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Abstract: We study asymptotic behavior of nonoscillatory solutions to second-order neutral difference
equation of the form: ∆(rn∆(xn + pnxn−τ)) = an f (n, xn) + bn. The obtained results are based on the
discrete Bihari type lemma and a Stolz type lemma.
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1. Introduction

We are concerned with the following nonlinear second-order difference equations

∆(rn∆(xn + pnxn−τ)) = an f (n, xn) + bn, (1)

where
τ ∈ N, rn, an, bn, pn ∈ R, f : N×R→ R, rn > 0, pn → λ ∈ R.

Here N, R denote the set of nonnegative integers and all real numbers, respectively. By a solution
of Equation (1), we mean a sequence x which satisfies Equation (1) for all large n. A solution x is said
to be nonoscillatory if it is eventually positive or eventually negative; otherwise, it is called oscillatory.

In the sequel, we will use the following notation:

r∗n =
n−1

∑
i=1

1
rn

, (2)

by convention r∗1 = 0.
The second-order difference equations have been a subject of numerous studies. In particular,

investigation of neutral difference equations is important since such equations have applications in
various problems of physics, biology, and economics. Recently, there have been many papers devoted
to the oscillation of solutions to equations of the type defined by Equation (1) (see, for example, [1–8]
and the references cited therein). In comparison with oscillation, there are not as many results on the
nonoscillation of these equations.

The asymptotic behavior of solutions of Equation (1) in the case pn ≡ 0 has been studied for
several decades by many authors ([5,9–14]), while some generalizations on time-scale variants of the
equation have been studied in [15–17]. However, there are relatively few works devoted to the study
of the asymptotic behavior of nonoscillatory solutions expressed by Equation (1) when pn 6≡ 0. In 2003,
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using the Leray–Schauder theorem, Agarwal et al. [18] obtained sufficient conditions for the existence
of nonoscillatory solutions for the discrete equation

∆(rn∆(xn + pxn−k)) + F(n + 1, xn+1−σ) = 0.

Liu et al. in [19], proved the existence of uncountably many bounded nonoscillatory solutions to
the problem

∆(rn∆(xn + pxn−k)) + f (n, xn−d1n, . . . , xn−dkn
) = cn,

using Banach’s fixed point theorem, under the Lipschitz continuity condition. Galewski et al. [20]
studied the existence of a bounded solution to the more general equation

∆(rn (∆(xn + pnxn−k))
γ) + qnxα

n + an f (n, xn+1) = 0,

using the techniques connected with the measure of noncompactness. Some sufficient conditions for
the existence of a nonoscillatory solution to the equation

∆(rn∆(xn + pxn−τ)) + an f (xn−k)− bnxn−l = 0,

for p 6= −1 were obtained by Tian et al. in [21]. Moreover, for classification of nonoscillatory solutions
to equations of the type defined by Equation (1), see [22–26].

In [27], the following equation was considered:

∆2(xn + pxn−τ) = an f (n, xn) + bn.

The results obtained in [27] were extended to higher-order equations in [28]. In this paper,
we present generalizations in a different direction, namely to difference equations with quasi-difference
of the type defined by Equation (1). In Theorem 1, using the discrete Bihari type lemma and discrete
L’Hospital’s type lemma, we obtain sufficient conditions, under which all nonoscillatory solutions of
Equation (1) have the property

xn = cr∗n + o(r∗n).

Moreover, in Theorem 2, we show that, under some additional conditions, all nonoscillatory
solutions of Equation (1) have the property

xn = cr∗n + d + o(1).

The results are new even for linear equations of the type defined by Equation (1) and when pn = 0.
We also present applications of the obtained results to some special cases of Equation (1).

2. Main Results

For the proof of the main results, we will need some auxiliary lemmas.

