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Abstract: The utilizations of graph theory in chemistry and in the study of molecule structures are
more than someone’s expectations, and, lately, it has increased exponentially. In molecular graphs,
atoms are denoted by vertices and bonds by edges. In this paper, we focus on the molecular graph of
(2D) silicon-carbon Si2C3-I and Si2C3-I I. Moreover, we have computed topological indices, namely
general Randić Zagreb types indices, geometric arithmetic index, atom–bond connectivity index,
fourth atom–bond connectivity and fifth geometric arithmetic index of Si2C3-I and Si2C3-I I.

Keywords: (2D) silicon-carbon Si2C3-I and Si2C3-I I; atom–bond connectivity index; Zagreb types
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1. Introduction

Every structural formula that includes covalent bonded compounds or molecules are graphs.
Along these lines, they are called molecular graphs. Recently, chemical graph theory tools are used for
numeration, systematization of the problem in hand, it provides the process of arranging laws or rules
according to a system or planning, nomenclature, it provides the connection between the compounds
or atoms, and computer programming. The significance of graph theory tools for science stands for
the most part from the presence of isomerism, which is excused by substance diagram hypothesis.
The pith of chemistry is the combinatorics of molecules as per clear principles. Along these lines,
the most satisfactory numerical apparatuses for this design are graph hypothesis and combinatorics,
the branches of arithmetic that are nearly related.

Silicon has numerous preferences over other semiconductor materials: It is, of minimal effort, it is
nontoxic, essentially its accessibility is boundless, and behind it many years of involvement in purging,
development and gadget creation. It is utilized for all cutting edge electronic gadgets.

The most reliable structures of two-dimensional (2D) silicon-carbon monolayer mixes with
different stoichiometric blends were expected in [1] which in light of the molecule swarm streamlining
signified as (PSO) method joined with thickness utilitarian hypothesis optimization.
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The graphene sheets were effectively confined in [2,3] and from that point forward this honeycomb
organized 2D material has roused and enlivened concentrated research interests to a great extent as a
result of its surprising mechanical, electronic and optical properties, including its anomalous quantum
Lobby influence, overwhelming electronic conductivity, and high mechanical quality. In particular, the
intriguing electronic properties of graphene pull in see for this 2D material as a potential probability
for applications in speedier and smaller electronic gadgets.

Like carbon, silicon additionally has a 2D allotrope with a honeycomb structure, in particular
silicene. To date, bunches of exertion have been given to open a bandgap in silicene sheets. In addition,
2D silicon–carbon (Si − C) monolayers can be seen as creation tunable materials between the
unadulterated 2D carbon monolayer-graphene and the unadulterated 2D silicon monolayer-silicene.
Loads of endeavors have been directed towards anticipating the most stable structures of the SiC sheet
read this [4,5] for more data.

Given a graph G = (V, E) where V is the vertex set and E is the edge set of G, the degree deg(s)
of s is the quantity of spokes in G episode with s and is indicated as d(s). A graph can be spoken
to by a polynomial, a numerical esteem or by lattice frame. All the concepts of graph theory and
combinatorics are used from the book of Harris et al. [6]. There are sure kinds of topological records
for the most part capricious based, degree based and remove based files and so forth.

In 1975, Milan Randić [7] introduced the randic index as below:

R− 1
2
(G) = ∑

st∈E(G)

1√
d(s)d(t)

.

In 1988, Bollobás et al. [8] and Amic et al. [9] introduced the general Randić index independently.
For more details about Randić index, its properties and important results, see [10–13]. The general
Randić index is defined as:

Rα(G) = ∑
st∈E(G)

(d(s)d(t))α.

Estrada et al. [14] defined atom–bond connectivity index as:

ABC(G) = ∑
st∈E(G)

√
d(s) + d(t)− 2

d(s)d(t)
.

The geometric arithmetic index GA is introduced by Vukičević et al. [15] as:

GA(G) = ∑
st∈E(G)

2
√

d(s)d(t)
d(s) + d(t)

.

The Zagreb indices were introduced by Gutman and Trinajestic in [16,17]. For more details about
Zagreb indices, its properties and important results, see [18–20]:

M1(G) = ∑
st∈E(G)

(d(s) + d(t)),

M2(G) = ∑
st∈E(G)

(d(s)d(t)).

Ghorbhani et al. [21] introduced the fourth version of atom–bond connectivity index ABC4 as:

ABC4(G) = ∑
st∈E(G)

√
S(s) + S(t)− 2

S(s)S(t)
,

where S(s) = ∑st∈E(G) d(t) and S(t) = ∑st∈E(G) d(s). For more details about the fourth version of
atom–bond connectivity index, its properties and important results, see [9,22–25].
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Graovoc et al. [26] introduced the fifth version of geometric arithmetic index GA5 as:

GA5(G) = ∑
st∈E(G)

2
√

S(s)S(t)
S(s) + S(t)

.

