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Abstract: We study ruled submanifolds in Minkowski space in regard to the Gauss map satisfying
some partial differential equation. As a generalization of usual cylinders, cones and null scrolls in a
three-dimensional Minkowski space, a cylinder over a space curve, a product manifold of a right cone
and a k-plane, a product manifold of a hyperbolic cone and a k-plane which look like kinds of cylinders
over cones in 3-space, and the generalized B-scroll kind in Minkowski space are characterized with
the partial differential equation regarding the Gauss map, where k is a positive integer.

Keywords: finite-type immersion; pointwise 1-type Gauss map of the second kind; generalized
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1. Introduction

According to Nash’s imbedding theorem, a Riemannian manifold can be imbedded in a Euclidean
space with considerably high codimension. That naturally enables us to study Riemannian manifolds
as submanifolds of a Euclidean space. In the late 1970’s, the notion of finite-type immersion of
Riemannian manifolds into Euclidean space was introduced, which is a generalization of the so-called
eigenvalue problem of the immersion [1]: An isometric immersion of x of a Riemannian manifold M
into a Euclidean space E™ is said to be of finite-type if it can be expressed as

X=x9+x1+ -+ x%

for some positive integer k, where xj is a constant vector and Ax; = A;x; forsome A; e R,i=1,... k.
Here, A denotes the Laplace operator defined on M. If Ay, ..., A are mutually different, M is said
to be of k-type. We may assume that a finite-type immersion of x of a Riemannian manifold into a
Euclidean space is of k-type for some non-negative integer k.

Let EI" be an m-dimensional pseudo-Euclidean space of signature (m —s,s). The notion of
finite-type immersion was extended to that of submanifolds in pseudo-Euclidean space E!" and to
that of smooth maps defined on submanifolds of Euclidean space E™ or pseudo-Euclidean space E!".
In particular, the study of finite-type immersions and finite-type Gauss map of submanifolds in the
Minkowski m-space E]* denoted by " has been made extensively ([2-15]).

On the other hand, the Gauss map of some nice surfaces in the three-dimensional Euclidean space
[E3 has an interesting property regarding the Laplacian. The helicoid in E® parameterized by

x(u,v) = (ucosv,usinv,av), a #0
has the Gauss map G satisfying

242

AG = ———5G.
(a2 +u?)?

The Gauss map of the right (or circular) cone in E3 with parametrization
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x(u,v) = (ucosv,usinv,au), a >0

satisfies
1

Vira)
(cf. [16,17]). The Gauss map of those surfaces is similar to of 1-type, but obviously not of 1-type in the

usual sense. We need to know what other manifolds have such a property. Based on these examples,
the following definition was introduced.

AG = %(G+(0,0

Definition 1 ([18]). An oriented n-dimensional submanifold M of the Euclidean space E™ or the pseudo-
Euclidean space I is said to have pointwise 1-type Gauss map or the Gauss map is of pointwise 1-type if
it satisfies

AG = f(G+0), 1)

where f is a non-zero smooth function on M and C a constant vector in the ambient space. In particular, if C is
zero, the Gauss map G is said to be of pointwise 1-type of the first kind. Otherwise, it is said to be of the second
kind ([19-24]).

The notion of ruled submanifold is a concept of great interest in the Riemannian geometry, which
has been investigated by many authors. Several results involving ruled submanifolds in manifolds
equipped with remarkable geometric structures were recently obtained in [25-28].

In [19,20], the authors of the present paper et al. studied ruled submanifolds in the Euclidean
space E" with pointwise 1-type Gauss map and proved that the ruled submanifold M in the Euclidean
space [E™ is minimal if and only if the Gauss map G of M is of pointwise 1-type Gauss map of the first
kind. Further, we showed that the only non-cylindrical ruled submanifold M in the Euclidean space
E™ with pointwise 1-type Gauss map of the second kind is the generalized right cone.

In [29], the authors of the present paper and et al. investigated the ruled submanifolds in the
Lorentz-Minkowski m-space " with pointwise 1-type Gauss map of the first kind and then established
the equivalent conditions for the minimality of the ruled submanifold in the Lorentz-Minkowski
m-space L™ by means of the Gauss map.

In this paper, we will study ruled submanifolds in L with pointwise 1-type Gauss map of the
second kind and thereby complete the classification of the ruled submanifolds in " with pointwise
1-type Gauss map.

2. Preliminaries

A curve in K}’ is said to be space-like, time-like or null if its tangent vector field is space-like,
time-like or null, respectively.

