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Abstract: This study aimed to determine the reliability of the damage criteria that was adopted by
the peak particle velocity (PPV) method and the single degree of freedom (SDOF) approach to assess
the damage level of a box-shaped underground tunnel. An advanced arbitrary Lagrangian Eulerian
(ALE) technique available in LS-DYNA software was used to simulate a symmetrical underground
tunnel that was subjected to a surface detonation. The validation results of peak pressure into the
soil revealed a good consistency with the TM5-855-1 manual within differences that were much less
than previous numerical studies. The pressure contours revealed that the blast waves travelled into
the soil in a hemispherical shape and the peak reflected the pressure of the tunnel that occurred
immediately before the incident pressure reached its highest value. The assessment results proved
that the criteria of the above methods could efficiently predict the damage level of a box-shaped
tunnel under different circumstances of explosive charge weight and lining thickness at a depth of 4 m
within slight differences that were observed during van and small delivery truck (SDT) explosions.
However, the efficiency of both the methods was varied with the increase of burial depth. Whereas,
using the PPV method significantly underestimated or overestimated the damage level of the tunnel,
especially during SDT and container explosions with a lining thickness of 250 mm at burial depths of
6 and 8 m, respectively, the damage level that was obtained by the SDOF method greatly matched
with the observed failure modes of the tunnel. Furthermore, new boundary conditions and equations
were proposed for the damage criteria of the PVV method.

Keywords: box-shaped tunnel; blast load; ALE analysis; SDOF approach; damage levels

1. Introduction

In the last decades, the increase of terrorist attacks on underground tunnels, such as the bombings
of Moscow, London, and Belarus, has highlighted the horrible effects of these events. According to the
previous records, explosion attacks via a vehicle was the most used method by terrorists to achieve
these assaults due to their massive charge power, high success rate, and severe destruction [1,2].
The collapse of tunnels could cause a lot of losses in lives and considerable financial implications,
as well as a complete interruption of its transportation line. Hence, great measures are demanded to
protect these structures from terrorist attacks.
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Tunnel structures could be subjected to internal or external blasts. The new control and security
systems have been successfully used to monitor the internal blast inside a tunnel [3,4]. However,
external explosions, unfortunately, are the most likely to achieve their purpose due to the absence of
proper technology to detect these events before occurring [3,5,6]. In this research area, there are no
records available for a field trial due to the difficulties to acquire such a study in terms of cost and safety.
Nevertheless, a number of researchers [7–12] successfully implemented the centrifuge methods in order
to model the blast behaviour of underground structures with the circular cross-section. De et al. [9,10]
conducted several centrifuge trails to study the influence of surface detonation on the behaviour of a
cylindrical structure buried in dry sand. The centrifuge methods are limited to smaller models due to
the variation of the gravity field within the trail bucket, which could cause an inaccurate prediction of
the tunnel’s response [8].

Recently, the advanced numerical techniques were broadly used to analyse the behaviour of
underground tunnels that were exposed to internal or external explosions owing to its vital ability
to provide valuable data within a short time, lower cost, and secure environment. Several scholars
investigated the dynamic behaviour of underground tunnels exposed to an internal detonation,
such as [13–18]. Tiwari et al. [19,20] evaluated the behaviour of an underground tunnel with a circular
shape under the impact of an internal blast by using a coupled Eulerian-Lagrangian (CEL) solver
that was available in ABAQUS software [21]. The results proved that the tunnel safety significantly
improved at the thicker tunnel lining, whereas the displacement was decreased by 90% when the lining
thickness of 550 mm is used as compared with the thickness of 350 mm. Furthermore, the displacement
of the tunnel lining appeared to be in a close relationship with the explosive charge weight, whereas
the displacements during explosions of 25 and 50 kg TNT charge weight were less than 100 kg TNT by
58.4% and 3.3%, respectively.

On the other hand, several studies aimed to evaluate the dynamic behaviour of underground
tunnels exposed to a surface detonation. Most of these studies were concerned about the dynamic
response of underground tunnels with circular shapes. Luo et al. [22] subjected a surface TNT charge
weight ranging between 100 and 300 kg on a circular underground tunnel that was placed in a sandy
soil. The outcomes revealed that the tunnel was safe during the explosion of 100 kg TNT charge weight
at a burial depth of 1.5 m. Yang et al. [23] used an arbitrary Lagrangian-Eulerian (ALE) technique
available in LS-Dyna software [24] to assess the behaviour of a quarter symmetrical circularly-shaped
underground tunnel located inside a sandy loam soil. The damage evaluation results via the values
of effective stress showed that the tunnel with 350 mm lining thickness was safe at depths of more
than 7 m within explosion magnitudes that were less than 500 kg of TNT. Koneshwaran [3,4] proved
that the ALE technique is more suitable to determine the dynamic behaviour of a quarter symmetrical
circularly-shaped underground tunnel within a higher accuracy as compared with the smooth particle
hydrodynamics (SPH) approach. The tunnel was located in a sandy soil and modelled by using
Material 84 (Winifith Concrete) available in LS-Dyna software [24]. The tunnel safety was evaluated
via the crack width property that was provided by the Winifith material model. The results proved that
the tunnel was safe when it was placed at depths of 6.35 and 9.52 m under exploded charge weights
less than 625 and 1125 kg, respectively.