2. Applications of Topological Indices

The Randic index is a topological descriptor that has correlated with a lot of chemical
characteristics of the molecules and has been found to the parallel to computing the boiling point and
Kovats constants of the molecules. The atom–bond connectivity (ABC) index provides a very good
correlation for the stability of linear alkanes as well as the branched alkanes and for computing the
strain energy of cyclo alkanes [14]. To correlate with certain physico-chemical properties, GA index
has much better predictive power than the predictive power of the Randic connectivity index [27].
The first and second Zagreb index were found to occur for computation of the total π-electron energy
of the molecules within specific approximate expressions [28]. These are among the graph invariants,
who were proposed for measurement of skeleton of branching of the carbon-atom [17].

3. Methods

To compute our results, we use the method of combinatorial computing, vertex partition method,
edge partition method, graph theoretical tools, analytic techniques, degree counting method and sum
of degrees of neighbours method. Moreover, we use the Matlab for mathematical calculations and
verifications. We also use the maple for plotting these mathematical results.

4. Silicon Carbide Si2C3-I[p, q] 2D Structure

The 2D molecular graph of Silicon Carbide Si2C3-I is given in Figure 1. To describe its molecular
graph, we have used the settings in this way: we define p as the number of connected unit cells in a row
(chain) and by q we represents the number of connected rows each with p number of cell. In Figure 2,
we gave a demonstration how the cells connect in a row (chain) and how one row connects to another
row. We will denote this molecular graph by Si2C3-I[p, q]. Thus, the quantity of vertices in this graph
is 10pq and the number of edges are 15pq− 2p− 3q.

(a)
(b)

Figure 1. 2D structure of Si2C3-I[p, q], (a) chemical unit cell of Si2C3-I[p, q]; (b) Si2C3-I[4, 3].
Carbon atom C are brown and Silicon atom Si are blue.
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(a)

(b)

q=1

q=2

Figure 2. 2D structure of Si2C3-I[p, q], (a) Si2C3-I[4, 1], one row with p = 4 and q = 1; (b) Si2C3-I[4, 2],
two rows are being connecting. Red lines (edges) connects the upper and lower rows.

4.1. Methodology of Silicon Carbide Si2C3-I[p, q] Formulas

For the computation of these formulas for Silicon Carbide Si2C3-I[p, q], we use first a unit cell and
then combine with another unit cell in horizontal direction and so on up to p unit cells. After this, we
use first a unit cell and then combine with another unit cell in the vertical direction and so on up to q
unit cells. Thus, we obtained Silicon Carbide [p, q] structure (see Figure 1). Now, for the computation
of vertices, we use the Table 1 and Matlab software for generalizing these formulas of vertices. In the
following table, V1 represents the quantity of vertices of degree 1, V2 represents the quantity of vertices
of degree 2 and V3 represents the quantity of vertices of degree 3.

Table 1. Vertex partition of Si2C3-I[p, q].

[p, q] [1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3] [3, 1] [3, 2] [3, 3] [4, 1] [4, 2] [4, 3]

V1 2 2 2 2 2 2 2 2 2 2 2 2
V2 6 12 18 10 16 2 14 20 26 18 28 30
V3 2 6 10 8 22 36 14 38 62 20 54 88

Thus, finally, we calculate he number of vertices of degree 1 are 2, the quantity of vertices of
degree 2 are 4p + 2 + 6(q− 1) and the number of vertices of degree 3 are 10pq− 4p− 6q + 2.

To find the abstracted indices, we will partition the edges of Si2C3-I[p, q] using the above
methodology. Moreover, we use the combinatorial counting and standard edge partition. The first
edge parcel contains one edge st, where d(t) = 1 and deg(u) = 2. The second edge parcel contains
again only one edge st, where d(t) = 1 and deg(u) = 3. The third edge parcel contains (p + 2q) edges
st, where d(t) = 2 and deg(u) = 2. The fourth edge parcel contains 6p− 1+ 8(q− 1) number of edges
st, where d(t) = 2 and deg(u) = 3. The fifth edge parcel contains 15pq− 9p− 13q + 7 number of edges
st, where deg(u) = d(t) = 3. Table 2 shows the edge partition of Si2C3-I[p, q] with p, q ≥ 1. Finally,
for comparison of these indices, we plot its diagram in maple software (see Figures 3,4,7 and 8).
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Table 2. Edge partition of Si2C3-I[p, q], p, q ≥ 1.

(d(s), d(t)) Frequency

(2, 1) 1
(3, 1) 1
(2, 2) p + 2q
(3, 2) 6p− 1 + 8(q− 1)
(3, 3) 15pq− 9p− 13q + 7

4.2. Main Results for Silicon Carbide Si2C3 − I[p, q]

In this section, we compute the general result of topological indices for Si2C3− I[p, q]. In addition,
we construct the tables for these indices for small values of p, q. Moreover, we give graphical
comparison and application of these indices.

• Atom–bond connectivity index ABC
(

Si2C3-I[p, q]
)

Let G be the graph of Si2C3-I[p, q]. Then, from the edge partition of Si2C3-I[p, q], which is given
in Table 2, the atom–bond connectivity index is computed as (see Table 3):

ABC(G) = ∑
st∈E(G)

√
d(s) + d(t)− 2

d(s)d(t)
,

ABC(G) = (1)

√
2 + 1− 2

2× 1
+ (1)

√
3 + 1− 2

3× 1
+ (p + 2q)

√
2 + 2− 2

2× 2

+ (6p + 8q− 9)

√
3 + 2− 2

3× 2
+ (15pq− 9p− 13q + 7)

√
3 + 3− 2

3× 3
.

