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Abstract: One of the main problems in the theory of strongly regular graphs (SRGs) is constructing
and classifying SRGs with given parameters. Strongly regular graphs with parameters (37, 18, 8, 9),
(41, 20, 9, 10), (45, 22, 10, 11), (49, 24, 11, 12), (49, 18, 7, 6) and (50, 21, 8, 9) are the only strongly regular
graphs on up to 50 vertices that still have to be classified. In this paper, we give the enumeration of
SRGs with these parameters having S3 as an automorphism group. The construction of SRGs in this
paper is a step in the classification of SRGs on up to 50 vertices.
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1. Introduction

We assume that the reader is familiar with the basic notions of the theory of finite groups. For basic
definitions and properties of strongly regular graphs, we refer the reader to [1–3].

A graph is regular if all its vertices have the same valency; a simple regular graph Γ = (V , E) is
strongly regular with parameters (v, k, λ, µ) if it has |V| = v vertices, valency k, and if any two adjacent
vertices are together adjacent to λ vertices, while any two nonadjacent vertices are together adjacent to
µ vertices. A strongly regular graph with parameters (v, k, λ, µ) is usually denoted by SRG(v, k, λ, µ).
An automorphism of a strongly regular graph Γ is a permutation of vertices of Γ, such that every two
vertices are adjacent if and only if their images are adjacent.

By S(V), we denote the symmetric group on the nonempty set V. If G ≤ S(V) and x ∈ V, then the
set xG = {xg|g ∈ G} is called a G-orbit of x. The set Gx = {g ∈ G|xg = x} is called a stabilizer of x
in G. If G is finite, then |xG| = |G|

|Gx | . By Gg
x , we denote a conjugate subgroup g−1Gxg of Gx.

One of the main problems in the theory of strongly regular graphs (SRGs) is constructing and
classifying SRGs with given parameters. A frequently-used method of constructing combinatorial
structures is the construction of combinatorial structures with a prescribed automorphism group.
Orbit matrices of block designs have been used for such a construction of combinatorial designs since
the 1980s. However, orbit matrices of strongly regular graphs had not been introduced until 2011.
Namely, Majid Behbahani and Clement Lam introduced the concept of orbit matrices of strongly
regular graphs in [4]. They developed an algorithm for the construction of orbit matrices of strongly
regular graphs with an automorphism group of prime order and the construction of corresponding
strongly regular graphs.

A method of constructing strongly regular graphs admitting an automorphism group of composite
order using orbit matrices is introduced and presented in [5]. Using this method, we classify strongly
regular graphs with parameters (37, 18, 8, 9), (41, 20, 9, 10), (45, 22, 10, 11), (49, 18, 7, 6), (49, 24, 11, 12)
and (50, 21, 8, 9) having S3 as an automorphism group. These graphs are the only strongly regular
graphs with up to 50 vertices that still have to be classified. Enumeration of SRGs with these parameters
having a non-abelian automorphism group of order six, i.e., the construction of SRGs with these
parameters in this paper, is a step in that classification. Using this construction, we show that
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there is no SRG(37, 18, 8, 9) having S3 as an automorphism group. Furthermore, we show that there
are 80 SRGs(41, 20, 9, 10), 288 SRGs(45, 22, 10, 11), 72 SRGs(49, 24, 11, 12), 34 SRGs(49, 18, 7, 6) and
45 SRGs(50, 21, 8, 9) having a non-abelian automorphism group of order six.

The paper is organized as follows: After a brief description of the terminology and some
background results, in Section 2, we describe the concept of orbit matrices, based on the work of
Behbahani and Lam [4]. In Section 3, we explain the method of construction of strongly regular graphs
from their orbit matrices presented in [5]. In Section 4, we apply this method to construct strongly
regular graphs with parameters (37, 18, 8, 9), (41, 20, 9, 10), (45, 22, 10, 11), (49, 18, 7, 6), (49, 24, 11, 12)
and (50, 21, 8, 9) having a non-abelian automorphism group of order six.

For the construction of orbit matrices and graphs, we have used our own computer programs
written for GAP [6]. Isomorphism testing for the obtained graphs and the analysis of their full
automorphism groups are conducted using the Grape package for GAP [7].