Lemma 1. Assume x, p, z are real sequences, x is bounded, τ ∈ N,

zn = xn + pnxn−τ ,

for n ≥ τ, pn → λ ∈ R, |λ| 6= 1, and zn → α ∈ R. Then x is convergent and

lim
n→∞

xn =
α

1 + λ
.

Proof. The assertion is a consequence of ([27], Lemma 1).
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Remark 1. Lemma 1 was essentially proved in Lemma 1 in [29], where the case of complex sequences was
studied in detail for the case of constant sequence pn. For the case of sequences in Banach spaces, see Lemma 1
in [30].

The following lemma is a discrete version of Bihari type lemma.

Lemma 2. Assume a, w are real sequences, n0 ∈ N, g : [0, ∞)→ [0, ∞), λ ∈ [0, ∞),

∞

∑
n=1
|ak| < ∞, g(λ) > 0,

∫ ∞

λ

ds
g(s)

= ∞, |wn| ≤ λ +
n−1

∑
k=n0

|ak|g(|wk|),

for n ≥ n0, and g is nondecreasing. Then the sequence w is bounded.

Proof. The assertion is a consequence of ([28], Lemma 4.1).

In the proof of Theorem 1, we will use the following Stolz-type lemma, which should be a folklore
one, but it is difficult to find a specific reference in the literature. Because of this, for the completeness
and benefit of the reader, we will provide a proof of the lemma.

Lemma 3. Assume x, y are real sequences, y is bounded and eventually strictly monotonic, and the sequence
(∆xn/∆yn) is convergent. Then the sequence x is convergent. Moreover, if lim

n→∞
yn 6= 0, then the sequence

(xn/yn) is convergent.

Proof. First assume that the sequence y is eventually increasing. Let ε > 0 and

L = lim
n→∞

∆xn

∆yn
.

Choose an index k such that

L− ε ≤ ∆xn

∆yn
≤ L + ε and ∆yn > 0,

for n ≥ k. Then
(L− ε)∆yn ≤ ∆xn ≤ (L + ε)∆yn,

for n ≥ k. Summing from k to n− 1, we obtain

(L− ε)(yn − yk) ≤ xn − xk ≤ (L + ε)(yn − yk).

Since y is bounded, there exists a positive constant S such that |yn − ym| ≤ S for any n, m.
Therefore, we have

Lyn − εS− Lyk + xk ≤ xn ≤ Lyn + εS− Lyk + xk, (3)

for any n ≥ k. Let
U = L lim

n→∞
yn. (4)

Choose an index q ≥ k such that U − ε ≤ Lyn ≤ U + ε for n ≥ q. Let T = xk − Lyk. Then, using
Equations (3) and (4), we have

U − ε− εS + T ≤ xn ≤ U + ε + εS + T,

for any n ≥ q. Hence, |xn − xm| ≤ 2ε(S + 1) for any n, m ≥ q. Therefore, the sequence x is convergent.
If y is eventually decreasing, then the proof of convergence of x is analogous. The last part of the
lemma is now obvious.
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Remark 2. The following simple example shows that, in Lemma 3, the limit of xn/yn can be different than the
limit of ∆xn/∆yn. Let

xn = 2− 1
n

, yn = 1− 1
n

,

then the sequence y is bounded, increasing and

lim
n→∞

xn

yn
= 2 6= lim

n→∞

∆xn

∆yn
= 1.

The next lemma will be used in the proof of Corollary 1. This lemma is probably known, but for
the convenience of the reader, we give a proof.

Lemma 4. Assume σ ∈ (0, ∞) and rn = n1−σ. Then

r∗n = σ−1nσ + o(nσ). (5)

Proof. By Theorem 2.2 in [31], we have

∆nσ = σnσ−1 + o(nσ−1).

Since ∆r∗n = r−1
n = nσ−1, we have

∆r∗n
∆nσ

=
nσ−1

σnσ−1 + o(nσ−1)
=

1
σ + o(1)

→ 1
σ

.