Let x : M — E!” be an isometric immersion of an n-dimensional pseudo-Riemannian manifold
M into E}*. Throughout the present paper, a submanifold in E}* always means pseudo-Riemannian,
in other words, each tangent space of the submanifold in E’ is non-degenerate.

Let (x1,%2,...,X,) be a local coordinate system of M in El". For the components g;; of the
pseudo-Riemannian metric (-, ) on M induced from that of E!", we denote by (g) (respectively, G)
the inverse matrix (respectively, the determinant) of the matrix ( gl-]-) of the components of the induced
metric (-, -). Then, the Laplacian A defined on M is given by

ad

= i),
\/@ZBL \/7 ij)

We now define the Gauss map G on M. Consider the map G : M — G(n,m) of a point p of M
mapped to an oriented tangent space at p, where G(n, m) is the Grassmannian manifold consisting
of all oriented n-planes passing through the origin. Roughly speaking it can be achieved by parallel
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displacement of the oriented tangent space at p to the origin of L™. By an isomorphism, G(n,m)
can be identified with G(m — n,m) in a natural manner. Let us express the Gauss map rigorously.
Choose an adapted local orthonormal frame {ey, ey, ..., ep} in E? such that ey, ey, ..., e, are tangent
to M and e,1,€,12,...,em normal to M. Define the map G : M — G(n,m) C RN (N = ,,Cy),
G(p) = (ex Nea A--- New)(p)-

An indefinite scalar product < -,- > on G(n,m) C RN is defined by

Ley N Nej e N Nej, >= det(<eil’efk>)'

Then, {e;, Nej, \---Ne;, |1 < iy <--- < iy <m} isan orthonormal basis of EII(\] for some positive
integer k.

Now, let us recall the notion of a ruled submanifold M in L”* ([7-10]). A non-degenerate (r +
1)-dimensional submanifold M in L™ is called a ruled submanifold if M is foliated by r-dimensional
totally geodesic submanifolds E(s, ) of L along a regular curve & = a(s) on M defined on an open
interval I. Thus, a parametrization of a ruled submanifold M in L™ can be given by

r
x=x(s,t1,tp,..., 1) =a(s) + Ztiei(s), sel, t;el,
i=1

where I;’s are some open intervals for i = 1,2,...,r. Without loss of generality, we may assume
that 0 € I[; foralli = 1,2,...,r. For each s, E(s,r) is open in Span{e;(s), e2(s), ... , e,(s)}, which is
the linear span of linearly independent vector fields e1(s), ex(s), ... , e/(s) along the curve «. Here,
we assume that E(s, ) are either non-degenerate or degenerate for all s along «. We call E(s,r) the
rulings and & the base curve of the ruled submanifold M. In particular, the ruled submanifold M is said
to be cylindrical if E(s, r) are parallel along «, or non-cylindrical otherwise.

Remark 1 ([7,8]). (1) If the rulings of M are non-degenerate, then the base curve o can be chosen to be
orthogonal to the rulings as follows: Let V' be a unit vector field on M which is orthogonal to the rulings. Then «
can be taken as an integral curve of V.

(2) If the rulings are degenerate, we can choose a null base curve which is transversal to the rulings: Let V
be a null vector field on M which is not tangent to the rulings. An integral curve of V can be the base curve.

By solving a system of ordinary differential equations similarly set up relative to a frame along a
curve in " as given in [30], we have

Lemma 1 ([8]). Let V(s) be a smooth I-dimensional non-degenerate distribution in the Minkowski m-space
L™ along a curve & = «(s), where | > 2 and m > 3. Then, we can choose orthonormal vector fields
e1(s),...,epn—i(s) along a which generate the orthogonal complement V- (s) satisfying ei(s) € V(s) for
1<i<m-—L

3. Characterization of Cylinders over Spatial Base Curves

Let M be an (r + 1)-dimensional ruled submanifold in L™ with non-degenerate rulings. Then,
by Remark 1, the base curve a can be chosen to be orthogonal to the rulings. Without loss of generality,
we may assume that « is a unit speed curve, that is, («/(s), a’(s)) = ¢(= %1). From now on, the prime
" denotes d/ds unless otherwise stated. By Lemma 1, we may choose orthonormal vector fields
e1(s),...,er(s) along w satisfying

(a'(s),ei(s)) =0, (ei(s),ej(s)) =0, i,j=1,2,...,7. ()

A parametrization of M is given by
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x=x(s,t1,tp,..., 1) =a(s) + Zr: tiei(s). (3)
i=1

In this section, we always assume that the parametrization (3) satisfies condition (2). Then, the
Gauss map G of M is given by

G=—Fxs Axpy A" Nxy,,

1
[

or, equivalently

1 r
G= W(cp + ) ¥, (4)
i=1

where g, ® and ¥, are the function and the vectors respectively, defined by
g=(x5,%), ®=a'AegA---Ne, and ¥;=¢e Aeg A - Aey.