2. Orbit Matrices of Strongly Regular Graphs

Orbit matrices of block designs have been frequently used for the construction of block designs
with a presumed automorphism group, see, e.g., [8–11]. In 2011, Behbahani and Lam introduced the
concept of orbit matrices of SRGs (see [4]). While Behbahani and Lam were mostly focused on orbit
matrices of strongly regular graphs admitting an automorphism of prime order, a general definition of
an orbit matrix of a strongly regular graph is given in [12].

Let Γ be an SRG(v, k, λ, µ) and A be its adjacency matrix. Suppose an automorphism group G of
Γ partitions the set of vertices V into b orbits O1, . . . , Ob, with sizes n1, . . . , nb, respectively. The orbits
divide A into submatrices [Aij], where Aij is the adjacency matrix of vertices in Oi versus those in Oj.
We define matrices C = [cij] and R = [rij], 1 ≤ i, j ≤ b, such that cij is the column sum of Aij and rij is
the row sum of Aij. The matrix R is related to C by:

rijni = cijnj. (1)

Since the adjacency matrix is symmetric, it follows that:

R = CT . (2)

The matrix R is the row orbit matrix of the graph Γ with respect to G, and the matrix C is the
column orbit matrix of the graph Γ with respect to G.

Behbahani and Lam showed that orbit matrices R = [rij] and RT = C = [cij] satisfy the condition:

b

∑
s=1

cisrsjns = δij(k− µ)nj + µninj + (λ− µ)cijnj.

Since R = CT , it follows that:

b

∑
s=1

ns

nj
ciscjs = δij(k− µ) + µni + (λ− µ)cij (3)

and:
b

∑
s=1

ns

nj
rsirsj = δij(k− µ) + µni + (λ− µ)rji.

Therefore, in [12], we introduced the following definition of orbit matrices of strongly
regular graphs.
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Definition 1. A (b× b)-matrix R = [rij] with entries satisfying conditions:

b

∑
j=1

rij =
b

∑
i=1

ni
nj

rij = k (4)

b

∑
s=1

ns

nj
rsirsj = δij(k− µ) + µni + (λ− µ)rji (5)

where 0 ≤ rij ≤ nj, 0 ≤ rii ≤ ni − 1 and ∑b
i=1 ni = v, is called a row orbit matrix for a strongly regular graph

with parameters (v, k, λ, µ) and the orbit length distribution (n1, . . . , nb).

Definition 2. A (b× b)-matrix C = [cij] with entries satisfying conditions:

b

∑
i=1

cij =
b

∑
j=1

nj

ni
cij = k (6)

b

∑
s=1

ns

nj
ciscjs = δij(k− µ) + µni + (λ− µ)cij (7)

where 0 ≤ cij ≤ ni, 0 ≤ cii ≤ ni − 1 and ∑b
i=1 ni = v, is called a column orbit matrix for a strongly regular

graph with parameters (v, k, λ, µ) and the orbit length distribution (n1, . . . , nb).

3. The Method of Construction

A method of constructing strongly regular graphs admitting an automorphism group of composite
order using orbit matrices is introduced and presented in [5]. In this section, we will give a brief
overview of this method.

For the construction of strongly regular graphs with parameters (v, k, λ, µ), we first check whether
these parameters are feasible (see [2]). Then, we select the group G and assume that it acts as an
automorphism group of an SRG(v, k, λ, µ). The construction of strongly regular graphs admitting
an action of a presumed automorphism group, using orbit matrices, consists of the following two
basic steps:

• Construction of orbit matrices for the presumed automorphism group
• Construction of strongly regular graphs from the obtained orbit matrices (indexing of

orbit matrices)

We could use row or column orbit matrices, but since we are constructing matrices row by row,
it is more convenient for us to use column orbit matrices. For the construction of orbit matrices for
the presumed automorphism group, we need to determine all possible orbit length distributions
(n1, n2, . . . , nb) for an action of the group G. Suppose an automorphism group G of Γ partitions
the set of vertices V into b orbits O1, . . . , Ob, with sizes n1, . . . , nb. Obviously, ni is a divisor of |G|,
i = 1, . . . , b, and:

b

∑
i=1

ni = v.

When determining the orbit length distribution, we also use the following result that can be found
in [13].