After some easy calculations, we get:

ABC(G) = 10pq + p
[

6
1√
2
+

√
2

2
− 6
]
+ q
[

8
1√
2
+

√
2

2
− 26

3

]
− 8

1√
2
+

√
2
3
+

14
3

.

Table 3. The atom–bond connectivity index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

ABC(G) 16.2 48.3 98.7 169.3 260.6 370.14 460.25

• The General Randić index Rα

(
Si2C3-I[p, q]

)
Let G be the graph of Si2C3-I[p, q]. Now, by using Table 2, the general Randić index for α = 1

(see Table 4).

R1(G) = ∑
st∈E(G)

(d(s)× d(t)),

R1(G) = (1)(2× 1) + (1)(3× 1) + (p + 2q)(2× 2)

+ (6p + 8q− 9)(3× 2) + (15pq− 9p− 13q + 7)(3× 3),

R1(G) = 135pq− 41p− 61q + 14.

Table 4. The Randić index for α = 1.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

R1(G) 77 350 923 1776 2869 4262 5915
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For α = −1 (see Table 5),

R−1(G) = ∑
st∈E(G)

1
(d(s)× d(t))

,

R−1(G) = (1)(
1

2× 1
) + (1)(

1
3× 1

) + (p + 2q)(
1

2× 2
)

+ (6p + 8q− 9)(
1

3× 2
) + (15pq− 9p− 13q + 7)(

1
3× 3

),

R−1(G) =
5
3

pq +
1
4

p +
7

18
q +

1
9

.

Table 5. The Randić index for α = −1.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

R−1(G) 2.41 11.32 18.11 29.12 41.23 53.42 65.32

For α = 1
2 (see Table 6),

R 1
2
(G) = ∑

st∈E(G)

√
(d(s)× d(t)),

R 1
2
(G) = (1)(

√
2× 1) + (1)(

√
3× 1) + (p + 2q)(

√
2× 2)

+ (6p + 8q− 9)(
√

3× 2) + (15pq− 9p− 13q + 7)(
√

3× 3),

R 1
2
(G) = 45pq + p

[√
66− 25

]
+ q
[√

68− 35
]
+
√

2 +
√

3− 9
√

6 + 21.

Table 6. The Randić index for α = 1
2 .

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

R 1
2
(G) 49.31 60.34 80.41 97.11 117.32 140.56 162.87

For α = − 1
2 (see Table 7),

R− 1
2
(G) = ∑

st∈E(G)

1√
(d(s)× d(t))

,

R− 1
2
(G) = (1)(

1√
2× 1

) + (1)(
1√

3× 1
) + (p + 2q)(

1√
2× 2

)

+ (6p + 8q− 9)(
1√

3× 2
) + (15pq− 9p− 13q + 7)(

1√
3× 3

),

R− 1
2
(G) = 5pq + p

[ 1√
6

6− 5
2
]
+ q
[ 1√

6
8− 10

3
]
+

1√
2
+

1√
3
− 9√

6
+

7
3

.

Table 7. The Randić index for α = −1
2 .

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

R −1
2
(G) 7.42 25.18 51.23 87.04 110.41 143.32 170.44

• The geometric arithmetic index GA
(

Si2C3-I[p, q]
)

Let G be the graph of Silicon Carbide Si2C3-I[p, q]. Now, by using Table 2, the geometric arithmetic
index is computed as below (see Table 8):
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GA(G) = ∑
st∈E(G)

2
√

d(s)d(t)
d(s) + d(t)

,

GA(G) = (1)
2
√

2
2 + 1

+ (1)
2
√

3
3 + 1

+ (p + 2q)
2
√

4
2 + 2

+ (6p + 8q− 9)
2
√

6
3 + 2

+ (15pq− 9p− 13q + 7)
2
√

9
3 + 3

,

GA(G) = 15pq + p
[

12
√

6
5
− 8
]
+ q
[

16
√

6
5
− 11

]
+

2
√

2
3

+

√
3

2
− 18

√
6

5
+ 7.

Table 8. The geometric arithmetic index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]
GA(G) 19.251 68.29 141.12 248.41 358.32 470.15 590.32

• First and second Zagreb index

Let G be the graph of Si2C3-I[p, q]. Now, by using Table 2, the first and second Zagreb indices are
computed as below (see Table 9 and 10):

M1(G) = ∑
st∈E(G)

(d(s) + d(t)),

M1(G) = (1)(2 + 1) + (1)(3 + 1) + (p + 2q)(2 + 2) + (6p + 8q− 9)(3 + 2)

+ (15pq− 9p− 13q + 7)(3 + 3),

M1(G) = 90pq− 20p− 30q + 4,

M2(G) = ∑
st∈E(G)

(d(s)d(t)),

M2(G) = (1)(2× 1) + (1)(3× 1) + (p + 2q)(2× 2) + (6p + 8q− 9)(3× 2)

+ (15pq− 9p− 13q + 7)(3× 3),

M2(G) = 135pq− 41p− 61q + 14.