By the Stolz–Cesaro theorem,

r∗n
nσ
→ 1

σ
⇒ r∗n

nσ
= σ−1 + o(1),

and we obtain Equation (5).

Theorem 1. Assume g : [0, ∞)→ [0, ∞) is nondecreasing, α ∈ (0, ∞), g(α) > 0,

∞

∑
n=1
|an| < ∞,

∞

∑
n=1
|bn| < ∞ , (6)

pn ≥ 0, pn → λ ∈ R,
r∗n

r∗n+1
→ µ ∈ R, λ 6= 1 6= λµτ , (7)

∫ ∞

α

ds
g(s)

= ∞, | f (n, u)| ≤ g
(
|u|
r∗n

)
for (n, u) ∈ N×R. (8)

Then every nonoscillatory solution x of Equation (1) has the property

xn = cr∗n + o(r∗n),

where c is a real constant.

Proof. Let x be a nonoscillatory solution of Equation (1). Then there is an index n0, such that xn > 0
for any n ≥ n0 or xn < 0 for any n ≥ n0. Set

zn = xn + pnxn−τ . (9)

Then
|xn| < |zn|, (10)
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for n ≥ n1 = n0 + τ, and Equation (1) takes the form

∆(rn∆zn) = an f (n, xn) + bn.

Let us denote zn1 = c0 and rn1 ∆zn1 = c1. Summing the above equation from n1 to n− 1, we obtain

rn∆zn = c1 +
n−1

∑
j=n1

aj f (j, xj) +
n−1

∑
j=n1

bj. (11)

Dividing both sides of Equation (11) by rn and summing again, we have

zn = c0 + c1

n−1

∑
i=n1

1
ri
+

n−1

∑
i=n1

1
ri

i−1

∑
j=n1

aj f (j, xj) +
n−1

∑
i=n1

1
ri

i−1

∑
j=n1

bj.

Hence, using Equation (2), we have

|zn| ≤ |c0|+ |c1|r∗n +
n−1

∑
i=n1

1
ri

i−1

∑
j=n1

|aj|| f (j, xj)|+
n−1

∑
i=n1

1
ri

i−1

∑
j=n1

|bj|.

Changing the order of summation, we obtain

|zn| ≤ |c0|+ |c1|r∗n +
n−1

∑
i=n1

|ai|| f (i, xi)|
n−1

∑
j=i

1
rj
+

n−1

∑
i=n1

|bj|
n−1

∑
j=i

1
ri

≤ |c0|+ |c1|r∗n + r∗n
n−1

∑
i=n1

|ai|| f (i, xi)|+ r∗n
n−1

∑
i=n1

|bj|.

Hence, by Equation (8),

|zn|
r∗n
≤ |c0|

r∗n0

+ |c1|+
n−1

∑
i=n1

|ai|| f (i, xi)|+
n−1

∑
i=n1

|bj|

≤ d1 +
n−1

∑
i=n1

|ai| g
(
|xi|
r∗i

)
≤ d1 +

n−1

∑
i=n1

|ai| g
(
|zi|
r∗i

)
,

where d1 is an appropriate constant. Therefore, by Lemma 2, there exists a constant K such that

|zn|
r∗n
≤ K, (12)

for any n ≥ n1 + τ. On the other hand, we have

n−1

∑
i=n1

|ai|| f (i, xi)| ≤
n−1

∑
i=n1

|ai|g
(
|xi|
r∗i

)
≤

n−1

∑
i=n1

|ai|g
(
|zi|
r∗i

)
≤ g(K)

n−1

∑
i=n1

|ai|.

Therefore, the series
∞
∑

i=n1

ai f (i, xi) is absolutely convergent. Thus, by Equations (11) and (6),

we see that the sequence (rn∆zn) is convergent. Note that ∆r∗n = r−1
n . Hence,

∆zn

∆r∗n
= rn∆zn.
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If the sequence (r∗n) is unbounded, then by the Stolz–Cesaro Theorem we have

lim
n→∞

zn

r∗n
= lim

n→∞

∆zn

∆r∗n
= lim

n→∞
rn∆zn.