First, we consider the case of cylindrical ruled submanifolds that are one of two typical types
of ruled submanifolds, which are cylindrical or non-cylindrical. Before discussing cylindrical ruled
submanifolds, we cite the following lemma.

Lemma 2 ([29]). Suppose that a unit speed curve «(s) in the m-dimensional Minkowski space L™ defined on
an open interval 1 satisfies

o (s) = g(s)(a'(s) + C), ®)

where g is a function of the parameter s and C a constant vector in "'. Then, the curve « lies in a 3-dimensional
affine space in I"™. In particular, if the constant vector C is zero, we see that w is a plane curve.

We now prove that if an (r 4 1)-dimensional cylindrical ruled submanifold M in L™ has pointwise
1-type Gauss map of the second kind satisfying (1), then it is part of a (» + 1)-plane or a cylinder over
a curve in 3-dimensional affine space.

Let M be a cylindrical (r + 1)-dimensional ruled submanifold in L™ generated by non-degenerate
rulings which is parameterized by (3). Without loss of generality, we may assume that ey, e, ..., e,
generating the rulings are constant vectors.

The Laplacian A of M is then naturally expressed by

32 r aZ
A= 78@ — izzleiait?,
where ¢; = (e;(s),e;(s)) = £1 and the Gauss map G of M is given by
G=ed'Neg A---Ney = ed.

We now suppose that the Gauss map G is of pointwise 1-type of the second kind, that is,
A G = f(G+ C) for some non-zero smooth function f and some non-zero constant vector C.
Then, the equation AG = f(G + C) is written as

—e®” = f(ed + C). (6)

From Equation (6), we see that f is a function of s. We may assume that f is non-zero on the open
interval I = dom (). Then, differentiation of Equation (6) with respect to s gives

!
;]ZCD” - ;cp’” —ed =0, @)
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or, equivalently

f "o 1 (4) "

f—zzx - 704 —a' =0
which implies that — Jl(zxm — o/ = D for some constant vector D, where 0 denotes zero vector. Namely,
if we denote by A’ the Laplacian of «, we have

No' = —d" = f(a' + D). (8)

According to Lemma 2, we see that the curve « lies in a 3-dimensional affine space in ™.

If a cylindrical ruled submanifold M is part of an (r + 1)-plane or a cylinder over a 3-dimensional
affine space satisfying (8), it is obvious that the Gauss map G is of pointwise 1-type of the second kind.
Thus, we have

Theorem 1. Let M be an (r + 1)-dimensional cylindrical ruled submanifold of ™. Then, M has pointwise
1-type Gauss map of the second kind if and only if M is part of an (r 4 1)-dimensional plane or a cylinder over a
curve in a 3-dimensional affine space in L™ satisfying (8).

Next, we consider the case that non-cylindrical ruled submanifolds have pointwise 1-type
Gauss map of the second kind. Let M be an (7 + 1)-dimensional non-cylindrical ruled submanifold
parameterized by (3) in L. Then, we have

;
xs = a/(s) + ) tiei(s), xy = ei(s)
j=1
fori =1,2,...,r. The function q defined in the beginning of this section is given by

r T
q=(xs,x5) = e+ Y_ 2uiti+ Y wijtit), 9)
i=1 ij=1

where u;(s) = (¢, ¢f) and w;(s) = (eg,e;) fori,j =1,...,r. Note thatgis a polynomialint = (t1,...,t)
with functions in s as coefficients.

From now on, for a polynomial F(t) int = (t,t5,...,t), deg F(t) denotes the degree of F(t) in
t = (t1,t,...,t) unless otherwise stated.