Theorem 1. Let s < r < k be the eigenvalues of an SRG(v, k, λ, µ), then:

φ ≤ max(λ, µ)

k− r
v,

where φ is the number of fixed points for a nontrivial automorphism group G.
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For each orbit length distribution we construct column orbit matrices. For the construction of
orbit matrices, we first need to find prototypes.

3.1. Prototypes for a Row of a Column Orbit Matrix

A prototype for a row of a column orbit matrix C gives us information about the number of
occurrences of each integer as an entry of a particular row of C. Behbahani and Lam [4,13] introduced
the concept of a prototype for a row of a column orbit matrix C of a strongly regular graph with
a presumed automorphism group of prime order. We will generalize this concept and describe
a prototype for a row of a column orbit matrix C of a strongly regular graph under a presumed
automorphism group of composite order. Prototypes are useful in the first step of the construction of
strongly regular graphs, namely the construction of column orbit matrices.

Suppose an automorphism group G of a strongly regular graph Γ with parameters (v, k, λ, µ)

partitions the set of vertices V into b orbits O1, . . . , Ob, of sizes n1, . . . , nb. With li, i = 1, . . . , ρ, we denote
all divisors of |G| in ascending order (l1 = 1, . . . , lρ = |G|).

3.1.1. Prototypes for a Fixed Row

Consider the row r of a column orbit matrix C. We say that it is a fixed row of a matrix C if nr = 1,
i.e., if it corresponds to an orbit of length one. The entries in this row are either zero or one. Let dli
denote the number of orbits whose length are li, i = 1, . . . , ρ.

Let xe denote the number of occurrences of an element e ∈ {0, 1} at the positions of the row r that
correspond to the orbits of length one. It follows that:

x0 + x1 = d1, (8)

where d1 is the number of orbits of length one. Since the diagonal elements of the adjacency matrix of
a strongly regular graph are equal to zero, it follows that x0 ≥ 1.

Let y(li)e denote the number of occurrences of an element e ∈ {0, 1} at the positions of the row r
that correspond to the orbits of length li (i = 2, . . . , ρ). We have:

y(li)0 + y(li)1 = dli , i = 2, . . . , ρ (9)

Because the row sum of an adjacency matrix of Γ is equal to k, it follows that:

x1 +
ρ

∑
i=2

li · y
(li)
1 = k. (10)

The vector:
p1 = (x0, x1; y(l2)0 , y(l2)1 ; . . . ; y

(lρ)
0 , y

(lρ)
1 )

whose components are nonnegative integer solutions of the equalities (8), (9) and (10) is called a
prototype for a fixed row.

3.1.2. Prototypes for a Non-Fixed Row

Let us consider the row r of a column orbit matrix C, where nr 6= 1. Let dli denote the number of
orbits whose length is li, i = 1, . . . , ρ.

If a fixed vertex is adjacent to a vertex from an orbit Oi, 1 ≤ i ≤ b, then it is adjacent to all vertices
from the orbit Oi. Therefore, the entries at the positions corresponding to fixed columns are either zero
or nr. Let xe denote the number of occurrences of an element e ∈ {0, nr} at those positions of the row r,
which correspond to the orbits of length one. We have:

x0 + xnr = d1. (11)
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The entries at the positions corresponding to the orbits whose lengths are greater than one are
0, 1, . . . , nr − 1 or nr. The entry at the position (r, r) is 0 ≤ crr ≤ nr − 1, since the diagonal elements of
the adjacency matrix of strongly regular graphs are zero.

Let y(li)e denote the number of occurrences of an element e ∈ {0, . . . , nr} of row r at the positions
that correspond to the orbits of length li (i = 2, . . . , ρ). From (1) and (2), we conclude that:

crini = cirnr, (12)

where cir ∈ {0, . . . , ni}. If cri · ni
nr
6∈ {0, . . . , ni}, then y(ni)

cri = 0. It follows that:

nr

∑
e=0

y(li)e = dli , i = 2, . . . , ρ. (13)

Since the row sum of an adjacency matrix is equal to k, we have that:

xnr +
ρ

∑
i=2

nr

∑
h=1

y(li)h · h ·
nli
nr

= k, (14)

From (3), we conclude that:

b

∑
s=1

crscrsns = (k− µ)nr + µn2
r + (λ− µ)crrnr,

where crr ∈ {0, . . . , nr − 1}. It follows that:

n2
r xnr +

ρ

∑
i=2

nr

∑
h=1

y(li)h · h2 · nli = (k− µ)nr + µn2
r + (λ− µ)crrnr, (15)

The vector:
pnr = (x0, xnr ; yl2

0 , . . . , yl2
nr ; . . . ; y

lρ
0 , . . . , y

lρ
nr ),

whose components are nonnegative integer solutions of Equalities (11), (13), (14) and (15) is called a
prototype for a row corresponding to the orbit of length nr.