Table 9. The first Zagreb index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

M1(G) 44 264 664 1244 2046 3456 4874

Table 10. The second Zagreb index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

M2(G) 47 350 923 1766 2879 4268 6425

• Comparison of topological indices for Si2C3-I[p, q]

In this section, we presented the comparison of above calculated topological indices for
Si2C3-I[p, q] with p = 1, 2, 3, ..., 1500 and q = 1, 2, 3, ..., 1500 graphically in Figure 3.
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Figure 3. Comparison of indices, first and second Zagreb indexes, ABC index, GA index, ABC4

index, GA5 index, and general Randić index forα ∈ {1,−1, 1/2,−1/2} of 2D structure of Si2C3-I[p, q].
R1, Red; R 1

2
, orange; R− 1

2
, Green; R−1,Gray; ABC, Cayn; GA,Niagara purple; M1, Niagara Navy; M2,

off white.

Table 11 demonstrates the edge parcel in light of the degree total of end vertices of each edge of
the chemical graph Si2C3-I[p, q] for p, q ≥ 2.

Table 11. Edge partition of Si2C3-I[p, q].

(d(s), d(t)) (Su, Sv) Frequency

(2, 1) (4, 2) 1
(3, 1) (5, 3) 1
(2, 2) (5, 5) p + 2q
(3, 2) (5, 5) 1
(3, 2) (7, 4) 1
(3, 2) (7, 5) 2(q + 1)
(3, 2) (5, 6) 1
(3, 2) (7, 6) 4p + 2q− 7
(3, 2) (8, 6) 2(q− 1)
(3, 2) (8, 5) 2p + 2q− 5
(3, 3) (8, 7) 1
(3, 3) (8, 8) p + 2q− 4
(3, 3) (9, 7) 2p + 2q− 3
(3, 3) (9, 8) 2p + 4q− 7
(3, 3) (9, 9) 15pq− 14p− 21q + 20

• The fourth atom–bond connectivity index ABC4

(
Si2C3 − I[p, q]

)
.
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Let G be the graph of Silicon Carbide of type Si2C3-I[p, q]. Now, by using Table 11, the fourth
atom–bond connectivity index is computed as below (see Table 12):

ABC4(G) = ∑
st∈E(G)

√
S(s) + S(t)− 2

S(s)S(t)
,

ABC4(G) = (1)

√
4 + 2− 2

4× 2
+ (1)

√
5 + 3− 2

5× 3
+ (p + 2q + 1)

√
5 + 5− 2

5× 5

+ 2(q− 1)

√
7 + 5− 2

7× 5
+ (1)

√
5 + 6− 2

5× 6
+ (4p + 2q− 7)

√
7 + 6− 2

7× 6

+ 2(q− 1)

√
8 + 6− 2

8× 6
+ (2p + 2q− 5)

√
8 + 5− 2

8× 5
+ (1)

√
7 + 4− 2

7× 4

+ (1)

√
8 + 7− 2

8× 7
+ (p + 2q− 4)

√
8 + 8− 2

8× 8
+ (2p + 2q− 3)

√
9 + 7− 2

9× 7

+ (2p + 4q− 7)

√
9 + 8− 2

9× 8
+ (15pq− 14p− 21q + 20)

√
9 + 9− 2

9× 9
.

After an easy calculation, we get:

ABC4(G) = 20/3pq− 56
9

p− 25
3

q

+ p
[

2
√

2
5

+ 4

√
11
42

+

√
11
10

+

√
14
8

+
2
√

2
3

+
1
3

√
15
2

]
+ q

[
4
√

2
5

+ 2

√
2
7
+ 2

√
11
42

+

√
11
10

+

√
14
4

+
2
√

2
3

+
2
3

√
15
2

]
+

1√
2
+

√
2
5
+

2
√

2
5
− 2

√
2
7
+

3√
30
− 7

√
11
42
− 5

2

√
11
10

+
3
2

1√
7

+
1
2

√
13
14
−
√

14
2
−
√

2− 7
6

√
15
2

+
71
9

.

Table 12. The fourth atom–bond connectivity index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

ABC4(G) 9.42 32.21 68.26 106.18 156.24 214.52 287.32

• The fifth geometric arithmetic index GA5

(
Si2C3 − I[p, q]

)
Let G be the graph of Si2C3-I[p, q]. Now, by using Table 11, the fifth geometric arithmetic index is

computed as below (see Table 13):

GA5(G) = ∑
st∈E(G)

2
√

S(s)S(t)
S(s) + S(t),
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GA5(G) = (1)
2
√

4× 2
4 + 2

+ (1)
2
√

5× 3
5 + 3

+ (p + 2q + 1)
2
√

5× 5
5 + 5

+ 2(q− 1)
2
√

7× 5
7 + 5

+ (1)
2
√

5× 6
5 + 6

+ (4p + 2q− 7)
2
√

7× 6
7 + 6

+ 2(q− 1)
2
√

8× 6
8 + 6

+ (2p + 2q− 5)
2
√

8× 5
8 + 5

+ (1)
2
√

7× 4
7 + 4

+ (1)
2
√

8× 7
8 + 7

+ (p + 2q− 4)
2
√

8× 8
8 + 8

+ (2p + 2q− 3)
2
√

9× 7
9 + 7

+ (2p + 4q− 7)
2
√

9× 8
9 + 8

+ (15pq− 14p− 21q + 20)
2
√

9× 9
9 + 9

,

GA5(G) = 15pq + p
[

8
13

√
42 +

8
13

√
10 +

3
4

√
7 +

24
17

√
2− 12

]
+ q

[
1
3

√
35 +

4
13

√
42 +

4
√

12
7

+
8
13

√
10 +

3
4

√
7 +

48
17

√
2− 17

]
+

2
√

2
3

+

√
15
4
−
√

35
3

+
2
√

30
11
− 14

√
42

13
− 4
√

12
7
− 20

√
10

13

+
4
√

7
11

+
4
√

14
15
− 9
√

7
8
− 84

√
2

17
+ 17.