If we adapt the proof of Proposition 3.3 of [19] to the case of a non-cylindrical ruled submanifold
in the Minkowski m-space ", we may assume that the generator vector fields ey, ey, ..., e, of the
rulings of M satisfy

e} #0
on the domain I of « forall j = 1,2,...,r if M has pointwise 1-type Gauss map of the second kind.
Then, we get the components of the metric (-, -) on M

g11=4¢q, 8= 0 and Sij = Si(sl’]’

fori,j=2,3,...,r+1.
It is enough for us to consider the case of 4 > 0. Accordingly, Equation (9) gives ¢ = 1.
By definition, we have the Laplacian of the form

1ogo 10> 1 & 9g0 K 02
A=t -5 — — Y e — ) gi—s. (10)
202 9s0s qos> 294 "otot; = 'or
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First, we suppose that ¢}, ¢}, . .., e, are non-null. Then, using the Formula (10), AG = f(G + C)
can be expressed as

995 4 3 dg ! 1 9% 4
(g) (CI)+]; \P]t]) — qu(q)’ + ;T;f]) — Eq@(q)%-]; \P]t/)
LI
// // 2 q .
‘(@ ZT 2‘7Z at q”ZTt 2" Leig, ¥ ()

— 7
37 ,foatzq (@ + Zi‘fffﬁ + (@ + gwjtj) +42C} =0,
= ! = j=

If we use the indefinite scalar product < -,- > on G(r + 1,m), we have
LKO,P>=¢ <P, >=0,
r r

LD, >= —&u+2 Z éskui — 2 e Wk,

k=1 k=1
L OY; >=df,;, <OV . >=ip,

r T
KO, >=rty;+2 ) Eepumwi — ) Eepujwyy,

k=1 k=1

< ‘Yl',@, >=8;, < "Fi,qu >= éwij, < ‘Iji,‘Y} >= ggi]'r

where we have put

E=er e p=(a",a"), pi = (&ef) yi = (o, "),z = (&, e1), ij = (e €]
Then, we get
() —
ui(s) - pi(s) + Zi(s) and w Cl] + C]z (12)
By taking the indefinite scalar product with the vector @ to both sides of (11), we obtain

r

214 Z ujt;) — 51 gz Z pjtj) — %q%(l +Ji ujt;)
2(gp + Z:?:go]-tj)Jr 1qu: gt 1+Zu] ;qzieigi?iui (13)
qz Zslatz 1+]¥u]] + f{q® 1+]Ziu]] +q2'y( )} =0,
where we have put
() =< C,®(s) >, p =< ®,®" > and ¢ =< O, ¥/ >. (14)

Let é,11,82,...,6;,_1 be the orthonormal vector fields which are normal to M along «. If we

apply Lemma 1 to the normal space TOCL(S)M of M, then there exists an orthonormal frame {eu};’;ﬁrl of

the normal space T(XL(S)M satisfying
(en(s),ep(s)) =0 (15)
foralla,b =r+1,...,m —1. Then we can put

m—1 .
e;- =ujn' + ) ealles, (16)
a=r+1
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where ¢; = (e;,¢,) = £1 and /\{1( )= {e ],ea> fora=r+1,. — 1. From (16), we get
m—1 .
Yi=ud+ Z €a}\ﬂz§ar (17)
a=r+1

where ¢, =e; ANeg Aep A---ANeyfora=r+1,...,m —1. And, we may put
r m—1
— Y eiuiei— Y eqtizeq, (18)
i=1 a=r+1

where u,(s) = (¢/,¢)) foralla=r+1,...,m — 1.
Suppose that M is not an (r + 1)-plane, that is, G # —C. To deal with (13), we consider the subset

M, = {p € M|q° 1+Zu1 ) +q27(s) = 0}
j=

Without loss of generality, we may assume that f # 0 on M;. Then, on M;,
1—|—Zu] +/97(s) = or, 1+Zu] = g7 (s).
By (9) and & = 1, we see that 4*(s) = 1 and hence
- 2
q= (1 + 2 Ll]'tj)

j=1

which implies that
My = {p € M|1+ y(s) = 0}.
Also, it follows from (16) that on My,
m—1 ,
Y eaAfAL =0 (19)
a=r+1

foralljk=1,...,r
Lemma 3. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold parameterized
by (3) in L™. Let ey, ey, ..., e be the orthonormal generators of the rulings along the base curve a such that

e;- are non-null for all j = 1,2,...,r. If the Gauss map G of M satisfies AG = f(G + C) for some non-zero
function f and non-zero constant vector C, then

7(s) =< C,D(s) ># —1
on {p € MIf £0}.

