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Abstract: Hesitant fuzzy linguistic (HFL) term set, as a very flexible tool to represent the judgments
of decision makers, has attracted the attention of many researchers. In recent years, some HFL
aggregation operators have been developed to aggregate the HFL information. However, most of
these operators are proposed based on the Algebraic product and Algebraic sum. In this paper,
we presented some HFL aggregation operators to handle HFL information based on Hamacher
triangle norms. We first define new operational laws on the HFL element according to Hamacher
triangle norms. Then we present a family of HFL Hamacher aggregation operators, including
the HFL Hamacher weighted averaging, HFL Hamacher weighted geometric, HFL Hamacher
power weighted averaging and HFL Hamacher power weighted geometric operators and their
generalized forms. We also investigate some special cases and properties of these operators in
detail. Furthermore, we develop two approaches based on the proposed operators to deal with
the multi-criteria decision-making problem with HFL information. Finally, a numerical example
with regard to choosing a suitable city to release sharing car is provided to illustrate the feasibility
of the proposed method, and the advantages of the proposed methods are shown by conducting
a sensitivity and comparative analysis.

Keywords: hesitant fuzzy linguistic term set; Hamacher t-norm and t-conorm; power aggregation
operator; multi-criteria decision-making

1. Introduction

Multi-criteria decision-making (MCDM) problems with different kinds of fuzzy information is
handled by utilizing Zadeh’s fuzzy set [1] and their various extensions, including the interval-valued
fuzzy set [2], intuitionistic fuzzy set [3,4], Pythagorean fuzzy set [5,6], Type-2 fuzzy set [7,8], fuzzy multi
set [9], and hesitant fuzzy set (HFS) [10,11]. However, these fuzzy tools are only suitable to deal with
quantitative situations rather than qualitative situations. The Fuzzy linguistic method (FLM) [2,12,13],
which decision makers prefer to provide an evaluation for using a linguistic term, is a more suitable
approach than the above fuzzy set to handle qualitative situations and has been extensively applied in
various fields and applications [14–18]. In some cases, the modeling capacity of fuzzy linguistic is also
quite limited because simple linguistic terms find it hard to express the hesitation of decision makers.
For instance, a customer is invited to evaluate the satisfying degree of a service product with respect to
a given criterion. Suppose S = {s−2 = very low, s−1 = low, s0 = medium, s1 = high, s2 = very high}
is a linguistic term set (LTS). The customer regards s0 or s1 as the evaluation value of the satisfying
degree for a service product, but he/she quietly finds it difficult to choose one of them as the final
evaluation value. In this situation, an effective method is that the evaluation value of the satisfying
degree provided by the customer should consist of the two possible values. To handle this situation,
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Rodríguez et al. [19] proposed the concept of hesitant fuzzy linguistic term set (HFLTS), which uses
a linguistic term to replace the numerical elements of HFS. Subsequently, Liao et al. [20] gave the
mathematical form of the HFLTS according to the concept of HFLTS and utilized the hesitant fuzzy
linguistic element (HFLE) to represent the elements of HFLTS. For the above example, the customer’s
evaluation can be expressed by an HFLE {s0, s1}. The HFLTS, which is a combination of HFS and FLM,
has the advantages of HFS and FLM at the same time. Therefore, it is a useful tool for a decision maker
to express his/her judgment under the hesitation and fuzziness environment.

Recently, HFLTS has been used by more and more researchers to handle MCDM problems with
uncertain information [21]. In this situation, the hesitant fuzzy linguistic (HFL) aggregation operator
that is applied to aggregate the criteria’s value into a comprehensive value of the alternative is one of the
core issues. Therefore, the investigation of HFL aggregation operator is one of the hot topics. Various
HFL aggregation operators have been developed from four respects as follows (1) Rodríguez et al. [19]
defined the operational rules on HFLTS and proposed the min_upper and max_lower operators to
select the worst of the superior values and the best of the inferior values, respectively; (2) based
on the likelihood-based comparison relation between two HFLEs, Wei et al. [22] proposed the HFL
weighted averaging (HFLWA) and HFL order weighted averaging (HFLOWA) operators, and Lee and
Chen [23] presented the HFLWA, HFLOWA, and HFL weighted geometric (HFLWG), and HFL order
weighted geometric operators; (3) according to the operational laws defined on HFLTS in [24,25], Zhang
and Wu [24] proposed a family of operators for HFLEs, such as HFLWA, HFLWG, and generalized
HFLWA operators. Wang [25] developed an extending HFLTS according to the definition of HFLTS,
and defined the extending HFLWA, extending HFLWG and their ordered weighted forms. Shi and
Xiao [26] presented the HFL reducible weighted Bonferroni mean, HFL generalized the reducible
weighted Bonferroni mean, and HFL weighted power Bonferroni mean operators. Xu et al. [27]
proposed an HFL order weighted distance operator and utilized to deal with multi-attribute group
decision-making (MAGDM) problems. Liu et al. [28] developed the HFLWA, HFLWG, and HFL
harmonic operators and their order weighted and hybrid weighted forms; (4) Based on the equivalent
transformation function between HFLE and hesitant fuzzy element (HFE), Zhang and Qi [29] presented
the HFLWA and HFLWG operators, and applied to solve a production strategy decision-making
problem; Gou et al. [30] introduced the Bonferroni mean operator into the HFLTS environment and
defined the HFL Bonferroni mean and HFL weighted Bonferroni mean operators.

It’s worth noting that these existing HFL aggregation operators are constructed by the algebraic
product and algebraic sum operational laws of HFLEs, which are a pair of special t-norm and t-conorm.
A generalized intersection and union on HFLEs can be constructed by a generalized t-norm and
t-conorm. For an intersection and union, a good alternative and approximation to the algebraic product
and algebraic sum are the Einstein product and Einstein sum, respectively [31,32]. Recently, Wang
and Liu [31,32] proposed the intuitionistic fuzzy Einstein weighted averaging and intuitionistic fuzzy
Einstein weighted geometric operators. Further, Zhang [33] presented the intuitionistic fuzzy Einstein
hybrid weighted averaging and intuitionistic fuzzy Einstein hybrid weighted geometric operators and
their quasi-forms. Yu [34] introduced the Einstein operations into the HFS and developed the hesitant
fuzzy Einstein weighted averaging and hesitant fuzzy Einstein weighted geometric operators and their
ordered forms. Jin et al. [35] derived some interval-valued hesitant fuzzy Einstein prioritized operators
and applied to solve MAGDM problems. On the other hand, Hamacher [36] presented a Hamacher
t-norm and Hamacher t-conorm, which can be transformed into the algebraic and Einstein t-norms
and t-conorms when the parameter υ = 1 and υ = 2 in Hamacher t-norm and t-conorm, respectively.
Therefore, as general and flexible continuous triangular norms, Hamacher t-norm and t-conorm have
been explored by many researchers in various fuzzy environments. Tan et al. [37] defined some
hesitant fuzzy operational laws based on Hamacher operations and presented a family of hesitant
fuzzy Hamacher aggregation operators, such as hesitant fuzzy Hamacher weighted averaging and
hesitant fuzzy Hamacher weighted geometric operators. Ju et al. [38] proposed the dual hesitant fuzzy
Hamacher weighted averaging and dual hesitant fuzzy Hamacher weighted geometric operators,
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and their order and hybrid forms. Liu et al. [39] proposed the improved interval-valued hesitant
fuzzy Hamacher ordered weighted averaging and improved interval-valued hesitant fuzzy Hamacher
ordered weighted geometric operators. Moreover, Hamacher operations are also introduced to other
fuzzy environments, such as the intuitionistic fuzzy set [40], interval-valued intuitionistic fuzzy set [41],
Pythagorean fuzzy set [42], and single-valued neutrosophic 2-tuple linguistic set [43]. From the above
analysis, we can see that it is of important theoretical significance to explore the aggregation operators
of HFLTS based on Hamacher operational laws and their application to MCDM problems, which is
justly the first focus of this paper.

In practical MCDM process, it is extensively important to employ a suitable aggregation operator
to drive the comprehensive preference value of each alternative. Various aggregation operators have
been developed by many researchers to perform this process in MCDM problems. In these operators,
the power average (PA) operator was originally presented by Yager [44], which allows the input data
to support and strengthen one another, and the weight vectors in PA operator are associated with
the input arguments. Inspired by the PA operator, Xu and Yager [45] presented a power geometric
(PG) operator and a power ordered weighted geometric operator. The prominent characteristic of
PA and PG operators is that they consider the relationships between the input arguments. Based
on this advantages, many extending forms of PA and PG operators have been proposed, such as
Xu [46] developing the intuitionistic fuzzy power weighted averaging and intuitionistic fuzzy power
weighted geometric operators and their ordered forms. Further, Wei and Liu [47] introduced the PA
and PG operators into a Pythagorean fuzzy environment and proposed a family of Pythagorean fuzzy
power aggregation operators, including the Pythagorean fuzzy power averaging and Pythagorean
fuzzy power geometric operators and their weighted, ordered weighted, and hybrid weighted forms.
Zhang [48] presented a series of hesitant fuzzy power aggregation operators, such as hesitant fuzzy
power averaging and hesitant fuzzy power geometric operators, and their ordered, weighted, and
generalized forms. Furthermore, PA and PG operators have also been extended to other fuzzy
environments to propose some new operators, such as intuitionistic fuzzy power aggregation
operators based on entropy [49], linguistic hesitant fuzzy power aggregation operators [50], linguistic
intuitionistic fuzzy power aggregation operators [51], dual hesitant fuzzy power aggregation operators
based on Archimedean t-norm and t-conorm [52], and simplified neutrosophic power aggregation
operators [53]. However, there is no one has explored the power aggregation operators on HFLTS,
especially based on the Hamacher operations. Therefore, extending the power aggregation operators
to HFLTS environments, especially based on Hamacher operational laws, is also very meaningful work
and another focus of this paper.

According to the analysis above, this paper extends the Hamacher t-norm and t-conorm to an HFL
environment and presents several new HFL aggregation operators to handle MCDM problem with
HFL information. The main advantage of these operators is that they provide a good compensation to
the existing HFL aggregation operators, and the HFL power aggregation operators can capture the
relationships between the input arguments. The organization of this paper is arranged as follows.
In Section 2, we briefly introduce the Hamacher t-norm and t-conorm and review some basic concepts
of an HFL term set. We develop some HFL Hamacher aggregation operators and some HFL Hamacher
power aggregation operators in Sections 3 and 4, respectively, and also discuss their special cases
and investigate their basic properties. Section 5 utilizes these proposed operators to present two
methods to handle MCDM problems with HFL information. We perform the developed methods on
a numerical example and compare them with some existing HFL MCDM approaches in Section 6.
Section 7 provides the conclusions of this paper.