In the literature review, limited numerical studies were performed to assess the behaviour of
box-shaped underground tunnels that were exposed to a surface explosion. Mobaraki and Vaghefi [25]
analysed the effects of buried depth on the safety of a symmetrical box-shaped tunnel exposed
to a detonation of a 1000 kg TNT charge weight via using the ALE method available in LS-Dyna
software [24]. The tunnel was placed into a sandy soil and its behaviour was assessed according to
the tunnel peak particle velocity (PPV) criterion. The results revealed that the underground tunnel
with roof and wall thicknesses of 700 and 800 mm, respectively, was damaged at distances ranging
between 0 and 2 m from the explosion centre, whereas it was safe at depths of between 2 and 25 m.
Mussa et al. [26] used the ALE method to simulate the symmetrical underground box-shaped tunnel
under the effects of lining thickness, burial depth, and explosive charge weight. The liner of the tunnel
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was modelled using Material 3 (MAT_Plastic_Kinematic) without considering the strain rate sensitivity
of the concrete and the reinforcement under blast loads. The damage assessment was performed via the
single degree of freedom approach (SDOF) that was proposed by Fallah and Louca [27], which mainly
depends on the lateral displacement of structural members, and the results proved that the tunnel
with 500 mm lining thickness was collapsed at a burial depth of 4 m during the surface explosion of a
container truck.

According to the previous studies, the behaviour of the box-shaped underground tunnel is still
not well understood. Thus, the present study was conducted in order to determine the behaviour of
this tunnel’s type under the effect of a surface explosion by using an advanced ALE method available
in LS-Dyna. The main objective of the study is to compare between the prior methods that were used
to assess the damage levels of a box-shaped underground tunnel.

1.1. Blast Damage Assessment Methods of a Box-Shaped Tunnel

In general, it is difficult to obtain acceptable damage criteria of underground tunnels due to the
effects of several factors, such as the blast intensity, tunnel stiffness, and soil properties. The previous
studies adopted two methods to assess the damage level of box-shaped underground tunnels by using
the peak particle velocity (PPV) [25] and single degree of freedom (SDOF) approaches [26]. During 1948
to 1952, massive scale detonation tests were performed by US Army Corps of Engineers close to unlined
tunnels in a sandy soil [28]. According to these tests, the damage criteria of the underground tunnel were
categorized into four levels according to the peak particle velocity (PPV) values, as shown in Table 1.
Kendorski et al. [29] reported that the cracks in the shotcrete lining of underground tunnels occurred
when the PPV exceeds approximately 1.22 m/s. Nevertheless, Nakano et al. [30] stated that the shotcrete
cracking produced by an adjacent tunnel explosion occurred when the PPV reached 0.7 m/s.

Table 1. Damage criteria of the peak particle velocity (PVV) method.

Damage Level Peak Particle Velocity (m/s)

Safe 0–0.9
Intermittent failure (IF) 0.9–1.8

Local failure (LF) 4
General failure (GF) 12
Tight Closure (TC) NA

On the other hand, Fallan and Louca [27] simplified the structure to an equivalent elastic-perfect
plastic SDOF model. This model defined the damage levels according to the maximum deflection
of structure (yc). Thus, various damage levels were suggested corresponding to the value of yc,
which is set to be the mid-height lateral displacement of the structural member to reduce uncertainties
in predicting the critical deflections, as shown in Table 2. This damage criterion was used by
Mussa et al. [26] in order to assess the damage level of a box-shaped tunnel.

Table 2. Damage criteria of the single degree of freedom approach (SDOF) method.