Proof. Let I; = {s € I|1 + y(s) = 0}. We suppose that the interior Int(I;) of I is non-empty.
If we put
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) i 1 92
P(t) :(az)z(lJFZ%”/ti 21 as Zp] ~ a1 az 1+Z”]
= j=
T
2(ep+ Zgﬁojt que 1+Zu] (20)

r 1 2 azq r
Zsl eul— - Zslﬁ(l—i- Zujtj),
i=1 9% j=1

Equation (13) tells us that P(t) = 0 on Int(];). Using g = (1 +%; ujtj)z on Int(I;), equation
P(t) = 0 yields that

r

r
B(Zu]t] () (i —pjt) 1+Zu]] £¢+Z pj —ui)t;) =0

=1 =1

j= j=1
which provides
¢=0, Ep;j=u and uj(u;—p;)=0 (21)
as the coefficients of terms containing t9, t} and t?, respectively, for j = 1 r.
Now, we will proceed with the proof according to the following steps.
Step 1. u; =0 on Int(I7).
We suppose that u;- # 0 at some point in Int(I7). Then, u§ = pjin (21) and hence
zj = (a",e) Z eatigh), = 0 (22)
a=r+1
because of (12), (16) and (18). Since ¢ =< @, D" >= — < ¥, @' > and < ¥, ¥; >= &z,
P, 0 >=< P, >=< P, >=< P ¥, >=0. (23)

Now, we suppose that 7/(sg) # 0 for some sy € Intl;. Then, at sy Equation (11) is rewritten as

3@”5*»2(@ - i‘lfjtj) ~3(1+ iujtj)@u;tj)(cp' + i\y;t].)

1+Zu] Zu”t <I>+Z‘Pt 1+Zu] c1>”+2‘1f”)

(24)
+(1+Zu] Zsu (P + Z‘I’t (1+Zujtj)3(28iui‘{’,»)
j=1 = j=1 i—1
r r
+f(1 + Z Mjfj)4{(q) + Zlfjt]) + (1 + Z M]t])C} =0
j=1 j=1 j=1
and taking the indefinite scalar product with @’ to (24) gives us the following
_ 3t (X mity) — (1 + Lyt (X 95t) 25)
Y1+ X uit)? '

where we have put

1j(s) =< q",‘f; > and 9i(s) =< cD’,‘{f;’ >
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Substituting (25) into (24) and then considering the constant terms of the equation obtained in
such a way, we get

r r
" + (2 siu%)QD - (Z e;u;'¥;) = 0. (26)
i=1 i=1
By straightforward computation, it follows from (19), (21) and (22) that at s
m—1 r r  m—=1
Q" = Z ea(—uip + Z Ek”k)\ﬁ)ga + Z 2 €q(Ugtia + (A’;)’)Fﬁ, (27)
a=r+1 k=1 k=1a=r+1

where we have put
TK=a'Aeg A Aer1 Nea Aegyi A Ay

Combining (17), (26) and (27), we can obtain
=0 and (AN = —upu, (28)

forallk=1,...,randa=r+1,...,m — 1. Using (19), (21) and (28), we also get at 5

m—1 r m—1 .
‘I’; :u;-<l>—2 Y eaujuala+ Y, ) sg(uj/\’;—uk)\{,)l“g,
a=r+1 k=1a=r+1
Y =u®+ mf ea(—3uju, + iz—: Ak — Al 29
j TYj a jla kuk(u] a — Uk u))gﬂ (29)
a=r+1 k=1
r m—1 .
+Y Y sa(Zu;)\Z — WAy + 2u gy )T,
k=1a=r+1

Since @' = — ¥, eqtals + L Ly €aARTE, the functions 17i(s) and 9;(s) are identically zero on M,
forallj =1,...,r, with the help of (19), (21), (22) and (29). Thus, we have

P, 0 >=< P, >=< P, >=< P ¥;>=< P, ¥, >=< P, ¥/ >=0

which means that @' is orthogonal to all vectors of (24) except the constant vector C, so taking the
indefinite scalar product with @' to (24) yields that

r r
f(1+ 21/11’1{]')5 <P, C>= f(1+ 21/11’1{]')57/ =0
= =

which is a contradiction.
Therefore, we have
7Y =0 (30)

on I;. Using (30), (24) implies that

r r

3(i1u;i’])(zl 17]1’]) = (1 + ilu]f])(z 19]1’])
= =

= j=1

by taking the indefinite scalar product with ®’. Thus, we can see that

nj=0=19 (31)

]
as the coefficients of terms containing ¢; and t}z forj=1,...,r, by virtue of u;- # 0. Equations (23), (30)
and (31) indicate that ®’ is orthogonal to all vectors of (24), so the coefficient of ®' has to be identically
zero, which yields that u; =0forj=1,2,...,r It contradicts our assumption.
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Therefore, we conclude that the functions u j are constant forallj=1,...,r thatis,

0
aél =0
on ().
Step 2. An expression for f on I.
According to Step 1, Equation (24) is simplified as
r

T ! 4
(q)//_'_zxy; Z )P+ Z‘Yt (l—l—Z%ujfj)(X;Siui‘Fi)
= =

]:1 =1 ]:]