2. Preliminaries

In this section, we briefly introduce the Hamacher t-norm and t-conorm and some basic concepts
of HFLTS.
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2.1. Hamacher Operations

There is an important concept in fuzzy set theory, that is, t-norm and t-conorm, which are utilized
to define a generalized intersection and union of fuzzy sets [54]. A number of t-norm and t-conorm
have been proposed, including Algebraic product TA and Algebraic sum SA [1], Einstein product TE
and Einstein sum SE [55], and drastic product TD and drastic sum SD [56]. Further, Hamacher [36]
developed a more generalized t-norm and t-conorm, that is, the Hamacher product (Hamacher t-norm)
and Hamacher sum (Hamacher t-conorm), which are calculated as follows:

Tυ
H(a, b) = a⊗ b =

ab
υ + (1− υ)(a + b− ab)

, υ > 0

Sυ
H(a, b) = a⊕ b =

a + b− ab− (1− υ)ab
1− (1− υ)ab

, υ > 0

In particular, when υ = 1, then the Hamacher t-norm and t-conorm are transformed into the
Algebraic product TA and Algebraic sum SA [1].

TA(a, b) = a · b

SA(a, b) = a + b− a · b

When υ = 2, then the Hamacher t-norm and t-conorm are transformed into the Einstein product
TE and Einstein sum SE [55].

TE(a, b) = a⊗ b =
ab

1 + (1− a)(1− b)

SE(a, b) = a⊕ b =
ab

1 + ab

2.2. Hesitant Fuzzy Linguistic Term Set

Motivated by the HFS and fuzzy linguistic method, Rodríguez et al. [19] introduced the notion
of HFLTS.

Definition 1. [19]. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS. An HFLTS, HS, is constructed by
a finite subset of the continuous linguistic terms of S.

In order to help understand the concept of HFLTS, Liao et al. [20] gave the mathematical expression
of HFLTS.

Definition 2. [20]. Let X = {x1, x2, · · · , xn} be a fixed set and S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be
an LTS. An HFLST on X, HS, is defined as the following

HS = {< x, hS(xi) >|xi ∈ X}, i = 1, 2, · · · , n. (1)

where hS(xi) is a collection of some linguistic terms in S and can be defined as
hS(xi) = {si

t
∣∣si

t ∈ S, i = 1, 2, · · · , L} with L being the number of linguistic term in hS(xi). For convenience,
hS(xi) is referred to as the HFLE.

To perform the equivalent conversion between HFLE and HFE, Gou [30] defined two equivalent
conversion functions.
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Definition 3. [30]. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, hS = {st|t ∈ [−τ, τ]} be
an HFLE, and hσ = {σ|σ ∈ [0, 1]} be an HFE. The equivalent transformation from HFLE hS to HFE hσ

is performed by the following function g

g : [−τ, τ]→ [0, 1], hσ = g(hS) = {σ = g(st) =
t

2τ
+

1
2
}

Similarly, the equivalent transformation from HFE hσ to HFLE hS is performed by the following
inverse function g−1.

g−1 : [0, 1]→ [−τ, τ], hS = g−1(hσ) = {st = g−1(σ) = s(2σ−1)τ}

Definition 4. [57]. For any three HFLEs, hS, hS1 , and hS2 , g and g−1 are the equivalent conversion functions
between HFLE and HFE, and λ > 0; the operational rules on HFLEs are defined as follows:

(1) hS1 ⊕ hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )
{g−1(σ1 + σ2 − σ1σ2)};

(2) hS1 ⊗ hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )
{g−1(σ1σ2)};

(3) λhS = ∪
σ∈g(hS)

{g−1(1− (1− σ)λ)};

(4) (hS)
λ = ∪

σ∈g(hS)
{g−1(σλ)}.

In the following, we introduce the Hamacher t-norm and t-conorm to the HFLTS environment
and define some new operational rules on HFLEs.

Definition 5. For any three HFLEs, hS, hS1 , and hS2 , g and g−1 are the equivalent conversion functions
between HFLE and HFE, and υ > 0. According to the Hamacher t-norm and t-conorm, some operational rules
on HFLEs are defined as follows:

(1) hS1 ⊕H hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )

{
g−1

(
σ1+σ2−σ1σ2−(1−υ)σ1σ2

1−(1−υ)σ1σ2

)}
;

(2) hS1 ⊗H hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )

{
g−1

(
σ1σ2

υ+(1−υ)(σ1+σ2−σ1σ2)

)}
;

(3) λhS = ∪
σ∈g(hS)

{
g−1

(
(1+(υ−1)σ)λ−(1−σ)λ

(1+(υ−1)σ)λ+(υ−1)(1−σ)λ

)}
, λ > 0;

(4) (hS)
λ = ∪

σ∈g(hS)

{
g−1

(
υσλ

(1+(υ−1)(1−σ))λ+(υ−1)σλ

)}
, λ > 0.

Remark 1. When υ = 1, we can see that these operations of HFLEs in Definition 5 are transformed into those
in Definition 4. In other words, the operations in Definition 4 are a special case of Definition 5 by comparing
Definition 4 with Definition 5.

In addition, when υ = 2, these basic operations of HFLEs in Definition 5 are transformed into the Einstein
operations on HFLEs.

(1) hS1 ⊕E hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )

{
g−1

(
σ1+σ2

1+σ1σ2

)}
;

(2) hS1 ⊗E hS2 = ∪
σ1∈g(hS1

),σ2∈g(hS2 )

{
g−1

(
σ1σ2

1−(1−σ1)(1−σ2)

)}
;

(3) λhS = ∪
σ∈g(hS)

{
g−1

(
(1+σ)λ−(1−σ)λ

(1+σ)λ+(1−σ)λ

)}
, λ > 0;
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(4) (hS)
λ = ∪

σ∈g(hS)

{
g−1

(
2σλ

(2−σ)λ+σλ

)}
, λ > 0.

To compare the two HFLEs, Gou [30] defined the score function of HFLE as follows.

Definition 6. [30]. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS and hS = {st|t ∈ [−τ, τ]} be
an HFLE, then the score function of hS is defined as the following

s(hS) = ∑L
i=1 g(si)/L (2)

where L is the number of the elements of hS. Therefore, the comparative relation for two HFLEs is determined
as follows:

(1) If s(hS1) > s(hS2), then hS1 is superior hS2 , denoted by hS1 > hS2 ;
(2) If s(hS1) = s(hS2), then hS1 is equal to hS2 , denoted by hS1 = hS2 .

Definition 7. [58]. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, and
hS1 = {sl

1t

∣∣∣sl
1t ∈ S, l = 1, 2, · · · , L1} , and hS2 = {sl

2t

∣∣∣sl
2t ∈ S, l = 1, 2, · · · , L2} be the two HFLEs.

If L1 = L2 and λ > 0, then the generalized hesitant fuzzy linguistic distance between hS1 and hS2 is defined
as follows

d(hS1 , hS2) =

(
1
L∑L

i=1

(∣∣∣g(si
1t)− g(si

2t)
∣∣∣)λ
) 1

λ

(3)

where g is the equivalent conversion function gave in Definition 3. When λ = 2, d(hS1 , hS2) is called the HFL
Euclidean distance between hS1 and hS2 .

When applying Equation (3), if L1 6= L2, then the shorter one (L1 < L2) needs to be extended by
adding the linguistic terms given as s1 =

(
s1

1t + sL1
1t

)
/2, where s1

1t and sL1
1t are the smallest and biggest

linguistic terms in hS1 , respectively.

3. Hesitant Fuzzy Linguistic Hamacher Aggregation Operators

In this part, we present a hesitant fuzzy linguistic Hamacher weighted averaging (HFLHWA) and
a hesitant fuzzy linguistic Hamacher weighted geometric (HFLHWG), a generalized hesitant fuzzy
linguistic Hamacher weighted averaging (GHFLHWA) and a generalized hesitant fuzzy linguistic
Hamacher weighted geometric (GHFLHWG) operators. Furthermore, we also discuss some special
cases of these operators and explore some properties of these operators.

3.1. HFLHWA and HFLHWG Operators

Definition 8. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. If

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = w1hS1 ⊕H w2hS2 ⊕H · · · ⊕H wnhSn =

n
⊕H
i=1

(
wihSi

)
(4)

Then, HFLHWAυ
w is designated as the HFL Hamacher weighted averaging (HFLHWA) operator.
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Theorem 1. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent transformation
functions between HFLEs and HFEs. Then the aggregated value by the HFLHWA operator is also an HFLE, and

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
∏n

i=1 (1+(υ−1)σi)
wi−∏n

i=1 (1−σi)
wi

∏n
i=1 (1+(υ−1)σi)

wi+(υ−1)∏n
i=1 (1−σi)

wi

)}
(5)

Proof. According to mathematical induction method, Equation (5) can be proved as follows.
For n = 1, the result of Equation (5) clearly holds. Suppose Equation (5) hold for n = k, namely

HFLHWAυ
w(hS1 , hS2 , · · · , hSk ) = ∪

σi∈g(hSi
)

{
g−1

(
∏k

i=1 (1+(υ−1)σi)
wi−∏k

i=1 (1−σi)
wi

∏k
i=1 (1+(υ−1)σi)

wi+(υ−1)∏k
i=1 (1−σi)

wi

)}

Then, for n = k + 1, by Equation (4), we can get

HFLHWAυ
w(hS1 , hS2 , · · · , hSk , hSk+1) = w1hS1 ⊕H w2hS2 ⊕H · · · ⊕H wk+1hSk+1 =

k
⊕H
i=1

(wihSi )⊕H wk+1hSk+1

= ∪
σi∈g(hSi

)

{
g−1

(
∏k

i=1 (1+(υ−1)σi)
wi−∏k

i=1 (1−σi)
wi

∏k
i=1 (1+(υ−1)σi)

wi+(υ−1)∏k
i=1 (1−σi)

wi

)}
⊕H ∪

σk+1∈g(hSk+1
)

{
g−1

(
(1+(υ−1)σk+1)

wk+1−(1−σk+1)
wk+1

(1+(υ−1)σk+1)
wk+1+(υ−1)(1−σk+1)

wk+1

)}

Let ∏k
i=1 (1 + (υ− 1)σi)

wi = α1, ∏k
i=1 (1− σi)

wi = β1, (1 + (υ− 1)σk+1)
wk+1 = α2, and

(1− σk+1)
wk+1 = β2, then

k
⊕H
i=1

(wihSi ) = ∪
σi∈g(hSi

)

{
g−1

(
α1−β1

α1+(υ−1)β1

)}
and wk+1hSk+1 = ∪

σk+1∈g(hSk+1
)

{
g−1

(
α2−β2

α2+(υ−1)β2

)}

Further, the operational law (1) in Definition 5 yields

k
⊕H
i=1

(wihSi )⊕H wk+1hSk+1 = ∪
σ1∈g(hS1

),σ2∈g(hS2 ),··· ,σk∈g(hSk
)

{
g−1

(
α1−β1

α1+(υ−1)β1

)}
⊕H ∪

σk+1∈g(hSk+1
)

{
g−1

(
α2−β2

α2+(υ−1)β2

)}
= ∪

σ1∈g(hS1
),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1

)

{
g−1

(
(α1−β1)(α2+(υ−1)β2)+(α2−β2)(α1+(υ−1)β1)−(2−υ)(α1−β1)(α2−β2)

(α1+(υ−1)β1)(α2+(υ−1)β2)−(1−υ)(α1−β1)(α2−β2)

)}
= ∪

σ1∈g(hS1
),σ2∈g(hS2 ),····,σk+1∈g(hSk+1

)

{
g−1

(
α1α2−β1β2

α1α2+(υ−1)β1β2

)}
= ∪

σi∈g(hSi
)

{
g−1

(
∏k+1

i=1 (1+(υ−1)σi)
wi−∏k+1

i=1 (1−σi)
wi

∏k+1
i=1 (1+(υ−1)σi)

wi+(υ−1)∏k=1
i=1 (1−σi)

wi

)}

That is, Equation (5) holds for n = k + 1. Therefore, Equation (5) holds for all n. �

Remark 2. When υ = 1, then the HFLHWA operator is transformed into the following:

HFLWAw(hS1 , hS2 , · · · , hSk ) =
n
⊕H
i=1

(wihSi ) = ∪
σi∈g(hSi

)

{
g−1

(
1−

k

∏
i=1

(1− σi)
wi

)}

where HFLWAw is called the HFLWA operator by Zhang and Qi [29]. When υ = 2, the HFLHWA operator is
transformed into to the following:

HFLEWAw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
∏n

i=1 (1 + σi)
wi −∏n

i=1 (1− σi)
wi

∏n
i=1 (1 + σi)

wi + ∏n
i=1 (1− σi)

wi

)}
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Here, HFLEWAw is called the HFLEWA operator. Especially when wi = 1/n, then the HFLHWA operator is
transformed into the hesitant fuzzy Hamacher averaging (HFLHA) operator.

HFLHAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
∏n

i=1 (1 + (υ− 1)σi)
1
n −∏n

i=1 (1− σi)
1
n

∏n
i=1 (1 + (υ− 1)σi)

1
n + (υ− 1)∏n

i=1 (1− σi)
1
n

)}

Example 1. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS and τ = 3. hS1 = {s−1, s1} and hS2 =

{s−2, s0} are two HFLEs; w = (0.4, 0.6) are the weights of hS1 and hS2 , respectively. Then we can aggregate
them by employing the HFLHWA (υ = 3) operator.

HFLHWA3
w(hS1 , hS2) = ∪

σ1∈g(hS1
),σ2∈g(hS2 )

{
g−1

(
∏2

i=1 (1+(3−1)σi)
wi−∏2

i=1 (1−σi)
wi

∏2
i=1 (1+(3−1)σi)

wi+(3−1)∏2
i=1 (1−σi)

wi

)}

= ∪
σ1∈g(hS1

),σ2∈g(hS2 )

g−1


(1+2× 1

3 )
0.4

(1+2× 1
6 )

0.6−( 2
3 )

0.4
( 5

6 )
0.6

(1+2× 1
3 )

0.4
(1+2× 1

6 )
0.6

+2×( 2
3 )

0.4
( 5

6 )
0.6 , 3×( 1

3 )
0.4×( 1

2 )
0.6

(1+2× 2
3 )

0.4×(1+2× 1
2 )

0.6
+2×( 1

3 )
0.4×( 1

2 )
0.6

3×( 2
3 )

0.4×( 1
6 )

0.6

(1+2× 1
3 )

0.4×(1+2× 5
6 )

0.6
+2×( 2

3 )
0.4×( 1

6 )
0.6 , 3×( 2

3 )
0.4×( 1

2 )
0.6

(1+2× 1
3 )

0.4×(1+2× 1
2 )

0.6
+2×( 2

3 )
0.4×( 1

2 )
0.6




= {g−1(0.2333, 0.3862, 0.4355, 0.5716)}
= {s−1.6004, s−0.6829, s−0.3870, s0.4299}

Idempotent 1. Let hSi (i = 1, 2, · · · , n) be equal and each hSi which have only one value, namely, hSi = hS =

{st} for any i, then
HFLHWAυ

w(hS1 , hS2 , · · · , hSn) = hS (6)

Proof. According to Definition 3, we have

g : [−τ, τ]→ [0, 1], g(st) =

{
t

2τ
+

1
2
= σ

∣∣∣∣t ∈ [−τ, τ]

}
= hσ

Then, HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σ∈g(hS)

{
g−1

(
∏n

i=1 (1+(υ−1)σ)wi−∏n
i=1 (1−σ)wi

∏n
i=1 (1+(υ−1)σ)wi+(υ−1)∏n

i=1 (1−σ)wi

)}
=

∪
σ∈g(hS)

{
g−1

(
(1+(υ−1)σ)∑n

i=1 wi−(1−σ)∑n
i=1 wi

(1+(υ−1)σ)∑n
i=1 wi+(υ−1)(1−σ)∑n

i=1 wi

)}
= ∪

σ∈g(hS)
{g−1(σ)} = {st} = hS.

Therefore, we have HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = hS. �

Remark 3. Note that the HFLHWA operator is not idempotent in general; the following example is provided to
demonstrate this case.

Example 2. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, τ = 3, hS1 = hS2 = hS =

{s−1, s1} and w = (0.4, 0.6)T . Then HFLHWA3
w(hS1 , hS2) = {0.3333, 0.4804, 0.5480, 0.6667},

s(HFLHWA3
w(hS1 , hS2)) = 0.5071 and s(hS) = 0.5. Therefore, HFLHWA3

w(hS1 , hS2) > hS.

Monotonic 1. Let ha
S = {ha1

S , ha2
S , · · · , han

S } and hb
S = {hb1

S , hb2
S , · · · , hbn

S } be two any collection of HFLEs.
If for any sai

t ∈ hai
S and sbi

t ∈ hbi
S , and sai

t ≤ sbi
t for any i, then

HFLHWAυ
w(h

a1
S , ha2

S , · · · , han
S ) ≤ HFLHWAυ

w(h
b1
S , hb2

S , · · · , hbn
S ) (7)

Proof. Let f (x) = 1+(υ−1)x
1−x , x ∈ [0, 1) and υ > 0. Since f ′(x) = υ

(1−x)2 > 0, f (x) is

an increasing function.
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According to Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(

sρi
t

)
=

t
2τ

+
1
2
= σρi , g

(
hρi

S

)
=

{
t

2τ
+

1
2
= σρi

∣∣∣∣t ∈ [−τ, τ]

}
= hρi

where i = 1, 2, · · · , n and ρ = a or ρ = b. Then for any sai
t ≤ sbi

t , we have σai ≤ σbi
, further,

f (σai ) ≤ f (σbi
).

Suppose wi(i = 1, 2, · · · , n) be the weight of hSi , satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. Based on

the above condition, we can get

∪
σai∈g(h

ai
S )

{
g−1

(
∏n

i=1

( 1+(υ−1)σai
1−σai

)wi
)}
≤ ∪

σbi
∈g(h

bi
S )

{
g−1

(
∏n

i=1

(
1+(υ−1)σbi

1−σbi

)wi
)}

⇒ ∪
σai∈g(h

ai
S )

{
g−1

(
∏n

i=1

( 1+(υ−1)σai
1−σai

)wi
+ (υ− 1)

)}
≤ ∪

σbi
∈g(h

bi
S )

{
g−1

(
∏n

i=1

(
1+(υ−1)σbi

1−σbi

)wi

+ (υ− 1)
)}

⇒ ∪
σai∈g(h

ai
S )

{
g−1

(
1− υ∏n

i=1 (1−σai )
wi

∏n
i=1 (1+(υ−1)σai )

wi+(υ−1)∏n
i=1 (1−σai )

wi

)}

≤ ∪
σbi
∈g(h

bi
S )

{
g−1

(
1− υ∏n

i=1 (1−σbi
)wi

∏n
i=1 (1+(υ−1)σbi

)wi+(υ−1)∏n
i=1 (1−σbi

)wi

)}

⇒ ∪
σai∈g(h

ai
S )

{
g−1

(
∏n

i=1 (1+(υ−1)σai )
wi−∏n

i=1 (1−σai )
wi

∏n
i=1 (1+(υ−1)σai )

wi+(υ−1)∏n
i=1 (1−σai )

wi

)}

≤ ∪
σbi
∈g(h

bi
S )

{
g−1

(
∏n

i=1 (1+(υ−1)σbi
)wi−∏n

i=1 (1−σbi
)wi

∏n
i=1 (1+(υ−1)σbi

)wi+(υ−1)∏n
i=1 (1−σbi

)wi

)}

Therefore, based on Theorem 1, we have HFLHWAυ
w
(
ha1

S , ha2
S , · · · , han

S
)

≤
HFLHWAυ

w

(
hb1

S , hb2
S , · · · , hbn

S

)
. �

Bounded 1. Let hSi (i = 1, 2, · · · , n) be a set of HFLEs, if h+S = {s+} = max

(
∪

si
t∈hSi

max{si
t}
)

and

h−S = {s−} =
(
∪

si
t∈hSi

min{si
t}
)

, then

h−S ≤ HFLHWAυ
w
(
hS1 , hS2 , · · · , hSn

)
≤ h+S (8)

Proof. According to Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(

si
t

)
=

t
2τ

+
1
2
= σi, g

(
hSi

)
=

{
t

2τ
+

1
2
= σi

∣∣∣∣t ∈ [−τ, τ]

}
= hi

where i = 1, 2, · · · , n. Then, s− ≤ si
t ≤ s+ for any i, we have σ− ≤ σi ≤ σ+.

Suppose wi(i = 1, 2, · · · , n) be the weight of hSi , satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. Based on

the monotonic of HFLHWA, we can get

HFLHWAυ
w
(
hS1 , hS2 , · · · , hSn

)
= ∪

σi∈g(hSi
)

{
g−1

(
∏n

i=1 (1+(υ−1)σi)
wi−∏n

i=1 (1−σi)
wi

∏n
i=1 (1+(υ−1)σi)

wi+(υ−1)∏n
i=1 (1−σi)

wi

)}
≥ ∪

σ−∈g(hSi
)

{
g−1

(
∏n

i=1 (1+(υ−1)σ−)wi−∏n
i=1 (1−σ−)wi

∏n
i=1 (1+(υ−1)σ−)wi+(υ−1)∏n

i=1 (1−σ−)wi

)}
= ∪

σ−∈g(hSi
)

{
g−1

(
(1+(υ−1)σ−)∑n

i=1 wi−(1−σ−)∑n
i=1 wi

(1+(υ−1)σ−)∑n
i=1 wi+(υ−1)(1−σ−)∑n

i=1 wi

)}
= ∪

σ−∈g(hSi
)
{g−1(σ−)} = h−S
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Similarly, HFLHWAυ
w
(
hS1 , hS2 , · · · , hSn

)
≤ h+S . Therefore, h−S ≤ HFLHWAυ

w
(
hS1 , hS2 , · · · , hSn

)
≤

h+S . �

Commutative 1. Let hSi (i = 1, 2, · · · , n) be a set of HFLEs, and (hS1 , hS2 , · · · , hSn) be any permutation of
(hS1 , hS2 , · · · , hSn), then

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = HFLHWAυ

w(hS1 , hS2 , · · · , hSn) (9)

Proof. Equation (9) clearly holds and the proof is omitted here. �

Lemma 1. [59]. Let yi > 0 (i = 1, 2, · · · , n) and wi be the weight of yi, satisfying wi ∈ [0, 1] and
∑n

i=1 wi = 1, then

∏n
i=1 (yi)

wi ≤∑n
i=1 (wiyi) (10)

with equality if and only if y1 = y2 = · · · = yn.