Damage Level Lateral Displacement (mm)

Safe yc < 20
Medium damage (MD) 20 < yc < 40

High damage (HD) 40 < yc < 80
Collapse (C) yc > 80
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2. Numerical Modelling

2.1. Geometry Details and Meshing

A box-shaped railway underground tunnel with 500 mm lining thickness for the roof and wall
constructed in Spain at a depth of 4 m with a height of 7.5 m and width of 10 m was modelled [31].
A quarter of the field with dimensions of (25 × 25 × 30) m was modelled, according to the Alekseenko
test, owing to the symmetry of the YZ and YX planes [32]. However, at dimensions of (10 × 10 × 22.5)
m, a comparable behaviour as the Alekseenko test field appeared, and, consequently, these dimensions
were used in the current research to decrease the computational cost and time, as described in Figure 1.
The tunnel was placed into sandy soil that was directly beneath the explosion centre, which is considered
as the most critical position according to [23,26]. The soil, air, and tunnel parts were modelled by
using a solid (164) element, which is considered as the most widely used element in explicit analyses,
and which could be only defined by using eight nodes [33]. The blast load was defined by using the
(Initial_Volume_Fraction_Geometry) available in LS-Dyna as a spherical shape by specifying its radius
and detonation point [24]. The surface detonation occurred by using a container truck carrying a 4536 kg
TNT charge weight, which is considered as the most critical condition, as stated by [26].
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2.2. Material Model

2.2.1. Air

The air was modelled by using material 9 (MAT_Null), which required defining the linear
polynomial equation of state (EOS) [24]. The pressure was calculated by using the following
equation [34,35]:

P = C0 + C1µ+ C2µ
2 + C3µ

3 + (C4 + C5µ+ C6 µ
2)E0 (1)

µ =
ρ

ρ0
− 1 (2)

where ρ/ρ0 is the ratio of current mass density, C0, C1, C2, C3, C4, C5, and C6 are constants, and E0 is
represented the initial internal energy per unit volume. The adopted EOS symbolizes an ideal gas that
was dominated by a gamma law, whereas the constants (C0, C1, C2, C3, and C6) are equal to 0 and (C4,
and C5) are equal to γ − 1. Accordingly, the equation of pressure can be rewritten, as follows:

P = (1 − γ) ρ
ρ0

E0 (3)

where γ is an adiabatic constant, which usually taken as 1.4 for the ideal gas. Table 3 shows the main
parameters of the air utilized in the current research [23].

Table 3. Parameters of the air.

C0 C1 C2 C3 C4 C5 C6 ρ (kg/m3) E0 (MPa) V0

0 0 0 0 0.4 0.4 0 1.29 0.25 1

2.2.2. Tunnel

Material 16 (MAT_Pseudo_Tensor) was utilized to model the tunnel structure. It is suited to
simulate the underground reinforced concrete structures that were subjected to blast loadings [24].
An automatic internal generation of a simple “generic” model for concrete can be achieved by
inserting a negative value for A0 equal to −145, so that a trilinear equation of state (EOS) Type
8 will be automatically created from the unconfined compressive strength (fc) and the Poisson ratio (Pr).
The maximum principal stress for failure (SIGF) [24] is assumed to be the fc and is equal to 61.18 MPa.
A smeared modelling option available in Material 16 was used to simulate the rebar due to a large
number of model elements, as well as its ability to deliver reasonable results within lower cost and
time than that needed by discrete models [36]. Strain rate sensitivity was defined for the concrete and
rebar by using dynamic increase factor (DIF) curves, as shown in Figure 2. The DIF curve was obtained
during a laboratory test conducted in UKM University on concrete with a compressive strength of
61.18 MPa via the split Hopkinson pressure bar (SHPB) impact test within a strain rate range of up to
103.87 s–1 [37]. For steel, the DIF of grade 60 rebar was determined by using Malvar‘s equation [38].
Table 4 shows the tunnel parameters, where SIGF is the unconfined concrete compressive strength (fc),
Pr is the Poisson ratio of concrete, Er is the elastic modulus of steel, PEr is the reinforcement percentage,
PRr is the Poisson ratio of steel, and SIGY is the steel yield stress (fy).

Table 4. Parameters of the tunnel.

ρ (kg/m3) fc (MPa) Pr Er (MPa) PEr (%) PRr fy (MPa)

2430 61.18 0.19 200,000 0.45 0.3 500
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Figure 2. Full range of dynamic increase factor (DIF) at different strain rates for (a) concrete, and
(b) steel.

2.2.3. Soil

Material 5 (MAT_Soil_and_Foam) was used to model the sandy loam soil [39]. It is a simple
model that works as a fluid and had been verified to be appropriate in the modelling of the soil [32].
Foster et al. [40] described the soil properties, and these properties were assessed by the National Soil
Dynamics and Auburn University (NSDL-AU) from the soil compaction model components [41,42].
Tables 5 and 6 show the adopted soil parameters of the present study [43], where G represented the
shear modulus of the soil, Ku is the bulk modulus at the unloading path, a0, a1, and a2 are the constants
of the yield function, and Pcut is the pressure cut-off of the tensile fracture [24,44].