Using prototypes, we construct an orbit matrix row by row.
Not every orbit matrix gives rise to a strongly regular graph, while, on the other hand, a single

orbit matrix may produce several nonisomorphic strongly regular graphs. Further, nonisomorphic
orbit matrices may produce isomorphic graphs. Therefore, the constructed graphs need to be checked
for isomorphism.

Theorem 2. Let Γ = (V, E) be a strongly regular graph, G ≤ Aut(Γ), and let (b× b)-matrix C be a column
orbit matrix of the graph Γ with respect to the group G. Further, let α be an element of S(V) with the following
property: if α(i) = j, then the stabilizer Gxi is conjugate to Gxj , where xi, xj ∈ V and Oi = xiG, Oj = xjG.
Then, there exists permutation g∗ ∈ CS(V)(G) such that α(i) = j ⇐⇒ g∗(Oi) = Oj.

Definition 3. Let A = (aij) be an (b× b)-matrix and α ∈ Sb. The matrix B = Aα is the (b× b)-matrix
B = (bij), where bα(i)α(j) = aij. If Aα = A, then α is called an automorphism of the matrix A.

Definition 4. Let an (b× b)-matrix A = (aij) be the orbit matrix of a strongly regular graph Γ with respect
to the group G ≤ Aut(Γ). A mapping α ∈ Sb is called an isomorphism from A to B = Aα if the following
condition holds: if α(i) = j, then the stabilizer Gxi is conjugate to Gxj . We say that the orbit matrices A and B
are isomorphic. If Aα = A, then α is called an automorphism of the orbit matrix A. All automorphisms of an
orbit matrix A form the full automorphism group of A, denoted by Aut(A).
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During the construction of orbit matrices, for the elimination of isomorphic structures, we use
permutations that satisfy the conditions from Theorem 2, i.e., isomorphisms from Definition 4.

The next big step of the construction of graphs, called indexing, often cannot be performed in a
reasonable amount of time. To make such a construction possible, for a refinement of constructed orbit
matrices, we use the composition series:

{1} = H0 E H1 E · · ·E Hn = G,

of a solvable automorphism group G of a strongly regular graph. Let Γ be a strongly regular graph
and H E G ≤ Aut(Γ). Each G-orbit of Γ decomposes to H-orbits of the same size (see [9]). Therefore,
each orbit matrix for the group G decomposes to orbit matrices for the group H, and the following
theorem holds [5].

Theorem 3. Let Ω be a finite nonempty set, H C G ≤ S(Ω), x ∈ Ω and xG =
h⊔

i=1

xi H. Then, a group G/H

acts transitively on the set {xi H | i = 1, 2, . . . , h}.

Therefore, after we have constructed corresponding orbit matrices for the group G, we continue
until we find all refinements for the normal subgroup Hn−1 E G. In the next step, we obtain orbit
matrices for the group Hn−2, Hn−3, and so on. Our last step is the construction of the corresponding
orbit matrices for the subgroup H0 = {1}, i.e., construction of adjacency matrices of the strongly
regular graphs. The concept of the G-isomorphism of two-block designs was introduced in [14].
For the elimination of mutually-isomorphic structures, we use the concept of G-isomorphism.

Definition 5. Let Γ1 = (V, E1) and Γ2 = (V, E2) be strongly regular graphs, and let G ≤ Aut(Γ1) ∩
Aut(Γ2) ≤ S(V). An isomorphism α : Γ1 → Γ2 is called a G-isomorphism from Γ1 onto Γ2 if there is an
automorphism τ : G → G such that for each x, y ∈ V and each g ∈ G, the following holds:

(αx)(τg) = αy⇔ xg = y.