Theorem 2. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion functions
between HFLEs and HFEs, and υ > 0. Then

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) ≤ HFLWAw(hS1 , hS2 , · · · , hSn) (11)

Proof. For any si
t ∈ hSi , based on Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(
hSi

)
=

{
t

2τ
+

1
2
= σi

∣∣∣∣t ∈ [−τ, τ]

}
= hi

Further, according to Equation (10), we have

∏n
i=1 (1 + (υ− 1)σi)

wi + (υ− 1)∏n
i=1 (1− σi)

wi ≤ ∑n
i=1 wi(1 + (υ− 1)σi) + (υ− 1)∑n

i=1 wi(1− σi) = υ

then,

HFLHWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
∏n

i=1 (1+(υ−1)σi)
wi−∏n

i=1 (1−σi)
wi

∏n
i=1 (1+(υ−1)σi)

wi+(υ−1)∏n
i=1 (1−σi)

wi

)}
= ∪

σi∈g(hSi
)

{
g−1

(
1− υ∏n

i=1 (1−σi)
wi

∏n
i=1 (1+(υ−1)σi)

wi+(υ−1)∏n
i=1 (1−σi)

wi

)}
≤ ∪

σi∈g(hSi
)

{
g−1

(
1− υ∏n

i=1 (1−σi)
wi

υ

)}
= ∪

σi∈g(hSi
)

{
g−1(1−∏n

i=1 (1− σi)
wi
)}

= HFLWAw(hS1 , hS2 , · · · , hSn)

Therefore, Equation (11) holds. �

Definition 9. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) be the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. If

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) = (hS1)

w1 ⊗H (hS2)
w2 ⊗H · · · ⊗H (hSn)

wn =
n
⊗H
i=1

(hSi )
wi (12)

then HFLHWGυ
w is designated as the HFL Hamacher weighted geometric (HFLHWG) operator.

Theorem 3. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion
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functions between HFLEs and HFEs, and υ > 0. Then the aggregated value by the HFLHWG operator is also
an HFLE, and

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
υ∏n

i=1 (σi)
wi

∏n
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏n
i=1 (σi)

wi

)}
(13)

Proof. According to the mathematical induction method, Equation (13) can be proved as follows.
For n = 1, the result of Equation (13) clearly holds. Suppose Equation (13) holds for n = k, namely

HFLHWGυ
w(hS1 , hS2 , · · · , hSk ) = ∪

σi∈g(hSi
)

{
g−1

(
υ∏k

i=1 (σi)
wi

∏k
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏k
i=1 (σi)

wi

)}

Then, for n = k + 1, by Equation (12), we can get

HFLHWGυ
w(hS1 , hS2 , · · · , hSk , hSk+1) = (hS1)

w1 ⊗H (hS2)
w2 ⊗H · · · ⊗H (hSn)

wn ⊗H (hSk+1)
wk+1 =

n
⊗H
i=1

(hSi )
wi ⊗H (hSk+1)

wk+1

= ∪
σi∈g(hSi

)

{
g−1

(
υ∏k

i=1 (σi)
wi

∏k
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏k
i=1 (σi)

wi

)}
⊗H ∪

σk+1∈g(hSk+1
)

{
g−1

(
υσ

wk+1
k+1

(1+(υ−1)(1−σk+1))
wk+1+(υ−1)σ

wk+1
k+1

)}

Let ∏k
i=1 (1 + (υ− 1)(1− σi))

wi = α1, ∏k
i=1 (σi)

wi = β1, (1 + (υ− 1)(1− σk+1))
wk+1 = α2 and

σ
wk+1
k+1 = β2, then

k
⊗H
i=1

(hSi )
wi = ∪

σ1∈g(hS1
),σ2∈g(hS2 ),··· ,σk∈g(hSk

)

{
g−1

(
υβ1

α1+(υ−1)β1

)}
and (hSk+1)

wk+1 = ∪
σk+1∈g(hSk+1

)

{
g−1

(
υβ2

α2+(υ−1)β2

)}

Further, the operational law (2) in Definition 5 yields

k
⊗H
i=1

(hSi )
wi ⊗H (hSk+1)

wk+1

= ∪
σ1∈g(hS1

),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1
)

g−1

 υ2β1β2
(α1+(υ−1)β1)(α2+(υ−1)β2)

υ+(1−υ)

(
υβ1(α2+(υ−1)β2)+υβ2(α1+(υ−1)β1)−υ2β1β2

(α1+(υ−1)β1)(α2+(υ−1)β2)

)


= ∪
σ1∈g(hS1

),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1
)

{
g−1

(
υβ1β2

(α1+(υ−1)β1)(α2+(υ−1)β2)−(υ−1)(α2β1+α1β2+(υ−2)β1β2)

)}
= ∪

σ1∈g(hS1
),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1

)

{
g−1

(
υβ1β2

α1α2+(υ−1)β1β2

)}
= ∪

σ1∈g(hS1
),σ2∈g(hS2 ),··· ,σk+1∈g(hSk+1

)

{
g−1

(
υ∏k+1

i=1 (σi)
wi

∏k+1
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏k+1
i=1 (σi)

wi

)}

That is, Equation (13) holds for n = k + 1. Therefore, Equation (13) holds for all n. �

Remark 4. When υ = 1, then the HFLHWG operator transforms into the following:

HFLWGw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
∏n

i=1 (σi)
wi
)}

where HFLWGw is called the HFLWG operator [29]. When υ = 2, then the HFLHWG operator transforms into
the following:

HFLEWGw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
2∏n

i=1 (σi)
wi

∏n
i=1 (2− σi)

wi + ∏n
i=1 (σi)

wi

)}
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where HFLEWGw is called the HFL Einstein weighted geometric (HFLEWG) operator. Especially when wi =

1/n, then the HFLHWG operator is transformed into the hesitant fuzzy Hamacher geometric (HFLHG) operator.

HFLHGυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
υ∏n

i=1 (σi)
1
n

∏n
i=1 (1 + (υ− 1)(1− σi))

1
n + (υ− 1)∏n

i=1 (σi)
1
n

)}

Example 3. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS and τ = 3. hS1 = {s−1, s1} and hS2 =

{s−2, s0} are two HFLEs, and w = (0.4, 0.6) is the weight of hS1 and hS2 , respectively. Then we can aggregate
them by employing the HFLHWG (υ = 3) operator.

HFLHWG3
w(hS1 , hS2) = ∪

σ1∈hS1
,σ2∈hS2

{
g−1

(
3∏2

i=1 (σi)
wi

∏2
i=1 (1+(3−1)(1−σi))

wi+(3−1)∏2
i=1 (σi)

wi

)}

= ∪
σ1∈g(hS1

),σ2∈g(hS2 )

g−1


3×( 1

3 )
0.4×( 1

6 )
0.6

(1+2× 2
3 )

0.4×(1+2× 5
6 )

0.6
+2×( 1

3 )
0.4×( 1

6 )
0.6 , 3×( 1

3 )
0.4×( 1

2 )
0.6

(1+2× 2
3 )

0.4×(1+2× 1
2 )

0.6
+2×( 1

3 )
0.4×( 1

2 )
0.6

3×( 2
3 )

0.4×( 1
6 )

0.6

(1+2× 1
3 )

0.4×(1+2× 5
6 )

0.6
+2×( 2

3 )
0.4×( 1

6 )
0.6 , 3×( 2

3 )
0.4×( 1

2 )
0.6

(1+2× 1
3 )

0.4×(1+2× 1
2 )

0.6
+2×( 2

3 )
0.4×( 1

2 )
0.6




= {g−1(0.2223, 0.3120, 0.4284, 0.5645)}
= {s−1.6662, s−1.1279, s−0.4299, s0.3870}

Idempotent 2. Let hSi (i = 1, 2, · · · , n) be equal with each hSi having only one value, namely, hSi = hS = {st}
for any i, then

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) = hS (14)

Proof. The proof of Equation (14) is similar to Equation (6) and is omitted here. �

Remark 5. Note that the HFLHWG operator is not idempotent when hSi includes more than one value;
the following example is provided to demonstrate this case.

Example 4. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, τ = 3, hS1 = hS1 = hS =

{s−1, s1} and w = (0.4, 0.6)T . Then HFLHWG3
w(hS1 , hS2) = {0.3333, 0.4520, 0.5196, 0.6667},

s(HFLHWG3
w(hS1 , hS2)) = 0.4929, and s(hS) = 0.5. Therefore, HFLHWG3

w(hS1 , hS2) < hS.

Monotonic 2. Let ha
S = {ha1

S , ha2
S , · · · , han

S } and hb
S = {hb1

S , hb2
S , · · · , hbn

S } be two of any collection of HFLEs.
If for any sai

t ∈ hai
S and sbi

t ∈ hbi
S , and sai

t ≤ sbi
t for any i, then

HFLHWGυ
w(h

a1
S , ha2

S , · · · , han
S ) ≤ HFLHWGυ

w(h
b1
S , hb2

S , · · · , hbn
S ) (15)

Proof. Let f (x) = 1+(υ−1)(1−x)
x , x ∈ (0, 1] and υ > 0. Since f ′(x) = −υ

x2 < 0, hence f (x) is
a decreasing function.

According to Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(

sρi
t

)
=

t
2τ

+
1
2
= σρi , g

(
hρi

S

)
= { t

2τ
+

1
2
= σρi

∣∣∣∣t ∈ [−τ, τ]} = hρi

where i = 1, 2, · · · , n and ρ = a or ρ = b. Then for any sai
t ≤ sbi

t , we have σai ≤ σbi
, further,

f (σai ) ≥ f (σbi
).
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Suppose wi(i = 1, 2, · · · , n) is the weight of hSi , satisfying wi ∈ [0, 1] and ∑n
i=1 wi = 1. Based on

the above condition, we have

∪
σai∈g(h

ai
S )

{
g−1

(
∏n

i=1

( 1+(υ−1)(1−σai )

σai

)wi
)}
≥ ∪

σbi
∈g(h

bi
S )

{
g−1

(
∏n

i=1

(
1+(υ−1)(1−σbi

)

σbi

)wi
)}

⇒ ∪
σai∈g(h

ai
S )

{
g−1

(
∏n

i=1

( 1+(υ−1)(1−σai )

σai

)wi
+ (υ− 1)

)}
≥ ∪

σbi
∈g(h

bi
S )

{
g−1

(
∏n

i=1

( 1+(υ−1)(1−σai )

σai

)wi
+ (υ− 1)

)}
⇒ ∪

σai∈g(h
ai
S )

{
g−1

(
υ∏n

i=1 (σai )
wi

∏n
i=1 (1+(υ−1)(1−σai ))

wi+(υ−1)∏n
i=1 (σai )

wi

)}
≤ ∪

σbi
∈g(h

bi
S )

{
g−1

(
υ∏n

i=1 (σbi
)wi

∏n
i=1 (1+(υ−1)(1−σbi

))wi+(υ−1)∏n
i=1 (σbi

)wi

)}

Therefore, based on Theorem 3, we have HFLHWGυ
w
(
ha1

S , ha2
S , · · · , han

S
)