(32)
r r
+f(1+ Z uit) 2 {(®+ Y_¥it;) + (1+ Y ujt))C} =0.
j=1 j=1 j=1
We repeat taking the indefinite scalar product to @’ to (32) and then we obtain
r r 5 r
(Y 0t)) + (Y eui) (Y zitj) — 1+2u] Zeuz
j=1 i=1 =1 33)

+f(1+ iwfﬂz{(;zf-tj) +(1+ gufffﬂ’} =0.
= = =

If (3 zjt;) + (1 + Ljujt))y’ = 0, then ¢/ = 0 = z; and hence ¢; = 0in (33) forall j = 1,...,r
In this case, ®" and ¥}/ are given by (27) and

m—1 r r . .
Y= ) ealy Z ekt — Y el — ujuy + (AL)")E,
a=r+1 k=1
+ 2 Z ea(Ujugita — 2u(AL) + i (AS)")Th (34)
k=1a=r+1
+ Z E €ap(2 eu))\b + (el ep)A)TE,,
=1a,b=r+1

respectively, where we have put
rsb =es NepAN---Neg_1 NeypNegypp A -+ Ney.

Together with (27) and (34), (32) yields that the constant vector C can be expressed as

m—1 r m—1

C=—2d+ Y &, <C&>&+ Y. Y ege, <CIi>Th
a=r+1 k=1a=r+1 35)
r o om—1 (
+ Y ) e, < C F’;b > Flgb
k=1a,b=r+1

and that the equations containing < C, &, >> and < C,TX >> are given by
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r T T r . .
0=(—uy + 2 extAs) + Yty Y Al — Y egud Al — ujuly + (AL)”)
k=1 =1 k=

'lM*

Zt )\] <1+ Zr;u]t])(iislul)\;)
j= i=
f(1+ 2 ujtj)z{(z tjA{;) +8(1+ Zr: ujtj) < C, & >},
= j=1 j=1

r ) ,
0 = (ugu, + ()\I;)/) + Z tj(ujukua — Zuk()\{z)’ + Mj(/\lg)/) + ?Zekf(l + Z thj)s < C, FI; >,
= =

respectively. Therefore, < C,{, > and < C, F’; > are of the form

F < Cly e ug(1+ Y uit;) — X ti(AL) = f(1+ ¥uit) (5 tiAh) (36)
fA+Yut)?
and . Adk + Zj B;lktj @)
g < Cl, >=——7—""—""°=,
! fA+Yut;)
where

A% =<« " TK >= wpu, + (AX) and
B =< WY, Th > = wjugy — 2ur (M) + (AR

If < C,Tk >=0, then A% =0 = B]‘?k in (37). By definitions of A and B;?k, (/\{'1)’ = 0 and hence
Ujllg = Oforallj=1,...,randa=r+1,...,m — 1. Thus, we have u, = 0 and (36) is simplified as

A

EKC il >=—
Ca (1 + Z] u]'tj)

fora =r+1,...,m—1. Equation (38) implies that < C,{, >= 0 and A =0 forj=1,...,rand
a=r+1,...,m—1. Thus, Y =u® and hence G = ®. Also, under these conditions, by computation,
we get < ‘Y;.’ , F’;b >= 0 which implies that C = —&® by virtue of (27), (34) and (35). Therefore,
the Gauss map G is a constant vector, a contradiction. Therefore, we see that < C, Tk >># 0. Then,
it follows from (37) that

fA+ Z ujt;)* = h(s)(A™ + Z Bi“t)) (39)
for some non-vanishing function k of s. Putting (39) into (36), we have

ECCa>
g (1+ Xy uit)? = (14 Ky i) (57 5 )") = ) (A% + T Bgk87) (2 500)
h(s)(1+ ¥ ujt; )(A”’H—E B“kt)

which allows us to have the following equation
r
)(1+ 2 ujt)) (A% + Y Bikt))
j=1

, ; r r .
k
:u‘/l(l—’_.ziujtj)z_(l—’_EMJJ 2 /\] // )(Auk—i-EB]Z tj)(ztj/\é)
]: ]: :

(40)

j=1 j=1
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for some non-vanishing function g of s. Comparing the coefficients of terms containing t?, t} and tjz
of (40) gives us three equations:

g(s)h(s)A™ = u,
g(s)h(s)u; A —l—g(s)h(s)B]‘-‘k = 2ujuy — (AD)" = h(s)A™AL,

g(s)h(s)ujB?k = u?u; —u;(Ap)" — h(s)Bfk)tfl.