If α is a G−isomorphism from Γ1 to Γ2, then the vertices xi and xj are in the same G-orbit if and
only if the vertices α(xi) and α(xj) are in the same G-orbit.

Lemma 1. Let Γ1 = (V, E1) and Γ2 = (V, E2) be strongly regular graphs, and let G ≤ Aut(Γ1)∩ Aut(Γ2) ≤
S = S(V). A permutation α ∈ S is a G-isomorphism from Γ1 onto Γ2 if and only if α is an isomorphism from
Γ1 to Γ2 and α ∈ NS(G), where NS(G) is the normalizer of G in S.

In each step of refinement of an orbit matrix A, we eliminate isomorphic orbit matrices
using the automorphisms from Aut(A), because each automorphism of an orbit matrix determines
an G-isomorphism.

4. SRGs with up to 50 Vertices Having S3 as an Automorphism Group

SRGs with parameters (37, 18, 8, 9), (41, 20, 9, 10), (45, 22, 10, 11), (49, 24, 11, 12), (49, 18, 7, 6) and
(50, 21, 8, 9) are the only strongly regular graphs on up to 50 vertices that still have to be classified [2,15].
According to [2], it is known that strongly regular graphs with these parameters exist, but their final
enumeration result is not known. In this section, we present the results of the constructed strongly
regular graphs with parameters (37, 18, 8, 9), (41, 20, 9, 10), (45, 22, 10, 11), (49, 18, 7, 6), (49, 24, 11, 12)
and (50, 21, 8, 9) having S3 ∼= Z3 : Z2 ∼= 〈ρφ|ρ3 = 1, φ2 = 1, φρφ = ρ−1〉 as an automorphism group.
In each case, we construct strongly regular graphs by using the algorithm described in Section 3.
The orbit lengths for an action of the group G at the set of points of a graph can get values from
the set {1, 2, 3, 6}. Using the program Mathematica [16], we get all possible orbit length distributions
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(d1, d2, d3, d6) for the action of S3 on a particular SRG that satisfy Theorem 1. For each orbit length
distribution, we find the corresponding prototypes using Mathematica. Using our own programs,
which are written for GAP [6], we construct all orbit matrices for a given orbit length distribution.
Having in mind the action of the whole group, we refine the constructed orbit matrices. For the
refinement, we use the composition series

{1}E 〈ρ〉E S3

and obtain orbit matrices for the action of the subgroup Z3 C S3. In this step, each orbit of length
two and six decomposes to two orbits of length one and three, respectively. In the final step of the
construction, we obtain adjacency matrices of the strongly regular graphs with particular parameters
admitting a non-abelian automorphism group of order six. Finally, we check isomorphisms of strongly
regular graphs and determine orders of the full automorphism groups using the Grape package for
GAP [7].

4.1. SRGs(37,18,8,9)

In this section, we present the results of SRGs(37,18,8,9) having S3 as an automorphism group.
According to [17], there are at least 6760 SRGs(37,18,8,9), and none of them have S3 as an automorphism
group. We show that there are no strongly regular graphs with parameters (37,18,8,9) having a
non-abelian automorphism group of order six.

We get 176 possibilities for orbit length distributions, but only three give rise to orbit matrices.
In Table 1, we present the number of mutually-nonisomorphic orbit matrices for each orbit length
distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the number of
constructed SRGs with parameters (37,18,8,9). These calculations prove Theorem 4.

Table 1. Number of orbit matrices and SRGs(37,18,8,9) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs

(1,0,0,6) 3 6 0
(1,0,4,4) 3 3 0
(1,0,8,2) 3 3 0

Theorem 4. There are no strongly regular graphs with parameters (37, 18, 8, 9) having an automorphism group
isomorphic to the symmetric group S3.

4.2. SRGs(41,20,9,10)

In this section, we present the results of SRGs(41, 20, 9, 10) having S3 as an automorphism group.
We show that there are exactly 80 strongly regular graphs with parameters (41, 20, 9, 10) having a
non-abelian automorphism group of order six.

We get 216 possibilities for orbit length distributions, but only one gives rise to any orbit
matrices. In Table 2, we present the number of mutually-nonisomorphic orbit matrices for each
orbit length distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the
number of constructed SRGs with parameters (41, 20, 9, 10). These calculations prove Theorem 5.
Information about the orders of the full automorphism groups is presented in Table 3.