If the sequence (r∗n) is bounded, then by Lemma 3 the sequence (zn/r∗n) is convergent. Now,

wn =
zn

r∗n
, yn =

xn

r∗n
, un =

pnr∗n−τ

r∗n
. (13)

Then, Equation (9) implies
wn = yn + unyn−τ .

Using Equations (10) and (12), we have

|yn| =
|xn|
r∗n
≤ |zn|

r∗n
≤ K.

It is easy to see that the assumption
r∗n

r∗n+1
→ µ

implies
r∗n−τ

r∗n
→ µτ .

Hence, by Equation (13), un → λµτ 6= 1. By Lemma 1, we have

lim
n→∞

xn

r∗n
= lim

n→∞
yn =

lim
n→∞

wn

1 + λµτ
= c.

Therefore,
xn

r∗n
= c + o(1)⇒ xn = cr∗n + o(r∗n).

Theorem 1 extends Theorem 1 in [27].

Note that checking the assumption r∗n
r∗n+1
→ µ ∈ R of Theorem 1 may be difficult, so the following

result can be useful.

Lemma 5. Assume at least one of the following conditions holds

(a) r∗n = O(1), (b) r−1
n = O(1), (c)

rn+1

rn
→ 1.

Then
r∗n

r∗n+1
→ 1. (14)

Proof. (a) Assume r∗n = O(1). Since the sequence (r∗n) is positive and increasing, there exists a limit
lim

n→∞
r∗n = ω ∈ (0, ∞). Then lim

n→∞
r∗n+1 = ω and we have Equation (14).

Now, assume that the sequence r∗ is unbounded. Then r∗n → ∞.
(b) If the sequence (r−1

n ) is bounded, then

r∗n
r∗n+1

=
r∗n

r∗n +
1
rn

=
1

1 + 1
rnr∗n

→ 1
1 + 0

.
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(c) Note that
∆r∗n

∆r∗n+1
=

1
rn
1

rn+1

=
rn+1

rn
.

Hence, by the Stolz–Cesaro theorem, (c) implies Equation (14).

Note that, if r is a potential sequence, i.e., rn = nω, where ω is a fixed real number, then
rn+1/rn → 1. In this case, from Theorem 1, we have the following corollary.

Corollary 1. Assume σ ∈ (0, ∞), rn = n1−σ, h : [0, ∞)→ [0, ∞) is nondecreasing, α ∈ (0, ∞), h(α) > 0,

pn ≥ 0, pn → λ ∈ R, λ 6= 1,
∞

∑
n=1
|an| < ∞,

∞

∑
n=1
|bn| < ∞,

∫ ∞

α

ds
h(s)

= ∞, | f (n, u)| ≤ h
(
|u|
nσ

)
for (n, u) ∈ N×R.

Then every nonoscillatory solution x of Equation (1) has the property

xn = cnσ + o(nσ),

where c is a real constant.

Proof. By Lemma 5(c) we have
r∗n

r∗n+1
→ 1.

Let α = σ−1. Then α > 0 and, by Lemma 4,

r∗n = αnσ + o(nσ) = nσ(α + o(1)) = nσO(1) = O(nσ).

Choose a positive constant L such that for any n we have

r∗n ≤ Lnσ.

Define a function g : [0, ∞)→ [0, ∞) by g(s) = h(Ls). Then g is nondecreasing and∫ ∞

α
L

ds
g(s)

= ∞.

Moreover, for any (n, u) ∈ N×R, we have

| f (n, u)| ≤ h
(
|u|
nσ

)
≤ h

(
L|u|
r∗n

)
= g

(
|u|
r∗n

)
.