Table 5. Parameters of the soil.

ρ (kg/m3) G (MPa) Ku (MPa) a0 a1 a2 Pcut (MPa)

1255 1.7240 5.5160 0 0 0.8702 0

Table 6. Triaxial hydrostatic compression records of the sandy soil.

True Volumetric Strain 0.05 0.1 0.15 0.2 0.25 0.3 0.33
Pressure (MPa) 0.02 0.05 0.07 0.12 0.2 0.34 0.5

2.2.4. TNT

Material 8 (MAT_High_Explosive_Burn) was used to model the TNT charge weight that was
carried by a container truck [45]. This model has been broadly utilized in the engineering calculations
due to its flexibility in calibration. The equation of state (EOS) proposed by Jones–Wilkens–Lee (JWL)
was used to define the pressure released by the chemical energy throughout the blast, as follows [46,47]:

P = A
(

1 − ω

R1V

)
e−R1V + B

(
1 − ω

R2V

)
e−R2V +

ωE0

V
(4)

where A, B, R1, R2, ω are constants, and V is indicated to the relative volume of the explosive
material [24]. Table 7 shows the adopted parameters of the TNT charge [33].

Table 7. Parameters of the TNT charge.

ρ (kg/m3) υD (m/s) Pcut (MPa) A (MPa) B (MPa) R1 R2 ω V0 E0 (MPa)

1630 6930 2.1 × 104 3.738 × 105 3.747 × 103 4.15 0.9 0.35 1 6000
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2.3. Boundary Condition

A non-reflection boundary condition was used to the infinity domain to reduce the stress wave
reflection. On the other hand, the motion of the nodes normal to the symmetry planes XZ and YZ
were fixed. The upper surface was free, while the base was assumed as a rock bed and was fixed in all
directions, as shown in Figure 3 [3].
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2.4. Arbitrary Lagrangian Eulerian (ALE) Solver

The ALE solver is a technique which capable to gather the main advantages of Eulerian and
pure Lagrangian solvers. Its nodes are characterised by a unique movement during the analysis,
whereas the nodes are able to travel in a pattern combined between Lagrangian and Euler formulations
in order to provide the capability of continuous rezoning [25]. This solver can efficiently handle
problems with great mesh deformations with superior resolution than other methods. Fluid-structure
interfaces (FSI) are broadly used in the ALE solver in order to provide a coupling algorithm
between a fluid and structure, which fulfils with the conservation equations of mass, energy, and
momentum [48]. Therefore, this feature was used to simulate the present numerical model by
considering the air, soil, and TNT as Eulerian meshes, which act as a fluid and remain fixed in
space, while the tunnel structure acts as a pure Lagrangian mesh that can move with the material.
An ALE multi-material group was used to simulate the mixture of various materials in each adopted
mesh [49]. Constrained_Lagrange_In_Solid was used to achieve the coupling algorithm between
Lagrangian and Eulerian meshes [24].

3. Results and Discussions

3.1. Validation of Numerical Models

3.1.1. Peak Pressure of Blast Waves into the Soil

Initially, the numerical model was created without the tunnel structure in order to monitor the
transmission of blast shock waves into the soil during the explosion of a container truck. A convergence
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study was conducted via using meshes with element sizes of 125, 250, 375, and 500 mm. The outcomes
of this study were compared with the results of the empirical equation that was provided by technical
manual (TM5-855-1) to estimate the peak pressure values inside soil during a blast surface explosion,
as follows [50]:

PP = 0.407fρc(
R

w
1
3
)
−n

(5)

where Pp is the peak pressure of blast wave into the soil (MPa); f is the coupling factor, which equals
to 0.14 for the surface blast in air; n and ρc are the attenuation and acoustic impedance coefficients
of the sandy loam soil, which are equal 2.75 and 4.972, respectively, as described in TM5-855-1 [50];
R is the distance to the explosion centre in m; and, W is the weight of the explosive charge in kg.
A similar approach was used by several scholars to validate the propagation of explosion waves into
the soil [3,23,25,26,51].