≤
HFLHWGυ

w

(
hb1

S , hb2
S , · · · , hbn

S

)
. �

Bounded 2. Let hSi (i = 1, 2, · · · , n) be a set of HFLEs, if h+S = {s+} = max

(
∪

si
t∈hSi

max{si
t}
)

and

h−S = {s−} =
(
∪

si
t∈hSi

min{si
t}
)

, then

h−S ≤ HFLHWGυ
w
(
hS1 , hS2 , · · · , hSn

)
≤ h+S (16)

Proof. The proof of Equation (16) is similar to Equation (8) and is omitted here. �

Commutative 2. Let hSi (i = 1, 2, · · · , n) be a collection of HFLEs, and (hS1 , hS2 , · · · , hSn) be any permutation
of (hS1 , hS2 , · · · , hSn), then

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) = HFLHWGυ

w(hS1 , hS2 , · · · , hSn) (17)

Proof. Equation (17) clearly holds and the proof of Equation (17) is omitted here. �

Theorem 4. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion functions
between HFLEs and HFEs, and υ > 0. Then

HFLHWGυ
w(hS1 , hS2 , · · · , hSn) ≥ HFLWGw(hS1 , hS2 , · · · , hSn) (18)

Proof. For any si
t ∈ hSi , based on Definition 3, we have

g : [−τ, τ]→ [0, 1], g
(
hSi

)
=

{
t

2τ
+

1
2
= σi

∣∣∣∣t ∈ [−τ, τ]

}
= hi

Further, according to Equation (10), we have

∏n
i=1 (1 + (υ− 1)(1− σi))

wi + (υ− 1)∏n
i=1 (σi)

wi ≤ ∑n
i=1 wi(1 + (υ− 1)(1− σi)) + (υ− 1)∑n

i=1 wi(σi) = υ

then
HFLHWGυ

w(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
υ∏n

i=1 (σi)
wi

∏n
i=1 (1+(υ−1)(1−σi))

wi+(υ−1)∏n
i=1 (σi)

wi

)}
≥ ∪

σi∈g(hSi
)

{
g−1

(
υ∏n

i=1 (σi)
wi

υ

)}
= ∪

σi∈g(hSi
)

{
g−1(∏n

i=1 (σi)
wi
)}

= HFLWGw(hS1 , hS2 , · · · , hSn)
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Therefore, Equation (18) holds. �

3.2. GHFLHWA and GHFLHWG Operators

Definition 10. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs, υ > 0 and λ > 0. wi(i = 1, 2, · · · , n)
is the weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. If

GHFLHWAυ,λ
w (hS1 , hS2 , · · · , hSn) = w1(hλ

S1
)⊕H w2(hλ

S2
)⊕H · · · ⊕H wn(hλ

Sn
) =

(
n
⊕H
i=1

(
wi(hλ

Si
)
)) 1

λ

(19)

then GHFLHWAυ,λ
w is designated as the generalized HFL Hamacher weighted averaging (GHFLHWA) operator.

Theorem 5. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion
functions between HFLEs and HFEs, and υ > 0. Then the aggregated value by the GHFLHWA operator is also
an HFLE and

GHFLHWAυ,λ
w (hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

g−1


 ∏n

i=1 (1+
υ(υ−1)σλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

wi
−∏n

i=1 (1−
υσλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

wi

∏n
i=1 (1+

υ(υ−1)σλ
i

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

wi
+(υ−1)∏n

i=1 (1−
υσλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

wi


1
λ




(20)

Proof. According to the mathematical induction method, the proof of Equation (20) is similar to that of
Theorem 1 and is omitted here. �

Remark 6. When λ = 1, the GHFLHWA operator is reduced to the HFLHWA operator; when λ→ 0 ,
GHFLHWA operator is reduced to the HFLHWG operator.

When υ = 1, the GHFLHWA operator is reduced to the following:

GHFLWAλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

((
1−∏n

i=1 (1− σλ
i )

wi
) 1

λ

)}

where GHFLWAλ
w is called the generalized HFL weighted averaging (GHFLWA) operator. Particularly, when

λ = 1, the GHFLHWA operator is further transformed into the HFLWA operator; when λ→ 0 , the GHFLHWA
operator is further transformed into the HFLWG operator.

When υ = 2, the GHFLHWA operator is transformed into the following:

GHFLEWAλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

g−1


∏n

i=1 (1+
2σλ

i
(2−σi)

λ+σλ
i
)

wi
−∏n

i=1 (1−
2σλ

i
(2−σi)

λ+σλ
i
)

wi

∏n
i=1 (1+

2σλ
i

(2−σi)
λ+σλ

i
)

wi
+∏n

i=1 (1−
2σλ

i
(2−σi)

λ+σλ
i
)

wi


1
λ




where GHFLEWAλ
w is designated as the generalized HFL Einstein weighted averaging (GHFLEWA) operator.

Particularly, when λ = 1, the GHFLHWA operator is further transformed into the HFLEWA operator; when
λ→ 0 , GHFLHWA is further transformed into the HFLEWG operator.

Definition 11. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. If

GHFLHWGυ,λ
w (hS1 , hS2 , · · · , hSn) =

1
λ (λhS1)

w1 ⊗H (λhS2)
w2 ⊗H · · · ⊗H (λhSn)

wn = 1
λ

(
n
⊗H
i=1

(λhSi )
wi

)
(21)



Symmetry 2018, 10, 189 15 of 30

then GHFLHWGυ,λ
w is designated as the generalized HFL Hamacher weighted geometric (GHFLHWG) operator.

Theorem 6. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent conversion
functions between HFLEs and HFEs, and υ > 0. Then the aggregated value by the GHFLHWG operator is also
an HFLE, and

GHFLHWGυ,λ
w (hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

g−1

1−

1−
υ∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
wi

∏n
i=1 (1+

υ(υ−1)(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
wi
+(υ−1)∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
wi


1
λ




(22)

Proof. According to mathematical induction method, the proof of Equation (21) is similar to that of
Theorem 3 and is omitted here. �

Remark 7. When λ = 1, the GHFLHWG operator is transformed into the HFLHWG operator; when λ→ 0 ;
the GHFLHWG operator is transformed into the HFLHWA operator.

When υ = 1, GHFLHWG operator is transformed into the following:

GHFLWGλ
w = ∪

σi∈g(hSi
)

{
g−1

(
1−

(
1−∏n

i=1 (1− (1− σi)
λ)

wi
) 1

λ

)}

where GHFLWGλ
w is designated as the generalized HFL weighted geometric (GHFLWG) operator. Particularly,

when λ = 1, the GHFLHWG operator is further transformed into the HFLWG operator; when λ→ 0 ,
GHFLHWG operator is further transformed into the HFLWA operator.

When υ = 2, the GHFLHWG operator is transformed into the following:

GHFLEWGλ
w = ∪

σi∈g(hSi
)

g−1

1−

1−
2∏n

i=1 (
(1+σi)

λ−(1−σi)
λ

(1+σi)
λ+(1−σi)

λ )
wi

∏n
i=1 (2−

(1+σi)
λ−(1−σi)

λ

(1+σi)
λ+(1−σi)

λ )
wi
+∏n

i=1 (
(1+σi)

λ−(1−σi)
λ

(1+σi)
λ+(1−σi)

λ )
wi


1
λ




where GHFLWGλ
w is designated as the generalized HFL Einstein weighted geometric (GHFLEWG) operator.

Particularly, when λ = 1, the GHFLHWG operator is transformed into the HFLEWG operator; when λ→ 0 ,
GHFLHWG operator is reduced to the HFLEWA operator.

4. Hesitant Fuzzy Linguistic Hamacher Power Aggregation Operators

This section defines an HFL Hamacher power weighted averaging (HFLHPWA) operator, an HFL
Hamacher power weighted geometric (HFLHPWG) operator, a generalized HFL Hamacher power
weighted averaging (GHFLHPWA) operator, and a generalized HFL Hamacher power weighted
geometric (GHFLHPWG) operator. In addition, we discuss some special cases withthese operators.

4.1. The HFLHPWA and HFLHPWG Operators

Definition 12. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and wi(i = 1, 2, · · · , n) be the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the hesitant fuzzy linguistic Hamacher
power weighted averaging (HFLHPWA) operator is defined as follows:

HFLHPWAw(hS1 , hS2 , · · · , hSn) =
n
⊕

i=1

(
wi(1 + T(hSi ))hSi /∑n

i=1 wi(1 + T(hSi ))
)

(23)
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where T(hSi ) = ∑n
i=1,j 6=i Sup(hSi , hSj) and Sup(hSi , hSj) expresses the support degree for hSi from hSj , which

satisfies the following three properties.

(1) 0 ≤ Sup(hSi , hSj) ≤ 1;

(2) Sup(hSi , hSj) = Sup(hSj , hSi );

(3) Sup(hSi , hSj) ≥ Sup(hSx , hSy), if d(hSi , hSj) ≤ d(hSx , hSy).

Theorem 7. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the aggregated value by the HFLHPWA
operator is also an HFLE, and

HFLHPWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
∏n

i=1 (1+(υ−1)σi)
pi−∏n

i=1 (1−σi)
pi

∏n
i=1 (1+(υ−1)σi)

pi+(υ−1)∏n
i=1 (1−σi)

pi

)}
(24)

where pi = wi(1 + T(hSi ))/∑n
i=1 wi(1 + T(hSi )), pi ≥ 0 and ∑n

i=1 pi = 1.

Proof. According to mathematical induction method, the proof of Equation (24) is similar to Theorem
1 and is omitted here. �

Remark 8. If Sup(hSi , hSj) = c, for all i 6= j, then HFLHPWA operator is transformed into the following:

HFLHAυ(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
∏n

i=1 (1 + (υ− 1)σi)
1
n −∏n

i=1 (1− σi)
1
n

∏n
i=1 (1 + (υ− 1)σi)

1
n + (υ− 1)∏n

i=1 (1− σi)
1
n

)}

where HFLHAυ is called the HFLHA operator.
When υ = 1, then the HFLHPWA operator is transformed into the following:

HFLPWAw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
1−∏n

i=1 (1− σi)
pi
)}

where HFLPWAw is called the HFL power weighted averaging (HFLPWA) operator.
When υ = 2, then the HFLHPWA operator is transformed into the following:

HFLEPWAw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
∏n

i=1 (1 + σi)
pi −∏n

i=1 (1− σi)
pi

∏n
i=1 (1 + σi)

pi + ∏n
i=1 (1− σi)

pi

)}
where HFLEPWAw is designated as the HFL Einstein power weighted averaging (HFLEPWA) operator.

Remark 9. The HFLHPWA operator is neither idempotent, monotonic, bounded, nor commutative with regard
to the input arguments, which are shown in Example 5.

Example 5. Let S = {st|t = −τ, · · · ,−1, 0, 1, · · · , τ} be an LTS, τ = 3, hS1 = {s1, s2}, hS2 = {s0, s3},
hS3 = {s0, s2}, and hS4 = {s0, s1} be four HFLEs. Let w = (0.3, 0.5, 0.2)T and υ = 3.