Let x be a nonoscillatory solution of Equation (1). By Theorem 1, there exists a constant c′ such
that xn = c′r∗n + o(r∗n). Hence,

xn = c′αnσ + o(O(nσ)) = cnσ + o(nσ).

Theorem 1, applied to the linear equation

∆(rn∆(xn + pnxn−τ)) = qnxn, (15)
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leads to the following corollary.

Corollary 2. Assume that pn ≥ 0, pn → λ ∈ R, r∗n
r∗n+1
→ µ ∈ R, λ 6= 1 6= λµτ , and

∞

∑
n=1

r∗n|qn| < ∞.

Then every nonoscillatory solution (xn) of Equation (15) has the asymptotic property

xn = cr∗n + o(r∗n),

where c is a real constant.

Proof. We get the conclusion of Corollary 2 by applying Theorem 1 with

an = r∗nqn, f (n, u) =
u
r∗n

and g(u) = u.

Applying Theorem 1 to nonlinear difference equation of the form

∆(rn∆(xn + pnxn−τ)) = qnxα
n, 0 < α < 1, (16)

where (pn), (qn) are sequences of real numbers and τ is a nonnegative integer, we have the
following corollary.

Corollary 3. Assume that pn ≥ 0, pn → λ ∈ R, r∗n
r∗n+1
→ µ ∈ R, λ 6= 1 6= λµτ , and

∞

∑
n=1

(r∗n)
α|qn| < ∞.

Then every nonoscillatory solution (xn) of Equation (16) has the property xn = cr∗n + o(r∗n), where c is
a real number.

Proof. The conclusion follows from Theorem 1 with an = r∗n
αqn, f (n, u) = uα

r∗nα and g(u) = uα.

Example 1. Consider the difference equation

∆
(

n(n + 1)∆
(

xn +
2n + 1

n
xn−1

))
= − 12

(n− 1)(n− 2)
xn. (17)

Here, rn = n(n + 1), pn = 2n+1
n , τ = 1, and qn = − 12

(n−1)(n−2) . Hence,

r∗n = 1− 1
n

,
r∗n

r∗n+1
→ 1,

∞

∑
n=1

r∗n|qn| < ∞.

Therefore, all assumptions of Corollary 2 are satisfied. It is not difficult to check that the sequence
xn = 1− 2

n is a solution of Equation (17) with the property

xn = 1− 1
n
− 1

n
= r∗n + o(r∗n).
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Next, we give sufficient conditions under which all nonoscillatory solutions of Equation (1) have
the property xn = cr∗n + d + o(1).

Theorem 2. Assume g : [0, ∞)→ [0, ∞) is nondecreasing,

∞

∑
n=1

n|an| < ∞,
∞

∑
n=1

n|bn| < ∞, (18)

pn ≥ 0, pn → λ ∈ R, λ 6= 1, pn − λ = o
(

1
r∗n

)
, r−1

n → ρ ∈ R,

∫ ∞

0

ds
g(s)

= ∞, | f (n, u)| ≤ g
(
|u|
r∗n

)
for (n, u) ∈ N×R.

Then every nonoscillatory solution x of Equation (1) has the property

xn = cr∗n + d + o(1),

where c, d are real constants.

Proof. Note that all assumptions of Theorem 1 are satisfied. Let x be a nonoscillatory solution of
Equation (1) and let z be defined by Equation (9). As in the proof of Theorem 1, there exists a constant
K such that

|xn|
r∗n
≤ |zn|

r∗n
≤ K,

for n ≥ n1 = n0 + τ. Hence,

| f (n, xn)| ≤ g
(
|xn|
r∗n

)
≤ g(K),

for any n ≥ n1. Therefore, by Equations (1) and (18), the series

∞

∑
n=1

n|∆(rn∆zn)|,

is convergent. Choose a constant L such that r−1
n ≤ L for any n. Then

∞

∑
n=1

1
rn

∞

∑
j=n
|∆(rj∆zj)| ≤ L

∞

∑
n=1

∞

∑
j=n
|∆(rj∆zj)| = L

∞

∑
n=1

n|∆(rn∆zn)| < ∞.