Combining these equations, we get
. pak __ pak
ujA™ = Bj".

Therefore, )
wj(ugtta + (A)) = wjugna — 2u (AL) + uj(AL),
that is, uk()x{l)’ = 0 and hence ‘
(M) =0 (41)
forallj,k=1,...,randa=r—+1,...,m — 1. From (39), we can obtain
h(s) A% h(s)ugu,

f - (1 + Z] M]‘i’j)z - (1 + Z] M]'t]')z (42)

and then we have

r r r r r
(CDH + Z‘I’r},t]') + (Z 81'1/{12)(@ + Z ‘Y]'t]‘) — (1 + Z u]'fj)(z Siui‘Fi)
i=1 i=1 =1 i=1 i=1 3)

+ h(s)ukug{(QJ + i‘y}t}) + (1 + i M]t])C} =0
=1 =1

from (32). By regarding (43) as the polynomial in ¢ of degree 1, we get

T 14
Q" + (Y euf)® — (Y eui¥;) + h(s)ugua® + h(s)uxu,C = 0,
i=1 i-1

T T
¥+ (Z; eu?)¥; — u]-(; eiuj¥;) 4+ h(s)ugua¥j + h(s)uuauiC = 0
i= i=

which produce that

T
\Ij;', _ uj©” _ (Z eluz)(\}[] — M]®) — h(s)ukua (T] - u]CD)

i
i=1

for all j. With the help of (17), (27), (34) and (41), the equation above provides that
h(s)ugu, =0

which means that f = 0 due to (42), a contradiction.
Therefore, we conclude that

(iZ]t]) + (1 + i M]'t]‘)’)// #0
=1 =1

on I; and hence the function f is given by
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C(Eio) + (Siend) (5 i) — (L4 Ejuity) (T ewizi)
(1+2] Uj ]) ((Z]Z] ]) (1+Z] Uj ]) )

(44)

from (33).
Step 3. We find the another equation for f on [.

First, we suppose that < C,F’; >=<K C,F’;b >= 0of 35 forallk = 1,...,rand a,b =
r+1,...,m — 1. Then, we have
m—1
C=—80+ ) &, <C&H>0
a=r+1

and
< TE>=< @ Tk >=< ¥/, TE >=<¥/,T}, >=0 (45)

fork=1,...,randa,b=r+1,...,m — 1. In this case, ®" and‘I’}’ are given by

m—1
= Y ea(—u +Zskuk)tk @,ﬁ—Z Z e (uguty + (A)HIE

a=r+1 k=1a=r+1
. _

-2) 2 €atptigASTE,
k=1a,b=r+1
m—1

¥ = ) ea((ef”, ea) + 21, Zekuk}\ — Zeku ) (46)

a=r+1

Y Y e — 2ui (el ea) + ujlef, ea) — (ef, &) A,)TE
k=1a=r+1
r m—1 ,

+ Y Y eaen(2(e] ea) Ay + (e ep) AL)T,
k=1a,b=r+1

With the help of (46), the first three equations of (45) provide
(AR = g, upAk = upAk, and w, =0 (47)

forallk=1,...,randa,b=r+1,...,m—1.
Taking the indefinite scalar product with ¢, to (32) gives us the equation containing < C,¢; > in
the following

r r r
<>+ ) <Y, > +()] gu?) Yt < ¥, 8>
j=1 i=1 j=1

1+Zu] Zeu1<<‘1f,,§a >) (48)

+f(1+2u] th<<‘1’],€a>> 1+Zu] < C & >}=0.
= ]
Using (46) and (47), Equation (48) is rewritten as
r r .
f1+ Xujtj)z{(EAgtj) 81+ Zu] <Cg>}=0
= =

which gives
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r .
Z +£1+2u]] <G >»=0
=1 j=
and hence ‘
AMi=0 and < Cé& >=0

forallj =1,...,randa = r+1,...,m —1. Thus, G = ® = —£&C, a contradiction. Therefore,
we conclude that < C, F’; ># 0or < C, F’;b > 0 for some k, a and b. Now we assume that
< C, F’; > 0. Then, taking the indefinite scalar product with l"’; to (32), we obtain

r r
<O TE> +) 4 <Y/, TE> +f(1+ ) ut;)’ < CT;>=0,
= =

or, equivalently,
k ky.
A” —i—Zj B]‘.’ t
(1+ E] thj)3 < C, FE >

f=- (49)