Table 13. The fifth geometric arithmetic index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

GA5(G) 19.26 69.31 143.28 251.21 304.25 360.56 412.32

• Comparison of topological indices for Si2C3-I[p, q]

In this section, we presented the comparison of above calculated topological indices for
Si2C3-I[p, q] graphically in Figure 4.

Figure 4. Comparison of ABC4 and GA5 indices of 2D structure of Si2C3-I[p, q]. Blue and red colors
represents ABC4 and GA5, respectively.

5. Silicon Carbide Si2C3-I I[p, q] 2D Structure

The 2D molecular graph of Silicon Carbide Si2C3-I I is given in Figure 5. To describe its molecular
graph, we have used the settings in this way: we define p as the number of connected unit cells in
a row (chain) and, by q, we represent the number of connected rows, each with p number of cells.
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In Figure 6, we gave a demonstration of how the cells connect in a row (chain) and how one row
connects to another row. We will denote this molecular graph by Si2C3-I I[p, q]. Thus, the quantity of
vertices in this graph is 10pq and the number of edges are 15pq− 3p− 3q.

Figure 5. 2D structure of Si2C3-I I[p, q], (a) chemical unit cell of Si2C3-I I[p, q]; (b) Si2C3-I I[3, 3].
Carbon atom C are brown and Silicon atom Si are blue

(a)

(b)

q=1

q=2

Figure 6. 2D structure of Si2C3-I I[p, q], (a) Si2C3-I I[5, 1], one row with p = 5 and q = 1. Red lines
show the connection between the unit cells; (b) Si2C3-I I[5, 2], and two rows are connecting. Green lines
(edges) connect the upper and lower rows.

5.1. Methodology of Silicon Carbide Si2C3-I I[p, q] Formulas

For the computation of these formulas for Silicon Carbide Si2C3-I I[p, q], we first use a unit cell
and then combine it with another unit cell in the horizontal direction and so on up to p unit cells. After
this, we use first a unit cell and then combine it with another unit cell in the vertical direction and so
on up to q unit cells. Thus, we obtained Silicon Carbide Si2C3-I I[p, q] structure (see Figure 5). Now,
for the computation of vertices, we use Table 14 and Matlab software for generalizing these formulas
of vertices. In the following table, V1 represents the quantity of vertices of degree 1, V2 represents the
quantity of vertices of degree 2 and V3 represents the quantity of vertices of degree 3.

Table 14. Vertex partition of Si2C3-I I[p, q].

[p, q] [1, 1] [1, 2] [1, 3] [2, 1] [2, 2] [2, 3] [3, 1] [3, 2] [3, 3] [4, 1] [4, 2] [4, 3]

V1 3 3 3 3 3 3 3 3 3 3 3 3
V2 6 12 18 12 18 24 18 24 30 24 30 36
V3 1 5 9 5 19 33 9 33 57 13 47 81
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Now, in general, the quantity of vertices of degree 1 are 3, the quantity of vertices of degree 2 are
6(p + q− 1), the quantity of vertices of degree 3 are 10pq− 6p− 6q + 3.

To find the abstracted indices, we will partition the edges of Si2C3-I I[p, q] using the above
methodology. Moreover, we use the combinatorial counting and standard edge partition. The first
edge parcel contains 2 edge st, where deg(u) = 2 and d(t) = 1. The second edge parcel contains only
one edge st, where deg(u) = 3 and d(t) = 1. The third edge parcel contains 2(p + q) edges st, where
deg(u) = 2 and d(t) = 2. The fourth edge parcel contains 8p + 8q− 14 number of edges st, where
deg(u) = 3 and d(t) = 2. The fifth edge parcel contains 15pq− 13p− 13q + 11 number of edges st,
where deg(u) = d(t) = 3. Table 15 shows the edge partition of Si2C3-I I[p, q] with p, q ≥ 1.

Table 15. Edge partition of Si2C3-I I[p, q].

(d(s), d(t)) Frequency

(2, 1) 2
(3, 1) 1
(2, 2) 2p + 2q
(3, 2) 8p + 8q− 14
(3, 3) 15pq− 13p− 13q + 11

5.2. Main Results for Silicon Carbide Si2C3 − I I[p, q]

In this section, we compute the general result of topological indices for Si2C3− I I[p, q]. In addition,
we construct the tables for these indices for small values of p, q. Moreover, we give graphical
comparison and application of these indices.