The results of convergence study demonstrated that the element sizes of 125 and 250 mm are the
most suitable to predict the blast waves pressure inside soil, as shown in Figure 4. The total number
of the numerical model elements with mesh sizes of 125 and 250 mm was 144,000 and 1,152,000,
respectively. Consequently, a very high computational time of up to 49.25 h was needed to analyse
the numerical model with a mesh size of 125 mm, as compared with a mesh size of 250 mm, which
needed 6.32 h. Therefore, the element size of 250 mm is considered the most favoured size to simulate
the numerical models of the current study.
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Table 8 proves that the numerical model was efficiently able to estimate the values of peak
pressure at depths of 1 to 7 m within a difference range of 1.01 to 18.70%. Nevertheless, the differences
had significantly increased at depths 8 to 10 m, and recorded a difference range of 40.48 to 60%,
since the location of the charge weight at the same ground level resulted in a greater dissipation
of explosive energy into the air [32]. This model is considered as an improved version of the
previous model proposed in our prior study [26], whereas the differences in peak pressures were
significantly reduced from 14.93, 70.11, and 90.11% to 1.01, 16.92, and 40.48% at depths of 4, 6,
and 8 m, respectively. This reduction is attributed to include the radial velocity factor in the (Initial
_Volume_Fraction_Geometry) option which considerably affects the prorogation of blast waves into
the soil [24]. Additionally, the initial mesh remapping factor must equal 0.2 when the ALE reference
system type is chosen as the mesh smoothing option for shock waves, whereas the element grid can be
contracted in the vicinity of the blast shock front [52].
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Table 8. Comparison of TM5 and numerical peak pressures at different depths into soil during a
container truck explosion.

Depth (m) Peak Pressure (MPa)
Differences (%)

TM5 Numerical Results

1 178.78 183.6 2.70
2 26.58 31.55 18.70
3 8.71 7.78 11.95
4 3.95 3.99 1.01
5 2.14 2.52 17.76
6 1.30 1.52 16.92
7 0.85 0.93 9.41
8 0.59 0.42 40.48
9 0.42 0.27 55.55

10 0.32 0.20 60

A similar trend of differences was observed by other scholars with the increase of soil depth during
the numerical analysis for the quarter symmetrical models of soil, air, and TNT, as shown in Table 9 [23,25].
Yang et al. [23] reported high differences in the pressure as compared with TM5 even at a depth of 4 m
during the explosion of 250 kg TNT charge. On the other hand, Mobaraki and Vaghefi [25] observed
a good consistency with the TM5 at depths of 4 and 6 m during a detonation of a similar amount of
explosive charge weight, however, the variances were highly increased at a burial depth of 8 m.

Table 9. Differences percentage between TM5 and numerical results of previous studies.

Depth (m) Yang et al. [23] (%) Mobaraki and Vaghefi [25] (%)

4 229 3.011
6 - 42.386
7 276 -
8 - 281.423

10 260 -

Figure 5 appears the behaviour of the blast waves into the soil in term of pressure at different
depths under the explosion centre of a container truck. It is proved that the distance and time from the
blast centre could considerably decrease the pressure of blast waves by 853.83% at a burial depth of
8 m as compared to 4 m due to the dissipation of the blast waves into the sandy loam soil [53].
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3.1.2. Validation of Tunnel Dynamic Response

As mentioned previously, there are no available databases on full-scale field experiments to
determine the behaviour of underground tunnels under the effect of a surface blast. Therefore,
a convergence study was conducted to ensure the accuracy of tunnel behaviour. The study mainly
depends on the results of the verification and the convergence test of the blast wave’s propagation
inside soil, as described in Section 3.1.1, above in order to avoid the contact and node-to-node problems.
The results of the convergence study conducted during the validation of the blast wave’s propagation
into sandy soil revealed that the element size of 250 mm could give an accurate solution to the problem
in a shorter time as compared with a mesh of 125 mm. However, the element size of 250 mm may
cause overestimation for the dynamic response of the underground tunnel in some cases, like the
tunnel of 250 mm lining thickness. Therefore, the convergence study was performed to validate the
tunnel behaviour by using element meshes with 125 and 250 mm, as shown in Figure 6.
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The outcomes revealed that the mesh size of 250 mm could efficiently estimate the dynamic
response of the tunnel as in cases of lining thicknesses of 250 and 500 mm within differences less than
2.17 and 2.96% in terms of displacement, as well as, 8.22 and 7.32% in terms of velocity, respectively,
as compared with a mesh size of 125 mm, as shown in Figure 7. Therefore, the mesh size of 250 mm
was used to simulate the models of the present study to reduce the computational time, except the
tunnel with 250 mm lining thickness, which was modelled by a mesh size of 125 mm to accurately
represent the response of the tunnel, particularly in terms of failure. The prior studies proved that
element sizes of 250 and 500 mm were capable of precise analysis of the three-dimensional model of
the tunnel under a surface blast loading [23,25].
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3.2. Propagation of Blast Wave