Based on Definition 3, according to Equation (2), we have s(hS1) = s(hS2) = 0.75, s(hS3) = 0.6667
and s(hS4) = 0.5833. Then, by employing HFLHPWA operator yields

s(HFLHPWA3(hS1 , hS1 , hS1)) = 0.7572

s(HFLHPWA3(hS1 , hS3 , hS4)) = 0.6903

s(HFLHPWA3(hS1 , hS4 , hS3)) = 0.6657
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s(HFLHPWA3(hS1 , hS1 , hS3)) = 0.7452

s(HFLHPWA3(hS2 , hS2 , hS4)) = 0.8793

Since s(HFLHPWA3(hS1 , hS1 , hS1)) 6= s(hS1), the HFLHPWA operator is not idempotent.
It is obvious that s(HFLHPWA3(hS2 , hS2 , hS4)) > s(HFLHPWA3(hS1 , hS1 , hS3)), therefore,

the HFLHPWA operator is not monotonic. On the other hand, since s(HFLHPWA3(hS2 , hS2 , hS4)) >

s(hS2) > s(hS4), the HFLHPWA operator is not bounded.
Furthermore, s(HFLHPWA3(hS1 , hS3 , hS4)) 6= s(HFLHPWA3(hS1 , hS4 , hS3)), the HFLHPWA

operator is not commutative.

Theorem 8. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent transformation
functions between HFLEs and HFEs, and υ > 0. Then

HFLHPWAυ
w(hS1 , hS2 , · · · , hSn) ≤ HFLPWAw(hS1 , hS2 , · · · , hSn) (25)

Proof. According to Equation (10), we have

∏n
i=1 (1 + (υ− 1)σi)

pi + (υ− 1)∏n
i=1 (1− σi)

pi ≤ ∑n
i=1 pi(1 + (υ− 1)σi) + (υ− 1)∑n

i=1 pi(1− σi) = υ

HFLHPWAυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
∏n

i=1 (1+(υ−1)σi)
pi−∏n

i=1 (1−σi)
pi

∏n
i=1 (1+(υ−1)σi)

pi+(υ−1)∏n
i=1 (1−σi)

pi

)}
= ∪

σi∈g(hSi
)

{
g−1

(
1− υ∏n

i=1 (1−σi)
pi

∏n
i=1 (1+(υ−1)σi)

pi+(υ−1)∏n
i=1 (1−σi)

pi

)}
≤= ∪

σi∈g(hSi
)

{
g−1

(
1− υ∏n

i=1 (1−σi)
pi

υ

)}
= ∪

σi∈g(hSi
)
{g−1(1−∏n

i=1 (1− σi)
pi
)
} = HFLPWAw(hS1 , hS2 , · · · , hSn)

Therefore, Equation (25) holds. �

Definition 13. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs, and wi(i = 1, 2, · · · , n) be the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the HFL Hamacher power weighted
geometric (HFLHPWG) operator is defined as follows:

HFLHPWGw(hS1 , hS2 , · · · , hSn) =
n
⊗

i=1
(hSi )

wi(1+T(hSi
))/∑n

i=1 wi(1+T(hSi
)) (26)

where T(hSi ) = ∑n
i=1,j 6=i Sup(hSi , hSj) and Sup(hSi , hSj) expresses the support degree for hSi from hSj , which

is also satisfy the three properties in Definition 12.

Theorem 9. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the aggregated value by the
HFLHPWG operator is also an HFLE, and

HFLHPWGυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈hSi

{
g−1

(
υ∏n

i=1 (σi)
pi

∏n
i=1 (1+(υ−1)(1−σi))

pi+(υ−1)∏n
i=1 (σi)

pi

)}
(27)

where pi = wi(1 + T(hSi ))/∑n
i=1 wi(1 + T(hSi )), pi ≥ 0 and ∑n

i=1 pi = 1.

Proof. According to mathematical induction method, the proof of Equation (27) is similar to Theorem 3
and is omitted here. �
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Remark 10. If Sup(hSi , hSj) = c, for all i 6= j, then the HFLHPWG operator is transformed into the following:

HFLHGυ(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
υ∏n

i=1 (σi)
1
n

∏n
i=1 (1+(υ−1)(1−σi))

1
n +(υ−1)∏n

i=1 (σi)
1
n

)}

where HFLHGυ is called the HFL Hamacher geometric (HFLHG) operator.
When υ = 1, then the HFLHPWG operator is transformed into the following:

HFLPWGw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
∏n

i=1 (σi)
pi
)}

where HFLPWGw is called the HFL power weighted geometric (HFLPWG) operator.
When υ = 2, then the HFLHPWG operator is transformed into the following:

HFLEPWGw(hS1 , hS2 , · · · , hSn) = ∪
σi∈g(hSi

)

{
g−1

(
2∏n

i=1 (σi)
pi

∏n
i=1 (2− σi)

pi + ∏n
i=1 (σi)

pi

)}
where HFLEPWGw is designated as the HFL Einstein power geometric (HFLEPWG) operator.

Remark 11. Similar to the HFLHPWA operator, the HFLHPWG operator is neither idempotent, monotonic,
bounded, nor commutative with regard to the input arguments.

Theorem 10. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and wi(i = 1, 2, · · · , n) be the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. g and g−1 are the equivalent transformation
functions between HFLEs and HFEs, and υ > 0. Then

HFLHPWGυ
w(hS1 , hS2 , · · · , hSn) ≥ HFLPWGw(hS1 , hS2 , · · · , hSn) (28)

Proof. According to Equation (10), we have

∏n
i=1 (1 + (υ− 1)σi)

pi + (υ− 1)∏n
i=1 (1− σi)

pi ≤ ∑n
i=1 pi(1 + (υ− 1)σi) + (υ− 1)∑n

i=1 pi(1− σi) = υ

HFLHPWGυ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
υ∏n

i=1 (σi)
pi

∏n
i=1 (1+(υ−1)(1−σi))

pi+(υ−1)∏n
i=1 (σi)

pi

)}
≥ ∪

σi∈g(hSi
)

{
g−1

(
υ∏n

i=1 (σi)
pi

υ

)}
= ∪

σi∈g(hSi
)

{
g−1(∏n

i=1 (σi)
pi
)}

= HFLPWGw(hS1 , hS2 , · · · , hSn)

Therefore, Equation (28) holds. �

4.2. The GHFLHPWA and GHFLHPWG Operators

Definition 14. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and wi(i = 1, 2, · · · , n) be the weight
of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the generalized hesitant fuzzy linguistic
Hamacher power weighted averaging (GHFLHPWA) operator is defined as follows:

GHFLHPWAλ
w(hS1 , hS2 , · · · , hSn) =

(
n
⊕

i=1

((
wi(1 + T(hSi ))(hSi )

λ
)

/∑n
i=1 wi(1 + T(hSi ))

)) 1
λ

(29)

where T(hSi ) = ∑n
i=1,j 6=i Sup(hSi , hSj) and Sup(hSi , hSj) expresses the support degree for hSi from hSj , which

satisfies the three properties in Definition 12.
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Theorem 11. Let HS = {hS1 , hS2 , · · · , hSn} be a collection of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the
weight of hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the aggregated value by the
GHFLHPWA operator is also an HFLE, and

GHFLHPWAυ,λ
w (hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

g−1


 ∏n

i=1 (1+
υ(υ−1)σλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

pi
−∏n

i=1 (1−
υσλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

pi

∏n
i=1 (1+

υ(υ−1)σλ
i

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

pi
+(υ−1)∏n

i=1 (1−
υσλ

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

pi


1
λ




(30)

where pi = wi(1 + T(hSi ))/∑n
i=1 wi(1 + T(hSi )), pi ≥ 0 and ∑n

i=1 pi = 1.

Proof. According to the mathematical induction method, the proof of Equation (30) is similar to
Theorem 1 and is omitted here. �

Remark 12. Sup(hSi , hSj) = c, for all i 6= j, then GHFLHPWA operator is transformed into the following:

GHFLHAυ,λ(hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

g−1


 ∏n

i=1 (1+
υ(υ−1)σλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

1
n
−∏n

i=1 (1−
υσλ

i
(1+(υ−1)(1−σi))

λ+(υ−1)σλ
i
)

1
n

∏n
i=1 (1+

υ(υ−1)σλ
i

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

1
n

+(υ−1)∏n
i=1 (1−

υσλ

(1+(υ−1)(1−σi))
λ+(υ−1)σλ

i
)

1
n


1
λ



where GHFLHAυ,λ is designated as the generalized HFL Hamacher averaging (GHFLHA) operator.
When υ = 1, then the GHFLHPWA operator is transformed into the following:

GHFLPWAλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

((
1−∏n

i=1 (1− σλ
i )

pi
) 1

λ

)}

where GHFLPWAλ
w is designated as the generalized HFL power weighted averaging (GHFLPWA) operator.

Particularly, when λ = 1, the GHFLHPWA operator is further transformed into the HFLPWA operator; when
λ→ 0 , GHFLHPWA operator is further transformed into the HFLPWG operator.

When υ = 2, then GHFLHPWA operator is transformed to the following:

GHFLEPWAλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

g−1


∏n

i=1 (1+
2σλ

i
(2−σi)

λ+σλ
i
)

pi
−∏n

i=1 (1−
2σλ

i
(2−σi)

λ+σλ
i
)

pi

∏n
i=1 (1+

2σλ
i

(2−σi)
λ+σλ

i
)

pi
+∏n

i=1 (1−
2σλ

(2−σi)
λ+σλ

i
)

pi


1
λ




where GHFLEPWAλ
w is designated as the generalized HFL Einstein power weighted averaging (GHFLEPWA)

operator. Particularly, when λ = 1, the GHFLHPWA operator is further transformed into the HFLEPWA
operator; when λ→ 0 , GHFLHPWA operator is further transformed into the HFLEPWG operator.

Remark 13. Similar to the HFLHPWA operator, the GHFLHPWA operator is neither idempotent,
monotonic, bounded, nor commutative with regard to the input arguments.

Definition 15. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and wi(i = 1, 2, · · · , n) be the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the generalized hesitant fuzzy linguistic
Hamacher power weighted geometric (GHFLHPWG) operator is defined as follows:

GHFLHPWGλ
w(hS1 , hS2 , · · · , hSn) =

1
λ

(
n
⊗

i=1
(λhSi )

wi(1+T(hSi
))/∑n

i=1 wi(1+T(hSi
))
)

(31)
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where T(hSi ) = ∑n
i=1,j 6=i Sup(hSi , hSj), and Sup(hSi , hSj) expresses the support degree for hSi from hSj , which

satisfies the three properties in Definition 12.

Theorem 12. Let HS = {hS1 , hS2 , · · · , hSn} be a set of HFLEs and υ > 0. wi(i = 1, 2, · · · , n) is the weight of
hSi (i = 1, 2, · · · , n), satisfying wi ∈ [0, 1] and ∑n

i=1 wi = 1. Then the aggregated value by the GHFLHPWG
operator is also an HFLE, and

GHFLHPWGυ,λ
w (hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

g−1

1−

1−
υ∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
pi

∏n
i=1 (1+

υ(υ−1)(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
pi
+(υ−1)∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )
pi


1
λ




(32)

where pi = wi(1 + T(hSi ))/∑n
i=1 wi(1 + T(hSi )), pi ≥ 0 and ∑n

i=1 pi = 1.