Define a sequence U by

Un =
∞

∑
j=n

1
rj

∞

∑
i=j

∆(ri∆zi).

Then
Un = o(1), (19)

and

∆(rn∆Un) = −∆

(
rn

1
rn

∞

∑
i=n

∆(ri∆zi)

)
= −∆

∞

∑
i=n

∆(ri∆zi) = ∆(rn∆zn). (20)

Define a sequence W by
Wn = zn −Un. (21)

Using Equation (20), we have

∆(rn∆Wn) = ∆(rn∆zn)− ∆(rn∆Un) = ∆(rn∆zn)− ∆(rn∆zn) = 0.
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Hence, there exists a constant P such that rn∆Wn = P for any n. Summing the equality

∆Wn =
P
rn

,

from 1 to n− 1, we obtain

Wn = Q + P
n−1

∑
k=1

1
rk

= Pr∗n + Q, (22)

where Q = W1. Using Equations (21), (22), and (19), we obtain

zn = Wn + Un = Pr∗n + Q + o(1). (23)

Let z′ be a sequence defined by
z′n = xn + λxn−τ ,

for n > τ. Then
z′n = zn + (λ− pn)xn−τ . (24)

By Theorem 1, we have

lim
n→∞

xn−τ

r∗n−τ

= lim
n→∞

xn

r∗n
∈ R.

Moreover, since the sequence r−1 is convergent, the sequence

r∗n
r∗n+1

=
r∗n

r∗n +
1
rn

=
1

1 + 1
rnr∗n

is convergent, too. Hence, the sequence
r∗n−τ

r∗n
is convergent. Therefore,

(λ− pn)xn−τ = o
(

1
r∗n

)
xn−τ =

o(1)
r∗n

xn−τ = o(1)
xn−τ

r∗n−τ

r∗n−τ

r∗n
= o(1).

Thus, by Equations (22) and (24),

z′n = zn + o(1) = Pr∗n + Q + o(1). (25)

Let
un = xn −

P
1 + λ

r∗n. (26)

Then

un + λun−τ = xn −
P

1 + λ
r∗n + λxn−τ −

Pλ

1 + λ
r∗n−τ

= xn −
P

1 + λ
r∗n + λxn−τ −

Pλ

1 + λ
r∗n +

Pλ

1 + λ
(r∗n − r∗n−τ)

= xn + λxn−τ − P
(

1
1 + λ

+
λ

1 + λ

)
r∗n +

Pλ

1 + λ
(r∗n − r∗n−τ)

= z′n − Pr∗n +
Pλ

1 + λ
(r∗n − r∗n−τ).
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Hence, by Equation (25), we have

un + λun−τ = Q + o(1) +
Pλ

1 + λ
(r∗n − r∗n−τ).

Note that r∗n+1 − r∗n = r−1
n → ρ. Similarly, r∗n+2 − r∗n+1 → ρ. Hence,

r∗n+2 − r∗n = r∗n+2 − r∗n+1 + r∗n+1 − r∗n → 2ρ.

Analogously, r∗n − r∗n−τ → τρ. Hence, the sequence (un + λun−τ) is convergent and, by Lemma 1,
the sequence u is convergent, too. Therefore, by Equation (26),

xn =
P

1 + λ
r∗n + un = cr∗n + d + o(1)

where
c =

P
1 + λ

, d = lim
n→∞

un.

Remark 3. Observe that, if the sequence (r∗n) is bounded, then the conclusion of Theorem 2 follows directly
from Theorem 1. Indeed, in this case, we have r∗n = α + o(1). Hence, o(r∗n) = o(1), and we have

xn = cr∗n + o(r∗n) = cr∗n + o(1) = cr∗n + 0 + o(1).

Applying Theorem 2 to a linear equation expressed by (15), we have the following result.