3.2.1. Soil

The values of peak pressure into the soil were almost identical and its contours determined
at different interval times of 12, 32, 62, and 124 ms before and after inserting the tunnel structure.
The chosen time intervals corresponded to the values of peak incident pressure into the soil at depths
of 4, 6, 8, and 10 m, respectively. The pressure response at a depth of 4 m was started at 7 ms and
its maximum value was 3.98 MPa, which was recorded after 12 ms. Obviously, the main difference
between the two cases is the affected region in the soil. The existence of the tunnel structure in the
soil prevents the blast-induced waves from migrating to a deeper soil layer by reflecting the incident
pressure. In addition, the results of pressure contours revealed that the explosion waves were travelled
into the sandy soil in a hemispherical shape before and after inserting the tunnel structure, as shown in
Figure 8. Its area was considerably increased with the wave propagation and results in a crater, which
obviously matches the remarked phenomenon during the blast of the Ryongchon railway station in
North Korea [23].
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3.2.2. Tunnel

Figure 9 shows the reflected pressure contours of the underground tunnel at different time
intervals, ranging from 9 to 500 ms. This revealed that the maximum pressure at a depth of 4 m was
4.87 MPa recorded after 9 ms, which means that the reflected pressure occurred immediately before
the incident pressure reached its highest value. In other words, the total energy of the blast wave was
transferred from the soil to the tunnel lining. A gradual decrease in the reflected pressure value was
observed with the increase of the time interval until it became almost constant after 500 ms.
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3.3. Damage Assessment Results

The damage assessment was carried out for the tunnel roof centre due to this area being the most
critical and destroyed, and which recorded the highest values of velocity and lateral displacement.
A similar observation was determined by other researchers [23,25,26].

3.3.1. PPV Method

The damage levels that were proposed by Hendron [28] in Table 1 of Section 1.1, based on the PPV
of the roof centre, were used to assess the behaviour of a box-shaped tunnel, as shown in Figure 10.
Two tunnel cases were examined with a thickness of 250 mm and 500 mm at depths of 4 m and 6 m.
The results indicated that the tunnels were greatly damaged at a depth of 4 m. A general failure
level occurred at 250 mm lining thickness, while a local failure was noted at 500 mm lining thickness
under the container truck detonation. On the other hand, an intermittent failure was observed for
both thicknesses at a burial depth of 8 m. This assessment method was utilized by Mobaraki and
Vaghefi [25], and reported that the tunnel with a roof thickness of 700 mm was safe at burial depths of
more than 2 m. The results clearly revealed that the tunnel roof centre had faced intense blast waves at
a burial depth of 4 m, which has a higher vertical velocity by 244.15% as compared with the shock wave
velocity at a depth of 6 m. This behaviour may clearly reflect the great effect of soil depth on the tunnel
safety, which works as a protective layer to dissipate the energy of blast waves. In addition, significant
attention should be paid regarding choosing the soil that has the highest damping ratio in order to
increase the resistance of the tunnel against an incredible surface explosion, such as a container.
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3.3.2. SDOF Method

In this study, the tunnel was simplified to an equivalent elastic-perfect SDOF model, according to
Fallan and Louca [27]. This model defined the damage criterion based on the maximum displacement
(yc) of the mid-height structural member, as shown in Table 2 above. Accordingly, yc was set to be
the maximum numerical displacement of the tunnel, which occurred at the roof centre. The results
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revealed that the tunnel roof centre with 250 mm lining thickness collapsed at burial depths of 4 and
6 m. On the other hand, the lining thickness of 500 mm showed a considerable decrease in the lateral
displacement. Nevertheless, the roof centre has recorded a high damage level at the burial depth of
4 m due to the high intensity of blast waves.

With the increase of burial depth, the lining thickness of 500 mm was able to resist a container
explosion at burial depth of 6 m within a low damage level boundary condition. Once again, the burial
depth of the tunnel was capable of reducing the lateral displacement of roof centre from 352.18 and
56.02 mm to 122.29 and 10.32 mm for lining thicknesses of 250 and 500 mm, respectively, as shown in
Figure 11. Similar effect of burial depth on the tunnel safety was observed by several scholars [23,26].
Mussa et al. [26] revealed that the box-shaped tunnels with lining thicknesses of 250 and 500 mm
collapsed at burial depths of 4 and 6 m, respectively. This observation may be attributed to the material
model that was used in the study that neglected the strain rate sensitivity of concrete and rebar.
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4. Comparison between Damage Assessment Methods

Based on the above results, it can be observed that the two assessment methods were efficiently
capable to evaluate the behaviour of a box-shaped underground tunnel with some differences, which
was particularly observed with the increase of burial depth. Therefore, a wide comparison was
conducted to ensure the reliability of these methods. The effects of lining thickness, explosive charge
weight, and burial depth on the tunnel velocity and displacement values were included in this
comparison, as described in Table 10. The selected charge weights were a sedan, van, small delivery
truck (SDT), and container, which were able to carry 227, 454, 1814, and 4536 kg of TNT charge weight,
respectively. A lining thickness of 750 mm and burial depth of 8 m were also examined to provide an
extensive reference to the feasibility of these assessment methods.
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Table 10. Velocity and displacement values of a tunnel roof centre at different explosive charge weights,
lining thicknesses, and burial depths.