• Atom–bond connectivity index ABC
(

Si2C3-IO[p, q]
)

Let G be the graph of Silicon Carbide of type Si2C3-I I[p, q]. Then, from the edge partition of
Si2C3-I I[p, q] which is given in Table 15, the atom–bond connectivity index can be calculated as
(see Table 16):

ABC(G) = ∑
st∈E(G)

√
d(s) + d(t)− 2

d(s)d(t)
,

ABC(G) = (2)

√
2 + 1− 2

2× 1
+ (1)

√
3 + 1− 2

3× 1
+ (2p + 2q)

√
2 + 2− 2

2× 2

+ (8p + 8q− 14)

√
3 + 2− 2

3× 2
+ (15pq− 13p− 13q + 11)

√
3 + 3− 2

3× 3
,

ABC(G) = 10pq + (p + q)
[

10√
2
− 26

3

]
− 12

1√
2
+

√
2
3
+

22
3

.

Table 16. The atom–bond connectivity index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

ABC(G) 13.25 45.26 95.17 165.26 240.32 330.15 440.14

• The general Randić index Rα

(
Si2C3-I I[p, q]

)
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Let G be the graph of Si2C3-I I[p, q]. Now, by using Table 15, the general Randić index for
α = 1 (see Table 17),

R1(G) = ∑
st∈E(G)

(d(s)× d(t)),

R1(G) = (2)(2× 1) + (1)(3× 1) + (2p + 2q)(2× 2)

+ (8p + 8q− 14)(3× 2) + (15pq− 13p− 13q + 11)(3× 3),

R1(G) = 135pq− 61p− 61q + 22.

Table 17. The Randić index for α = 1.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]
R1(G) 35 318 871 1694 2459 4024 5714

For α = −1 (see Table 18),

R−1(G) = ∑
st∈E(G)

1
(d(s)× d(t))

,

R−1(G) = (2)(
1

2× 1
) + (1)(

1
3× 1

) + (2p + 2q)(
1

2× 2
) + (8p + 8q− 14)(

1
3× 2

)

+ (15pq− 13p− 13q + 11)(
1

3× 3
),

R−1(G) =
5
3

pq +
7

18
p +

7
18

q +
2
9

.

Table 18. The Randić index for α = −1.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

R−1(G) 2.10 9.12 16.28 28.11 39.12 50.12 63.41

For α = 1
2 (see Table 19),

R 1
2
(G) = ∑

st∈E(G)

√
(d(s)× d(t)),

R 1
2
(G) = (2)(

√
2× 1) + (1)(

√
3× 1) + (2p + 2q)(

√
2× 2)

+ (8p + 8q− 14)(
√

3× 2) + (15pq− 13p− 13q + 11)(
√

3× 3),

R 1
2
(G) = 45pq + (p + q)

[
8
√

6− 35
]
+ 2
√

2 +
√

3− 14
√

6 + 33.

Table 19. The Randić index for α = 1
2 .

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

R 1
2
(G) 48.32 58.23 79.11 95.21 115.23 135.25 160.13
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For α = −1
2 (see Table 20),

R− 1
2
(G) = ∑

st∈E(G)

1√
(d(s)× d(t))

,

R− 1
2
(G) = (2)(

1√
2× 1

) + (1)(
1√

3× 1
) + (2p + 2q)(

1√
2× 2

)

+ (8p + 8q− 14)(
1√

3× 2
) + (15pq− 13p− 13q + 11)(

1√
3× 3

),

R− 1
2
(G) = 5pq + (p + q)

[
8√
6
− 10

3

]
+
√

2 +
1√
3
− 14√

6
+

11
3

.

Table 20. The Randić index for α = −1
2 .

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

R −1
2
(G) 6.21 23.51 48.25 84.36 108.32 133.42 168.24

• The geometric arithmetic index GA
(

Si2C3-I I[p, q]
)

Let G be the graph of Silicon Carbide Si2C3-I I[p, q]. Now, by using Table 15, the geometric
arithmetic index is computed as below (see Table 21):

GA(G) = ∑
st∈E(G)

2
√

d(s)d(t)
d(s) + d(t)

,

GA(G) = (2)
2
√

2
2 + 1

+ (1)
2
√

3
3 + 1

+ (2p + 2q)
2
√

4
2 + 2

+ (8p + 8q− 14)
2
√

6
3 + 2

+ (15pq− 13p− 13q + 11)
2
√

9
3 + 3

,

GA(G) = 15pq + (p + q)
[

16
√

6
5
− 11

]
+

4
√

2
3

+

√
3

2
− 28

√
6

5
+ 11.

Table 21. The geometric arithmetic index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

GA(G) 18.35 64.21 135.11 236.42 346.12 460.25 580.12

• The first and second Zagreb index

Let G be the graph of Si2C3-I I[p, q]. Now, by using Table 15, the first Zagreb index is computed
as below (see Table 22):

M1(G) = ∑
st∈E(G)

(d(s) + d(t)),

M1(G) = (2)(2 + 1) + (1)(3 + 1) + (2p + 2q)(2 + 2) + (8p + 8q− 14)(3 + 2)

+ (15pq− 13p− 13q + 11)(3 + 3),

M1(G) = 90pq− 30p− 30q + 6.