Proof. According to the mathematical induction method, the proof of Equation (32) is similar to
Theorem 3 and is omitted here. �

Remark 14. Sup(hSi , hSj) = c, for all i 6= j, then the GHFLHPWG operator is transformed into the following:

GHFLHGυ,λ(hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

g−1

1−

1−
υ∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )

1
n

∏n
i=1 (1+

υ(υ−1)(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )

1
n
+(υ−1)∏n

i=1 (
(1+(υ−1)σi)

λ−(1−σi)
λ

(1+(υ−1)σi)
λ+(υ−1)(1−σi)

λ )

1
n


1
λ




where GHFLHGυ,λ is designated as the generalized HFL Hamacher geometric (GHFLHG) operator.
When υ = 1, then the GHFLHPWG operator is transformed into the following:

GHFLPWGλ
w(hS1 , hS2 , · · · , hSn) = ∪

σi∈g(hSi
)

{
g−1

(
1−

(
1−∏n

i=1 (1− (1− σi)
λ)

pi
) 1

λ

)}

where GHFLPWGλ
w is designated as the generalized HFL power weighted geometric (GHFLPWG) operator.

Particularly, when λ = 1, the GHFLHPWG operator is further transformed into the HFLPWG operator; when
λ→ 0 , the GHFLHPWG operator is further transformed into the HFLPWA operator.

When υ = 2, then the GHFLHPWG operator is transformed into the following:

GHFLEPWGλ
w(hS1 , hS2 , · · · , hSn)

= ∪
σi∈g(hSi

)

g−1

1−

1−
2∏n

i=1 (
(1+σi)

λ−(1−σi)
λ

(1+σi)
λ+(1−σi)

λ )
pi

∏n
i=1 (2−

(1+σi)
λ−(1−σi)

λ

(1+σi)
λ+(1−σi)

λ )
pi
+(υ−1)∏n

i=1 (
(1+σi)

λ−(1−σi)
λ

(1+σi)
λ+(1−σi)

λ )
pi


1
λ




where GHFLEPWGλ
w is designated as the generalized HFL Einstein power weighted geometric (GHFLEPWG)

operator. Particularly, when λ = 1, the GHFLHPWG operator is further transformed into the HFLEPWG
operator; when λ→ 0 , the GHFLHPWG operator is further transformed into the HFLPWA operator.

Remark 15. Similar to the HFLHPWA operator, the GHFLHPWG operator is neither idempotent, monotonic,
bounded, nor commutative with regard to the input arguments.

5. Methods for MCDM Based on the Hesitant Fuzzy Linguistic Hamacher Operators

In this part, we develop two methods based on the presented operators to handle an MCDM
problem with hesitant fuzzy linguistic information.
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A general MCDM problem under the hesitant fuzzy linguistic environment can be depicted
as follows.

Let A = {A1, A2, · · · , Am} be the set of m candidates alternatives, and C = {C1, C2, · · · , Cn}
be the set of n evaluation criteria, which have the weight vector w = (w1, w2, · · · , wn)

T satisfying
wj ∈ [0, 1] and ∑n

j=1 wj = 1. Suppose that ĤS = (ĥSij)m×n
be the hesitant fuzzy linguistic evaluation

matrix, where ĥSij is an HFLE and expresses the evaluation value of alternative Ai with respect to the
criterion Cj.

Generally, there are two types of criteria, the benefit criterion and cost criterion, in an MCDM
problem. When all the criteria are not of the same types, the values of the cost criterion need
to be transformed into the values of the benefit criterion to construct a decision-making matrix
HS = (hSij)m×n

by employing Equation (33).

hSij = {
ĥSij , for benefit criterion

(ĥSij)
C

, for cost criterion
,(i = 1, 2, · · · , m; j = 1, 2, · · · , n) (33)

In order to yield the best alternative, the GHFLHWA operator or the GHFLHWG operator, which
was developed based on the Hamacher operations, is utilized for the proposed MCDM approach
under the hesitant fuzzy linguistic environment. The proposed method includes the following steps.

Method 1. (The flowchart of Method 1 is shown in Figure 1.)

Step 1. Determine the linguistic term set that is applied to evaluate each alternative with respect to
each criterion; then the hesitant fuzzy linguistic evaluation matrix ĤS = (ĥSij)m×n

is obtained.

Step 2. Normalized the evaluation matrix ĤS = (ĥSij)m×n
according to Equation (33).

Step 3. Aggregate the criteria values by the GHFLHWA or GHFLHWG operator as follow:

hSi = GHFLHWA(hSi1 , hSi2 , · · · , hSin) or hSi = GHFLHWG(hSi1 , hSi2 , · · · , hSin) (34)

Step 4. Compute the score value of each alternative by Equation (2).
Step 5. Obtained the ranking order of alternatives by the decreasing of the score value.

To reflect the correlation between the input arguments in MCDM problem, we use the
GHFLHPWA or GHFLHPWG operator for the proposed MCDM approach. The steps involved
are depicted as follows.

Method 2. (The flowchart of Method 2 is shown in Figure 1.)

Step 1. Determine the linguistic term set that is applied to evaluate each alternative with respect to
each criterion; then the hesitant fuzzy linguistic evaluation matrix ĤS = (ĥSij)m×n

is obtained.

Step 2. Normalize the evaluation matrix ĤS = (ĥSij)m×n
according to Equation (33).

Step 3. Calculate the support degree of hSi using the following formula.

T(hSij) = ∑n
j=1,k 6=j Sup(hSij , hSik ) (35)

Sup(hSij , hSik ) = 1− d(hSij , hSik ) (36)

Step 4. Obtained the power weight vector p by the following formula.

pij = wj(1 + T(hSij))/∑n
j=1 wj(1 + T(hSij)) (37)
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Step 5. Aggregate the criteria values by the GHFLHPWA or GHFLHPWG operators.

hSi = GHFLHPWA(hSi1 , hSi2 , · · · , hSin) or hSi = GHFLHPWG(hSi1 , hSi2 , · · · , hSin) (38)

Step 6. Compute the score value of each alternative by Equation (2).
Step 7. Determined the priority order of alternatives by the decreasing of score value.
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Figure 1. The flowcharts of the Method 1 and Method 2. 
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Figure 1. The flowcharts of the Method 1 and Method 2.

6. An Application of the Proposed Operators to MCDM

6.1. Numeric Example

A board of directors of a venture capital company is planning to choose a suitable city to invest
in a project of sharing cars in the next three years. The venture capital company determined four
alternative cities Ai(i = 1, 2, 3, 4) through preliminary market research. In order to evaluate and
rank these cities, four criteria (all of them are benefit criteria) are identified by the board of directors
including the economic development level (C1), the public transportation development level (C2),
the number of public parking lots (C3), and the urban road resources (C4). Assume that the weight
vector of these criteria is w = (0.3, 0.1, 0.4, 0.2)T.
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In what follows, we employ Method 1 to determine the most suitable city without considering
the correlations of the input arguments.

Step 1. The board of directors constructs a nine-point linguistic term set to evaluate the ratings
of cities, that is, S = {s−4 = worst, s−3 = very bad, s−2 = bad, s−1 = slightly bad, s0 =

medium, s1 = slightly good, s2 = good, s3 = very good, s4 = best}. Then the decision
makers utilize the linguistic term to evaluate the ratings of the cities and the obtained hesitant
fuzzy linguistic evaluation matrix ĤS = (ĥSij)m×n

is presented in Table 1.

Step 2. Since these criteria are all benefit criterions, the evaluate matrix ĤS = (ĥSij)m×n
is not

necessary to be normalized.
Step 3. Let λ = 2 and υ = 3, aggregate all of the criteria evaluation values according to

the GHFLHWA operator into the total evaluation value hSi (i = 1, 2, 3, 4) of alternative
Ai(i = 1, 2, 3, 4).

Step 4. Calculate the score values s(hSi ) of hSi by Definition 6.The obtained results are as follows:

s(hS1) = 0.5080, s(hS2) = 0.6534, s(hS3) = 0.5685, s(hS4) = 0.7340

Step 5. Based on the decreasing order of score values, we have hS4 > hS2 > hS3 > hS1 . Therefore,
the best city is A4.

Table 1. The hesitant fuzzy linguistic evaluation matrix.

Cities C1 C2 C3 C4

A1 {s0, s1} {s0} {s1, s2} {s−2, s−1}
A2 {s1, s2} {s2, s3} {s2} {s−1, s1}
A3 {s1} {s0, s1} {s1, s2} {s0, s1}
A4 {s2, s3} {s0, s2} {s1, s3} {s2}

The parameter υ in the GHFLHWA operator indicates the experts’ preference over the alternative
with respect to each criterion. In order to explore how the different preference parameter υ in the
GHFLHWA operator influences the score values of the alternatives, we utilized different values of
υ ∈ (0, 10], which are commonly determined by decision makers. The relative results are shown in
Figure 2. It is easy to observe from Figure 2 that the score values of the alternatives become smaller
with the increasing values of parameter υ. In addition, for the GHFLHWA operator, we can also
ascertain from Figure 2 that the final ranking of alternatives for the different parameter υ values does
not change. Therefore, the value of parameter υ can be chosen by the decision maker according to
their preference.

If we use the GHFLHWG operator instead of the GHFLHWA operator to aggregate the criteria
values, the variation of score values of the alternatives is shown in Figure 3. From Figure 3, for the
GHFLHWG operator, we can see that the score values of the alternatives become greater with the
increase of parameter υ, which is just the opposite of the GHFLHWA operator. Furthermore, the priority
order of alternatives is also not influenced by the different values of parameter υ.
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When the relationships of the input data are taken into account, we apply Method 2 to resolve the
above numerical example.

The first two steps are the same as Method 1.

Step 3. Compute the support degree Sup(hSj , hSk )(j = 1, 2, 3, 4; j 6= k).

Sup1j =


0 0.9116 0.8750 0.7500

0.9116 0 0.8024 0.8024
0.8750 0.8024 0 0.6250
0.7500 0.8024 0.6250 0

, Sup2j =


0 0.8750 0.9116 0.8024

0.8750 0 0.9116 0.6813
0.9116 0.9116 0 0.7205
0.8024 0.6813 0.7205 0



Sup3j =


0 0.9116 0.9116 0.9116

0.9116 0 0.8750 1
0.9116 0.8750 0 0.8750
0.9116 1 0.8750 0

,

 Sup4j =


0 0.8024 0.9116 0.9116

0.8024 0 0.8750 0.8232
0.9116 0.8750 0 0.8750
0.9116 0.8232 0.8750 0


then

T =


2.5366 2.5163 2.3024 2.1774
2.5890 2.4679 2.5437 2.2042
2.7348 2.7866 2.6616 2.7866
2.6256 2.5006 2.6616 2.6908


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Step 4. Calculate the power weight matrix.