Depth
(m)

Thickness
(mm)

Velocity (mm/ms) Displacement (mm)

Sedan Van SDT Container Sedan Van SDT Container

4
250 0.050 0.333 1.522 5.634 12.788 29.27 69.928 352.18
500 0.068 0.250 1.105 3.205 0.513 1.927 7.867 56.016
750 0.053 0.265 0.955 3.010 0.433 1.657 6.311 27.540

6
250 0.012 0.046 0.263 1.688 6.459 18.124 32.365 122.290
500 0.047 0.208 0.208 0.931 0.177 1.674 1.674 10.320
750 0.021 0.067 0.232 1.081 0.153 0.487 1.440 7.862

8
250 0.003 0.016 0.058 0.433 4.222 10.963 22.154 58.725
500 0.035 0.046 0.083 0.552 0.092 0.268 0.713 3.028
750 0.028 0.059 0.059 0.500 0.079 0.617 0.617 2.624

The results proved that the velocity and the lateral displacement values of the tunnel roof centre
gradually increased by boosting the explosive charge weight magnitude due to the high intensity
of the shock waves. On the other hand, a gradual reduction in the velocity and displacement was
observed with the increase of the burial depth and lining thickness, owing to the high reflection ability
of the thick tunnel lining and the dissipation of blast waves at large depths. The specifications that
are mentioned in Section 1.1 were used to assess the damage behaviour of the tunnel under different
circumstances, as shown in Table 11. The results indicated that the PPV and SDOF methods could
be used efficiently to estimate the damage behaviour of a box-shaped tunnel at a shallow depth of
4 m, particularly during a container explosion. However, some differences were observed during van
and SDT explosions, whereas the SDOF method recorded a medium failure level for the tunnel with
lining thickness of 250 mm under a van explosion, while it was safe according to the PPV method.
On the other hand, the SDOF stated that the tunnel with lining thicknesses of 500 and 750 mm were
safe during a SDT, while it intermittently failed according to the PPV method.

Table 11. Damage level of the tunnel based on the criteria of the PPV and SDOF methods.

Depth
(m)

Thickness
(mm)

PPV Method SDOF Method

Sedan Van SDT Container Sedan Van SDT Container

4
250 Safe Safe IF GF Safe MD HD C
500 Safe Safe IF LF Safe Safe Safe HD
750 Safe Safe IF LF Safe Safe Safe MD

6
250 Safe Safe Safe IF Safe Safe MD C
500 Safe Safe Safe IF Safe Safe Safe Safe
750 Safe Safe Safe IF Safe Safe Safe Safe

8
250 Safe Safe Safe Safe Safe Safe MD HD
500 Safe Safe Safe Safe Safe Safe Safe Safe
750 Safe Safe Safe Safe Safe Safe Safe Safe

The clear differences between the two methods were observed with the increase of the burial
depth. Using the PPV method significantly underestimated or overestimated the damage level of the
tunnel, especially during a SDT and container explosion. It recorded intermittent failure and safe
levels for the tunnel with 250 mm lining thickness throughout a container explosion at burial depths of
6 m and 8 m, respectively. However, the observed failure mode of the tunnel clearly indicated that the
tunnel was incredibly damaged at these depths during a container explosion, as shown in Figure 12.
Moreover, no damage remarks were observed for the tunnel with lining thicknesses of 500 and 750 mm
at depths of 6 and 8 m, while it intermittently failed, according to the PPV assessment. In contrast,
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the failure levels of the tunnel with a lining thickness of 250 mm clearly agreed with the damage levels
recorded by the SDOF method, which stated that the tunnel had collapsed and was severely damaged
at burial depths of 6 and 8 m, respectively, during a container explosion. Additionally, the tunnel was
safe when the lining thicknesses of 500 and 750 mm were utilized at these depths. Therefore, the SDOF
method could be considered to be more reliable to assess the damage level of a box-shaped tunnel and
can be broadly used to ensure the safe design of these structures against a massive surface explosion.
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lining thickness of (a) 250 mm, (b) 500 mm.

Proposed Damage Criteria and Equation of the PVV Method

New boundary conditions were proposed for the damage levels of the PVV method based on the
values of peak particle velocity corresponding to the lateral displacement of the tunnel, as shown in
Table 10 above. The boundary conditions were suggested for each studied lining thickness of 250, 500,
and 750 mm, as described in Table 12.