Table 2. Number of orbit matrices and SRGs(41,20,9,10) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs

(1,2,4,4) 10 10 80
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Theorem 5. Up to isomorphism, there are exactly 80 strongly regular graphs with parameters (41, 20, 9, 10)
having an automorphism group isomorphic to the symmetric group S3.

Table 3. SRGs with parameters (41,20,9,10) having S3 as an automorphism group.

|Aut(Γ)| #SRGs

6 80

The adjacency matrices of the constructed SRGs can be found at [18].

4.3. SRGs(45,22,10,11)

In this section, we present the results of SRGs(45, 22, 10, 11) having S3 as an automorphism group.
We show that there are exactly 288 strongly regular graphs with parameters (45, 22, 10, 11) having a
non-abelian automorphism group of order six.

We get 309 possibilities for orbit length distributions, but only one gives rise to any orbit
matrices. In Table 4, we present the number of mutually-nonisomorphic orbit matrices for each
orbit length distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the
number of constructed SRGs with parameters (45, 22, 10, 11). These calculations prove Theorem 6.
Information about orders of the full automorphism groups is presented in Table 5.

Table 4. Number of orbit matrices and SRGs(45,22,10,11) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs

(1,4,4,4) 7 7 288

Table 5. SRGs with parameters (45,22,10,11) having S3 as an automorphism group

|Aut(Γ)| #SRGs

6 288

Theorem 6. Up to isomorphism, there are exactly 288 strongly regular graphs with parameters (45, 22, 10, 11)
having an automorphism group isomorphic to the symmetric group S3.

The adjacency matrices of the constructed SRGs can be found at [19].

4.4. SRGs(49,18,7,6)

In the paper [5], we proved the following theorem.

Theorem 7. Up to isomorphism, there are exactly 36 strongly regular graphs with parameters (49, 18, 7, 6)
having an automorphism group isomorphic to the symmetric group S3.

Two of these graphs have not been constructed in [4,20]. The adjacency matrices of the constructed
SRGs can be found at [21].

4.5. SRGs(49,24,11,12)

In this section, we present the results of SRGs(49, 24, 11, 12) having S3 as an automorphism group.
We show that there are exactly 72 strongly regular graphs with parameters (49, 24, 11, 12) having a
non-abelian automorphism group of order six.
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We get 435 possibilities for orbit length distributions, but only a few give rise to orbit matrices.
In Table 6, we present the number of mutually-nonisomorphic orbit matrices for each orbit length
distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the number of
constructed SRGs with parameters (49, 24, 11, 12). Thus, we prove Theorem 8. Information about
orders of the full automorphism groups is presented in Table 7.

Table 6. Number of orbit matrices and SRGs(49, 24, 11, 12) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs Distribution #OM-S3 #OM-Z3 #SRGs

(0,2,3,6) 8 16 6 (1,3,0,7) 6 6 0
(0,2,5,5) 4 0 0 (1,3,2,6) 10 2 0
(0,2,7,4) 8 0 0 (1,3,6,4) 2 2 0
(1,0,0,8) 2 15 2 (1,6,0,6) 1 0 0
(1,0,2,7) 20 32 0 (3,2,0,7) 4 10 0
(1,0,8,4) 26 24 12 (3,2,6,4) 6 16 0
(1,0,10,3) 2 0 0 (4,0,9,3) 6 0 0
(1,0,12,2) 16 0 0 (5,1,0,7) 2 4 0
(1,0,14,1) 12 0 0 (5,1,6,4) 2 2 12

(7,0,0,7) 2 2 40

Table 7. SRGs with parameters (49, 24, 11, 12) having S3 as an automorphism group.

|Aut(Γ)| #SRGs

6 42
18 22
24 4
126 4

Theorem 8. Up to isomorphism, there are exactly 72 strongly regular graphs with parameters (49, 24, 11, 12)
having an automorphism group isomorphic to the symmetric group S3.

The adjacency matrices of the constructed SRGs can be found at [22].