Corollary 4. Assume that pn ≥ 0, pn → λ ∈ R, r∗n
r∗n+1

→ µ ∈ R, λ 6= 1 6= λµτ , pn − λ =

o
(

1
r∗n

)
, limn→∞ r−1

n = ρ ∈ R, and
∞

∑
n=1

nr∗n|qn| < ∞.

Then every nonoscillatory solution (xn) of Equation (15) has the asymptotic property

xn = cr∗n + d + o(1)

where c, d are real constants.

Example 2. Consider the difference equation

∆
(

1
n

∆ (xn + 2xn−1)

)
=

6
n2(n + 1)(n− 1)

xn. (27)

Here, rn = 1
n , pn = 2, τ = 1, and qn = 6

n2(n+1)(n−1) . Then

r∗n =
n(n− 1)

2
,

r∗n
r∗n+1

→ 1,
∞

∑
n=1

r∗n|qn| < ∞.

Note that all assumptions of Corollary 2 are satisfied. One can see that the sequence xn = n2 − 2n is
a solution of Equation (27) with the property

xn = 2r∗n + o(r∗n).
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Note also that the assumption ∑∞
n=1 nr∗n|qn| < ∞ of Corollary 4 is not satisfied, and the sequence x does

not have the property xn = cr∗n + d + o(1).

Applying Theorem 2 to a nonlinear Equation (16), we have the corollary.

Corollary 5. Assume that pn ≥ 0, pn → λ ∈ R, r∗n
r∗n+1

→ µ ∈ R, λ 6= 1 6= λµτ , pn − λ =

o
(

1
r∗n

)
, limn→∞ r−1

n = ρ ∈ R, and
∞

∑
n=1

n(r∗n)
α|qn| < ∞.

Then every nonoscillatory solution (xn) of Equation (16) has the property

xn = cr∗n + d + o(1)

where c, d are real constants.

Example 3. Let rn = 2n, pn = 1
2n , τ = 1, α = 1

2 , and qn = 1
2n+1

√
2+2−n . Then Equation (16) takes the form

∆
(

2n∆
(

xn +
1
2n xn−1

))
=

1
2n+1
√

2 + 2−n

√
xn. (28)

For this equation, we have

r∗n = 1−
(

1
2

)n−1
, µ =

r∗n
r∗n+1

→ 1.

Then
∞

∑
n=1

nr∗n|qn| <
∞

∑
n=1

n
2n+1 < ∞.

Therefore, since all assumptions of Corollary 5 are satisfied, every nonoscillatory solution (xn) of
Equation (28) has the property

xn = cr∗n + d + o(1)

where c, d are real constants. The sequence xn = 1− 1
2n−1 + 1 + 1

2n = 2 + 1
2n is one of such solutions.

Remark 4. This paper is devoted to nonoscillatory solutions. But, in the case pn ≡ 0, our results are true for
all solutions. This follows from the proofs of Theorems 1 and 2, respectively.

3. Conclusions

In this paper, we have presented sufficient conditions, under which all nonoscillatory solutions of
Equation (1) have the property xn = cr∗n + o(r∗n) or the property xn = cr∗n + d + o(1). The presented
results are new even for linear equations of the type defined by Equation (1), and in the case when
pn ≡ 0. The first part of the proof of Theorem 1, based on the summation method and the use of
discrete Bihari type lemma, is in principle standard (see [27,28,32,33]). The second part of the proof
required a new approach with the use of Lemma 3. The difficulty was choosing appropriate conditions
for the sequences p and r. In Theorem 2, this problem was even greater. Our results can be generalized
in two directions. First, one can try to get a more accurate approximation of solutions, e.g., with an
accuracy of o(ns), where s is a nonpositive real number. Secondly, one can try to obtain similar results
for higher-order equations. This problem is not easy to solve. A comparison between [27] and [28]
illustrates the scale of this difficulty.
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