unification, based on the idea that a
Particle Physics Theoryshould be more symmetric at higher scales, seems to fit the MSSM. On the other
hand, the unification scenario seems to be unable to further reduce the number of free parameters.

Attempting to reduce the free parameters of a theory, a new approach was proposed in [18,19]
based on the possible existence of RGI relations among couplings. Although this approach could
uncover further symmetries, its application opens new horizons, as well. At least the Finite Unified
Theories seem to comprise a very promising field for applying the reduction approach. In the FUT
case, the discovery of RGI relations among couplings above the unification scale ensures at the same
time finiteness to all orders.

The discussion in the previous sections of this paper shows that the predictions of the particular
FUT discussed here are impressive. In addition, one could add some comments on a successful
FUT from the theoretical side, as well. The developments on treating the problem of divergencies
include string and non-commutative theories, as well as N = 4 SUSY theories [152,153], N = 8
supergravity [154–158] and the AdS/CFT correspondence [159]. It is very interesting that the N = 1
FUT discussed here includes many ideas that have survived phenomenological and theoretical tests,
as well as the ultraviolet divergence problem. It is actually solving that problem in a minimal way.

We concentrated our examination on the predictions of one particular SU(5) Finite Unified
Theory, including the restrictions of third generation quark masses and B-physics observables. The
model, SU(5)-FUT (with µ < 0), is consistent with all the phenomenological constraints. Compared
to our previous analyses [46,47,136,137], the improved evaluation of Mh prefers a heavier (Higgs)
spectrum and thus in general allows only a very heavy SUSY spectrum. The colored spectrum could
easily escapes the (HL-)LHC searches, but can likely be tested at the FCC-hh. The lower part of the
electroweak spectrum could be accessible at CLIC.
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