Table 22. The first Zagreb index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

M1(G) 36 246 636 1206 1836 3244 4634
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The second Zagreb index is computed below (see Table 23):

M2(G) = ∑
st∈E(G)

(d(s)d(t)) = R1(G),

M2(G) = (2)(2× 1) + (1)(3× 1) + (2p + 2q)(2× 2) + (8p + 8q− 14)(3× 2)

+ (15pq− 13p− 13q + 11)(3× 3),

M2(G) = 135pq− 61p− 61q + 22.

Table 23. The second Zagreb index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

M2(G) 35 318 871 1694 2654 4064 6248

• Comparison of topological indices for Si2C3 − I I[p, q]

In this section, we presented the comparison of above calculated topological indices for Si2C3 −
I I[p, q] graphically in Figure 7.

Figure 7. Comparison of indices, first and second Zagreb indexes, ABC index, GA index, ABC4

index, GA5 index, and general Randić index forα ∈ {1,−1, 1/2,−1/2} of 2D structure of Si2C3-I I[p, q].
R1,Green; R 1

2
, Purple; R− 1

2
, Gray; R−1,Orange; ABC, Cayn; GA,Red; M1, Blue; M2, yellow.

Table 24 demonstrates the edge parcel in light of the degree total of end vertices of each edge of
the chemical graph Si2C3-I I[p, q] for p, q ≥ 2.
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Table 24. Edge partition of Si2C3-I I[p, q].

(d(s), d(t)) (Su, Sv) Frequency

(2, 1) (3, 2) 2
(3, 1) (7, 3) 1
(2, 2) (4, 3) 2
(2, 2) (5, 4) 2
(2, 2) (5, 5) 2p + 2q− 4
(3, 2) (7, 5) 2p + 2q
(3, 2) (7, 6) 2p + 2q− 2
(3, 2) (8, 6) 2p + 2q− 6
(3, 2) (8, 5) 2p + 2q− 6
(3, 3) (8, 7) 2
(3, 3) (8, 8) 2(p + q− 4)
(3, 3) (7, 7) 2
(3, 3) (9, 7) 2p + 2q− 3
(3, 3) (9, 8) 2p + 2q− 5
(3, 3) (9, 9) 15pq− 19p− 19q + 23

• The fourth atom–bond connectivity index ABC4

(
Si2C3 − I I[p, q]

)
Let G be the graph of Silicon Carbide of type Si2C3-I I[p, q]. Now, by using Table 24, the fourth

atom–bond connectivity index is computed as (see Table 25):

ABC4(G) = ∑
st∈E(G)

√
S(s) + S(t)− 2

S(s)S(t)
,

ABC4(G) = (2)

√
3 + 2− 2

3× 2
+ (1)

√
7 + 3− 2

7× 3
+ (2)

√
4 + 3− 2

4× 3
+ (2)

√
5 + 4− 2

5× 4

+ (2p + 2q− 4)

√
5 + 5− 2

5× 5
+ (2p + 2q)

√
7 + 5− 2

7× 5
+ 2(p + q− 1)

√
7 + 6− 2

7× 6

+ (2p + 2q− 6)

√
8 + 6− 2

8× 6
+ (2p + 2q− 6)

√
8 + 5− 2

8× 5
+ (2)

√
8 + 7− 2

8× 7

+ 2(p + q− 4)

√
8 + 8− 2

8× 8
+ (2)

√
7 + 7− 2

7× 7
+ (2p + 2q− 3)

√
9 + 7− 2

9× 7

+ (2p + 2q− 5)

√
9 + 8− 2

9× 8
+ (15pq− 19p− 19q + 23)

√
9 + 9− 2

9× 9
.

After an easy calculation, we get:

ABC4(G) =
20
3

pq

+ (p + q)
[

22
√

2
15

+ 2

√
2
7
+ 2

√
11
42

+

√
11
10

+

√
14
4

+
1
3

√
15
2
− 67/9

]
+
√

2 + 2

√
2

21
+

2
5

√
5
3
+

√
7
5
− 13

√
2

5
− 2

√
11
42
− 3

√
11
10

+

√
13
14
−
√

14 +
4
√

3
7
− 5

6

√
15
2

+
65
9

.

Table 25. The fourth atom–bond connectivity index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

ABC4(G) 7.21 28.23 64.11 101.21 142.28 208.44 266.64
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• The fifth geometric arithmetic index GA5

(
Si2C3 − I I[p, q]

)
Let G be the graph of Si2C3-I I[p, q]. Now, by using Table 24, the fifth geometric arithmetic index

is computed as (see Table 26):

GA5(G) = ∑
st∈E(G)

2
√

S(s)S(t)
S(s) + S(t)

,

GA5(G) = (2)
2
√

3× 2
3 + 2

+ (1)
2
√

7× 3
7 + 3

+ (2)
2
√

4× 3
4 + 3

+ (2)
2
√

5× 4
5 + 4

+ (2p + 2q− 4)
2
√

5× 5
5 + 5

+ (2p + 2q)
2
√

7× 5
7 + 5

+ 2(p + q− 1)
2
√

7× 6
7 + 6

+ (2p + 2q− 6)
2
√

8× 6
8 + 6

+ (2p + 2q− 6)
2
√

8× 5
8 + 5

+ (2)
2
√

8× 7
8 + 7

+ 2(p + q− 4)
2
√

8× 8
8 + 8

+ (2)
2
√

7× 7
7 + 7

+ (2p + 2q− 3)
2
√

9× 7
9 + 7

+ (2p + 2q− 5)
2
√

9× 8
9 + 8

+ (15pq− 19p− 19q + 23)
2
√

9× 9
9 + 9

,

GA5(G) = 15pq + (p + q)
[√

35
3

+
4
√

42
13

+
8
√

3
7

+
8
√

10
13

+
3
√

7
4

+
24
√

2
17
− 15

]
+

4
√

6
5

+

√
21
5

+
8
√

3
7

+
8
√

5
9
− 4
√

42
13
− 24

√
3

7
− 24

√
10

13
+

8
√

14
15

− 9
√

7
8
− 60

√
2

17
+ 13.