4.6. SRGs(50,21,8,9)

In this section, we present the results of SRGs(50, 21, 8, 9) having S3 as an automorphism group.
According to [17], there are 18 graphs obtained from the 18 Steiner (2,4,25) systems, and three of them
have S3 as an automorphism group. We show that there are exactly 45 strongly regular graphs with
parameters (50, 21, 8, 9) having a non-abelian automorphism group of order six. Hence, to our best
knowledge, 42 of the constructed strongly regular graphs are new.

We get 340 possibilities for orbit length distributions, but only a few give rise to orbit matrices.
In Table 8, we present the number of mutually-nonisomorphic orbit matrices for each orbit length
distribution, the number of orbit matrices for Z3 (obtained by the refinement) and the number of
constructed SRGs with parameters (50, 21, 8, 9). Thus, we prove Theorem 9. Information about the
orders of the full automorphism groups is presented in Table 9.

Theorem 9. Up to isomorphism, there are exactly 45 strongly regular graphs with parameters (50, 21, 8, 9)
having an automorphism group isomorphic to the symmetric group S3.

The adjacency matrices of the constructed SRGs can be found at [23].
In Table 10, we summarize the obtained results, i.e., give a list of all the obtained strongly regular

graphs and orders of their full automorphism groups.
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Table 8. Number of orbit matrices and SRGs(50, 21, 8, 9) for the automorphism group S3.

Distribution #OM-S3 #OM-Z3 #SRGs Distribution #OM-S3 #OM-Z3 #SRGs

(0,1,2,7) 10 3 2 (2,0,2,7) 10 16 0
(0,1,4,6) 10 4 6 (2,0,8,4) 22 24 12
(0,1,6,5) 12 21 6 (2,0,10,3) 2 0 0
(0,1,8,4) 8 8 1 (2,0,12,2) 27 0 0
(0,4,2,6) 2 2 0 (2,0,14,1) 14 0 0
(0,4,4,5) 4 3 16 (2,3,0,7) 2 3 0
(0,4,6,4) 3 4 0 (2,3,2,6) 6 1 0
(0,4,8,2) 4 6 0 (2,3,6,4) 2 4 0
(1,2,3,6) 10 20 5 (4,2,6,4) 6 12 0
(1,2,5,5) 2 0 0 (5,0,9,3) 2 0 0
(1,2,7,4) 4 0 0 (6,1,6,4) 1 1 4

Table 9. SRGs with parameters (50, 21, 8, 9) having S3 as an automorphism group.

|Aut(Γ)| #SRGs

6 35
18 6
72 1
150 1
336 1
504 1

Table 10. SRGs on up to 50 vertices having S3 as an automorphism group.

(v, k, λ, µ) |Aut(Γ)| #SRGs

(41, 20, 9, 10) 6 80

(45, 22, 10, 11) 6 288

(49, 18, 7, 6) 6 18
(49, 18, 7, 6) 12 2
(49, 18, 7, 6) 18 2
(49, 18, 7, 6) 24 4
(49, 18, 7, 6) 48 1
(49, 18, 7, 6) 72 4
(49, 18, 7, 6) 126 1
(49, 18, 7, 6) 144 2
(49, 18, 7, 6) 1008 1
(49, 18, 7, 6) 1764 1

(49, 24, 11, 12) 6 42
(49, 24, 11, 12) 18 22
(49, 24, 11, 12) 24 4
(49, 24, 11, 12) 126 4

(50, 21, 8, 9) 6 35
(50, 21, 8, 9) 18 6
(50, 21, 8, 9) 72 1
(50, 21, 8, 9) 150 1
(50, 21, 8, 9) 336 1
(50, 21, 8, 9) 504 1
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14. Ćepulić, V. On Symmetric Block Designs (40,13,4) with Automorphisms of Order 5. Discret. Math. 1994, 128,
45–60. [CrossRef]

15. Brouwer, A.E. Parameters of Strongly Regular Graphs. Available online: http://www.win.tue.nl/~aeb/
graphs/srg/srgtab1-50.html (accessed on 1 April 2018).

16. Wolfram Mathematica, Version 7.0.0. 2008. Available online: http://www.wolfram.com/mathematica/
(accessed on 4 April 2018).

17. Spence, E. Strongly Regular Graphs on at Most 64 Vertices. Available online: http://www.maths.gla.ac.uk/
~es/srgraphs.php (accessed on 10 April 2018).
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