Table 12. Proposed damage criteria of the PVV method at different lining thickness.

Lining Thickness
(mm) Safe Intermittent

Failure (IF)
Local Failure

(LF)
General Failure

(GF)

250 >0.058 >0.433 >1.688 ≤1.688
500 >1.105 >3.205 ≤3.205 NA
750 >3.010 ≤3.010 NA NA

It can be noted that the lining thickness played an effective role in defining the damage levels of a
box-shaped tunnel under a blast load by using the PPV method. The proposed boundary conditions
indicated that the tunnel with a lining thicknesses of 500 and 750 mm capable to resist a peak particle
velocity reach up to 1.105 mm/ms, while it was less than 0.058 mm/ms in the case of a lining thickness
of 250 mm, which might clearly reflect the weakness of this liner. Additionally, the general failure
(GF) of the tunnel was only observed in the case of a lining thickness of 250 mm, whereas, it did
not appear at higher lining thicknesses because of the high ability to reflect and dissipate the blast
waves. The assessment of tunnel damage behaviour, according to the proposed damage criteria, agreed
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considerably with the results of the SDOF method, as mentioned in Section 3.3.2 above, and as shown
in Table 13. Therefore, the new criteria could significantly enhance the design accuracy of underground
box-shaped tunnel structures under a massive surface explosion.

Table 13. Damage level of tunnel based on the proposed criteria of the PPV method.

Depth (m) Thickness
(mm)

Damage Level

Sedan Van SDT Container

4
250 Safe IF LF GF
500 Safe Safe Safe LF
750 Safe Safe Safe IF

6
250 Safe Safe IF GF
500 Safe Safe Safe Safe
750 Safe Safe Safe Safe

8
250 Safe Safe IF LF
500 Safe Safe Safe Safe
750 Safe Safe Safe Safe

Based on the new boundary condition an equation was proposed to determine the relationship
between PPV and burial depth, lining thickness, and charge weight by using the response surface
methodology (RSM), which is available in the Design Expert software (version 11) [54]. The quadratic
model was the most appropriate to analyse the data and to determine the relationship as follows:

PPV = 0.877890 − 0.377653 D + 0.000487 T + 0.001727 W + 0.000440 × D × T
− 0.000156 × D × W − 1.66866 × 10-6 × T × W + 0.019156 D2 − 6.48000 × 10−7 × T2

+ 1.00580 × 10−7 × W2
(6)

where D is the burial depth between 4 and 8 m, T is the lining thickness between 250 and 750 mm, and
W is the charge weight between 227 and 4536 kg.

The variance analysis (ANOVA) was utilized to assess the precision of the adopted model,
as shown in Table 14. It is indicated that the model can be successfully used to estimate the values
of PPV at different burial depths, lining thicknesses, and charge weights. The quality of the model
was determined according to the value of the correlation coefficient (R2), which is recommended to be
close to 1, with a minimum value of 0.8 [55,56]. Furthermore, the variances between the Predicted and
Adjusted (R2) have to be less than 0.2 and the adequate precision (AP) greater than 4 to achieve a clear
signal of the model [57].

Table 14. The results of the variance analysis (ANOVA) analysis for the PPV model.

Model R2 Adjusted R2 Predicted R2 Adequate Precision (AP)

Quadratic 0.8213 0.7595 0.5998 16.2171

5. Conclusions

The results can be summarized, as follows:

• The numerical validation results revealed a good consistency with technical manual (TM5-855-1)
at depths between 1 and 7 m within differences ranging from 1.01–18.70%. However, the results
diverged at large depths of more than 8 m with differences ranging between 40.48 and 60%.

• The pressure contours proved that the blast waves travelled inside the soil in a hemispherical
shape before and after inserting the tunnel structure, which considerably reduced the values of
incident pressure by obstructing the propagation of blast waves to large depths.
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• The pressure contours of the tunnel revealed that the peak reflected pressure that occurred
immediately before the incident pressure reached its highest value, which means that the total
energy of the blast waves transferred from the soil to the tunnel lining.

• Using of SDOF method to assess the damage levels of a box-shaped tunnel was more reliable and
harmonic with the tunnel failure modes as compared with the PPV method at the studied cases of
lining thickness, burial depth, and explosive charge weight.

• The assessment of tunnel damage based on the proposed damage criteria and the equation of the
PVV method matched considerably with the results of the SDOF method. Hence, these criteria
might be broadly adopted by engineers to ensure an accurate design of underground box-shaped
tunnel structures exposed to massive surface explosions.
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