Table 26. The fifth geometric arithmetic index.

[p, q] [1, 1] [2, 2] [3, 3] [4, 4] [5, 5] [6, 6] [7, 7]

GA5(G) 17.12 64.34 139.18 246.42 298.24 354.54 408.44

• Comparison of topological indices for Si2C3-I I[p, q]

We presented the comparison of topological indices for Si2C3-I I[p, q] graphically in Figure 8.

Figure 8. Comparison of ABC4 and GA5 indices of 2D structure of Si2C3-I I[p, q]. Blue and red colors
represents ABC4 and GA5, respectively.
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6. Comparisons and Discussion

In this section, we have computed all indices for different values of p, q for both structures
Si2C3-I[p, q] and Si2C3-I I[p, q]. In addition, we construct Tables 3–10, 12 and 13 for small values of p, q
for these topological indices to the structure Si2C3-I[p, q] and Tables 16–23, 25 and 26 to the structure
Si2C3-I I[p, q]. Now, from Tables 27 and 28, we can easily see that all indices are in increasing order
as the values of p, q are increases. In addition, on the other hand, indices showed higher values for
Si2C3-I[p, q], as compared to those of Si2C3-I I[p, q].

The graphical representations of topological indices of Si2C3-I[p, q] and Si2C3-I I[p, q] are depicted
in Figures 3, 4, 7 and 8 for certain values of p, q.

Table 27. Comparison of all indices for Si2C3-I[p, q].

[p, q] ABC R1 R−1 R 1
2

R −1
2

GA M1 M2 ABC4 GA5

[1, 1] 16.2 77 2.41 49.31 7.42 19.25 44 47 9.42 19.26
[2, 2] 48.3 350 11.32 60.34 25.18 68.29 264 350 32.21 69.31
[3, 3] 98.7 923 18.11 80.41 51.23 141.12 664 923 68.26 143.28
[4, 4] 169.3 1766 29.12 97.11 87.04 248.41 1244 1766 106.18 251.21

Table 28. Comparison of all indices for Si2C3-I I[p, q].

[p, q] ABC R1 R−1 R 1
2

R −1
2

GA M1 M2 ABC4 GA5

[1, 1] 13.25 35 2.10 48.32 6.21 18.35 36 35 7.21 17.12
[2, 2] 45.26 318 9.12 58.23 23.51 64.21 246 318 28.23 64.34
[3, 3] 95.17 871 16.28 79.11 48.25 135.11 636 871 64.11 139.18
[4, 4] 165.26 1694 28.11 95.21 84.39 236.42 1206 1694 101.21 246.42

Now, we presented the comparison of all topological indices using Table 27, for Si2C3-I[p, q] in
Figure 9 and using Table 28, for Si2C3-I I[p, q] in Figure 10.

Figure 9. The comparison of all topological indices for Si2C3-I[p, q].
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Figure 10. The comparison of all topological indices for Si2C3-I I[p, q].

7. Conclusions

We have studied and computed additive degree based topological indices, mainly atom–bond
connectivity ABC index, general Randić index, first and second Zagreb index, geometric arithmetic
GA index, fourth atom–bond connectivity ABC4 index and fifth geometric arithmetic GA5 index of
two types of 2D Silicon Carbide, namely Si2C3-I[p, q] and Si2C3-I I[p, q].

Since the Randic index is a topological descriptor that has correlated with a lot of chemical
characteristics of the molecules. Thus, it has been found that the boiling point of Si2C3-I[p, q] and
Si2C3-I I[p, q]-I[p, q] is varying in increasing order for α ∈ {1,−1, 1/2,−1/2}.

Since the atom-bond connectivity (ABC) index provides a very good correlation for computing
the strain energy of molecules, one can easily be seen that the strain energy of Si2C3-I[p, q] and
Si2C3-I I[p, q]-I[p, q] is high as the values of p, q increases.

In addition, GA index has much better predictive power than the predictive power of the Randic
index, so the GA index is more useful than the Randic index for α ∈ {−1,−1/2} as compared to the
Randic index for α ∈ {1, 1/2} in the case of Si2C3-I[p, q] and Si2C3-I I[p, q]-I[p, q].

Since the first and second Zagreb indexes were found to occur for computation of the total
π-electron energy of the molecules, in the case of Si2C3-I[p, q] and Si2C3-I I[p, q]-I[p, q], their values
provide total π-electron energy in increasing order for higher values of p, q.

However, computing the distance based and counting related topological indices for these
symmetrical chemical structures still remain open for investigation and as a challenge for researchers.
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