P =


0.3149 0.1044 0.3921 0.1886
0.3092 0.0996 0.4071 0.1841
0.3011 0.1018 0.3936 0.2035
0.3001 0.0966 0.4041 0.1992


Step 5. Let λ = 2 and υ = 3, aggregate all of the criteria values into the total evaluation value

hSi (i = 1, 2, 3, 4) of alternative Ai(i = 1, 2, 3, 4) by the GHFLHPWA operator.
Step 6. Calculate the score values s(hSi ) of hSi by Definition 6; the obtained results are as follows:

s(hS1) = 0.5085, s(hS2) = 0.6563, s(hS3) = 0.5677, s(hS4) = 0.7344.
Step 7. Based on the decreasing order of score values, we have hS4 > hS2 > hS3 > hS1 . Therefore, the

best city is A4.

When λ = 2, let υ = 0.1, 0.7, 2, 5, 9, respectively. From one hand, the score values and priority
orders of all alternatives determined by the GHFLHPWA operator are shown in Table 2. When the
value of parameter υ becomes greater, we can obtain a smaller score value of the alternative. We can
also see that the ranking order of alternatives is not affected by the different values of parameter υ.

Table 2. The score values and rankings of alternatives obtained by the GHFLHPWA operator.

GHFLHPWA A1 A2 A3 A4 Ranking

GHFLHPWA0.1
w 0.6464 0.7480 0.6832 0.8034 A4 > A2 > A3 > A1

GHFLHPWA0.7
w 0.6066 0.7231 0.6529 0.7843 A4 > A2 > A3 > A1

GHFLHPWA2
w 0.5441 0.6816 0.6005 0.7542 A4 > A2 > A3 > A1

GHFLHPWA5
w 0.4550 0.6118 0.5173 0.7016 A4 > A2 > A3 > A1

GHFLHPWA9
w 0.3856 0.5467 0.4470 0.6493 A4 > A2 > A3 > A1

On the other hand, if the GHFLHPWG operator is employed to replace the GHFLHPWA operator
in the above calculation, Table 3 gives the score values and the final ranking of the alternatives.
In Table 3, we can observe that the score values of alternatives become greater when the value of
parameter υ increases. In addition, the priority order of alternatives does not change when the
value of parameter υ changes. Hence, the ranking order of alternatives is robust for the parameters
υ = 0.1, 0.7, 2, 5, 9 in this example.

Table 3. The score values and rankings of alternatives obtained by the GHFLHPWG operator.

GHFLHPWG A1 A2 A3 A4 Ranking

GHFLHPWG0.1
w 0.4409 0.5693 0.5328 0.6400 A4 > A2 > A3 > A1

GHFLHPWG0.7
w 0.4969 0.6400 0.5985 0.7143 A4 > A2 > A3 > A1

GHFLHPWG2
w 0.5727 0.7162 0.6779 0.7836 A4 > A2 > A3 > A1

GHFLHPWG5
w 0.6638 0.7909 0.7608 0.8454 A4 > A2 > A3 > A1

GHFLHPWG9
w 0.7253 0.8347 0.8107 0.8796 A4 > A2 > A3 > A1

Based on the above analysis, we can conclude that the priority order of alternatives obtained by
the GHFLHWA and GHFLHWG operators are the same as that obtained by the GHFLHPWA and
GHFLHPWG operators, that is, the ranking order of alternatives is A4 > A2 > A3 > A1. Further,
the results also indicate that the correlations between the input arguments are not enough to affect the
ranking order of alternatives in this example.
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6.2. Comparison with Existing Methods of Hesitant Fuzzy Linguistic MCDM

In this section, we use the proposed methods comparison with the previously developed HFL
MCDM approaches. The previous methods include the proposed approach with Zhang and Wu [24],
where the HFL weighted averaging and HFL weighted geometric operators were employed to
aggregate the HFL evaluation information, and the HFL TOPSIS method [22].

The linguistic term set in these two methods is subscript-asymmetric, however, the linguistic term
set used in this paper is subscript-symmetric. Therefore, we need to transform the evaluation matrix
into another form for the use of these two approaches. The transformed HFL evaluation matrix is
shown in Table 4.

Table 4. The transformed hesitant fuzzy linguistic evaluation matrix.

Cities C1 C2 C3 C4

A1 {s4, s5} {s4} {s5, s6} {s2, s3}
A2 {s5, s6} {s6, s7} {s6} {s3, s5}
A3 {s5} {s4, s5} {s5, s6} {s4, s5}
A4 {s6, s7} {s4, s6} {s5, s7} {s6}

In the following, we utilize the HFLWA operator [24] instead of the GHFLHWA operator in
Method 1 based on the operational laws in Definition 4 to solve the numerical example. That is

hSi = HFLWA(hSi1 , hSi2 , hSi3 , hSi4) =
4
⊕

j=1
(wjhSij) = ∪

σij∈g(hSij
)

{
g−1

(
1−

4

∏
j=1

(1− σij)
wj

)}

then, we can obtain the score values of the alternatives as follows:

s(hS1) = 0.5790, s(hS2) = 0.7060, s(hS3) = 0.6376, s(hS4) = 0.7731

In this situation, the priority order of alternatives is A4 > A2 > A3 > A1, and the best city is A4.
If we use the HFLWG operator [24] instead of the GHFLHWA operator in Method 1, we get

hSi = HFLWG(hSi1 , hSi2 , hSi3 , hSi4) =
4
⊗

j=1
(hSij)

wj = ∪
σij∈g(hSij

)

{
g−1

(
n

∏
j=1

(σij)
wj

)}

Then, we can obtain the score values of the alternatives as follows:

s(hS1) = 0.5326, s(hS2) = 0.6749, s(hS3) = 0.6275, s(hS4) = 0.7094

In this situation, the priority order of alternatives is A4 > A2 > A3 > A1, and the best city is A4.
Based on the above analyses, we can see that the best city and the ranking order of alternatives

obtained by the HFLWA and HFLWG operators are the same for Methods 1 and 2, which illustrate
the validity of Methods 1 and 2. In addition, we should note that the GHFLHWA and GHFLHWG
operators reduce to the HFLWA and HFLWG operator, respectively, when λ = 1 and υ = 1. It indicates
that the method based on the GHFLHWA or GHFLHWG operators is more general and flexible than
the HFLWA or HFLWG operators.

In the following, we apply the HFL TOPSIS method [22] to solve the numerical example. First,
we review the HFL TOPSIS approach as follows:

Step 1. For an MCDM problem with HFL information, let X = {x1, x2, · · · , xm} be a collection
of m alternatives and C = {c1, c2, · · · , cn} be a collection of n criteria with weight vector
w = (w1, w2, · · · , wn)

T satisfying wj ∈ [0, 1] and ∑n
j=1 wj = 1. Suppose R = (hSij)m×n

is
an HFL evaluation matrix provided by the decision makers, where hSij is an HFLE.
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Step 2. Based on the evaluation matrix R, an HFL positive ideal solution (HFLPIS) and an HFL
negative ideal solution (HFLNIS) can be determined by

H+
S = (h+S1

, h+S2
, · · · , h+Sn

) (39)

where h+Sj
= hS1j ∨ hS2j ∨ · · · ∨ hSmj if cj is a benefit criterion and h+Sj

= hS1j ∧ hS2j ∧ · · · ∧ hSmj

if cj is a cost criterion.
H−S = (h−S1

, h−S2
, · · · , h−Sn

) (40)

where h−Sj
= hS1j ∧ hS2j ∧ · · · ∧ hSmj if cj is a benefit criterion and h−Sj

= hS1j ∨ hS2j ∨ · · · ∨ hSmj

if cj is a cost criterion. Where ∨ and ∧ are defined by Definition 3 [22].

Step 3. The distance from each alternative to HFLPIS and HFLNIS are calculated as follows:

d+i = ∑n
j=1 wjd(hSij , h+Sj

) (41)

d−i = ∑n
j=1 wjd(hSij , h−Sj

) (42)

where d(hSij , h+Sj
) and d(hSij , h−Sj

) are determined by Definition 7.

Step 4. The closeness coefficients di of alternatives xi can be calculated by

cci =
d−i

d+i + d−i
(43)

Step 5. Determine the priority orders of all alternatives in the light of the decrease of the closeness
coefficient di.

In what follows, we utilize the HFL TOPSIS approach to resolve the numerical example.
The detailed steps are described as follows:

Step 1. The hesitant fuzzy linguistic evaluation matrix R is shown in Table 4.
Step 2. Based on the hesitant fuzzy linguistic evaluation matrix R, the HFLPIS and the HFLNIS are

determined as
H+

S = ({s6, s7}, {s6, s7}, {s6, s7}, {s6})

H−S = ({s4, s5}, {s4}, {s5, s6}, {s2, s3})

Step 3. The distance from each alternative to HFLPIS and HFLNIS are obtained as

d+1 = 0.2453, d+2 = 0.1288, d+3 = 0.1738, d+4 = 0.0551

d−1 = 0.0000, d−2 = 0.1443, d−3 = 0.0854, d−4 = 0.2164

Step 4. Employ Equation (43) to compute the closeness coefficient of alternative xi.

cc1 = 0.0000, cc2 = 0.5284, cc3 = 0.3293, cc4 = 0.7970

Step 5. The final priority order of all alternatives obtained as follows: A4 > A2 > A3 > A1.

Based on the above calculation, we can see that the best city is A4.
From the obtained results above, we can ascertain that the results determined by the HFL

TOPSIS are the same as that of the proposed methods, which also validates the effectiveness of the
presented methods in this paper. Furthermore, the GHFLHPWA or GHFLHPWG operators in Method
2 consider the relationships between the input arguments through the weight vector determined by
the support degree.
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Compared with the HFLWA or HFLWG operators and the HFL TOPSIS method, the presented
Methods in this paper have the following two advantages. First, decision makers can determine
the parameter value υ in the operators of Methods1 and 2 according to their subjective preferences,
which increases the flexibility of the proposed methods to handle practical decision-making problems.
Second, Method 2 reduces the influences of unreasonable input arguments by using the support
measure assigning a lower weight to them and reflects the correlations between the input arguments
by applying the weight vector allowing the input arguments to support and reinforce each other, both
of which rendering the decision result more reasonable.

7. Conclusions

This paper investigates the information aggregation problem of MCDM problems in which
the value of the criterion is expressed with HFLEs. Inspired by the idea of Hamacher t-norm and
t-conorm, we defined some new basic operational laws on HFLEs based on the Hamacher t-norm
and t-conorm. Then, based on these operational laws, we present several hesitant fuzzy linguistic
Hamacher aggregation operators which are more general and flexible aggregation operators, including
the HFLHWA, HFLHWG, GHFLHWA, GHFLHWG, HFLHPWA, HFLHPWG, GHFLHPWA, and
GHFLHPWG operators. We also discuss some special cases of these operators and explore some of
their desirable properties. Further, we propose two methods based on the GHFLHWA, GHFLHWG,
GHFLHPWA, and GHFLHPWG operators to deal with the MCDM problem with HFLE information.
Ultimately, a numerical example is provided to demonstrate the process of the developed methodology,
and the influence of distinct parameters υ on the score function of the alternative is discussed.
In the future, we will extend the presented operators to other uncertain environments and apply
these operators to other fields, such as supply chain management, risk management, and fuzzy
cluster analysis.
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