Comparing two Equations (44) and (49) regarding the function f, we get

(Aﬂk + i B;kt]){(izjt]) + (1 + iujt])'y’)}

=1
1+Zu] <<C1“k>>{219t Zeu Zz] 1+Zu] Zeuz

which provides that
T
A%y = — < C,FI; > (Zsiuizi),
i=1

r

r
A%z + o u; A 4+ 'y'B;lk =< C T > (8 +z;/( Y eud) — 2u(Y_ ejuiz;))
i=1 i=1

r
z]-B}lk—i-'y u; B“k =u; < CTh> (8 +z Es up) —ui() ejuiz;))

as the coefficients of terms containing t?, t; and t]2 forj=1,...,r. Combining these three equations
above, we have
Z]'(B?k - ujA”k) =0
forall jk=1,...,randab=r+1,..., m—1 Ifzj = 0 for some j, then we can see that 7/ = 0
by applying the same arguments used to show that 4/ = 0 on ;. But, it contradicts (Cizit) + (1 +
Yjujtj)y" # 0. Therefore, we have
k _ .. aak
B = u; A"

and hence the function f becomes

Auk

f= _<< C,F’; > (1+Zju]-tj)2

(50)

forallk=1,...,randa=r+1,...,m—1.
Step 4. We compare the equations for f obtained in Steps 2 and 3.

Putting (50) into (32) and then considering the coefficients of terms containing t;.) and {; in the
equation obtained in such a way, we get
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A® ak m—1 .
Zs u?) (Y eaia) (51)
<Cri>» 4 a=r+1

¥ =@+ (o

for j=1,...,r. With the help of (46), Equation (51) gives that < ‘I’;’, F’;b >=u; < D, F’;b >, 50 we
see that < ¥/, Tk, >= O if and only if < ®", T, >=0.
If < @, F’;b >=(, then ua/\’g = upAk because of (46). In this case,

m—1 . m—1 , m—1 .
UgZj = Ug Z sbub/\é7 = Z sbub(uu/\é) = Z epup (upAh)
b=r+1 b=r+1 b=r+1
. om=1 .
=A Z shui = —/\fl(p =0
b=r+1

which means that u, = 0 or z; = Oforj=1,...,randa =r+1,...,m — 1. The case of u, = 0 also
guarantees z; = 0, a contradiction. Therefore, we see that < ‘I’;’ , F’;b >#0and <« ®",T ’u‘b ># 0 for

alk=1,...,randa,b=r+1,...,m — 1. By computation, equation B;’k = u]-A”k gives us

Zuk )t] 2 sbuh)\b (52)
b=r+1

and equation < ¥/, T%, >=u; < ®",T¥, >> provides
2(AL)AE — wup Al + (AE) AL — 2(A)) AR + e h, — (AR)'AL =0 (53)
forall j, k, a and b. In particular, by replacing k with j in (53), we have
(A2) Ay = (A})' A% + uj(uahy, — uphl) =
which implies that

< @, T8, >=uM —upA) =0

by virtue of (52). This is a contradiction.
According to Steps 1, 2, 3 and 4, we can conclude that the subset [; is empty, that is, we may
assume that1+y #0on M. O

By Lemma 3, we can see that the function f of (13) is a rational function in ¢ with functions in s as

coefficients of the form P(t)
t
flt) = —— 7 (54)
P+ Y uit;) +q27(s)

If we substitute (54) into (11) and multiply (1 + Y, u;t;) by the equation obtained in such a way,

then we have
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: 3 aq ! . ! " // 1 2 : aq
j=1 j=1 i=1 t

r 1 9
—(®+ Z;‘I’jtj Zq Zp] i +q (Ep + quoj i EqZ Z;sia—Zui}
— 1=

1 0 r 1,92 r
= gy () {GHA @+ Y ¥t) - y(;j)(cb’ + Z‘I’§f —5053) @+ YY) 6D)

i= = =
r aq r aq

d>”+2‘1’” 2 (at d>+]2‘I’t q Zel i

1,¢ 2q 1
— 51 Z&’(@)(‘D+ Z‘I’jt]‘)} + q2CP(t).
i=1 i j=1

Next, we will show that the function g is independent of the parameter s and it is a form of perfect
square expression in t of degree 2.
We suppose that q% is not a polynomial in t. Then we have

T
1+2u] aﬁ c1>’+2‘1/’ + <1>”+2‘If” q Zs,aq‘I’}
(56)
_(q>+Z;‘th]- —= a—q Zp” —i—q £¢+Z£<p]] —Eq Zs, 1}—0
]:
By following the same argument to prove Lemma 3.4 in [19], (56) implies that
9 _
E 0.
Then, we deduce from (55) the following
Zn - azq ~ g
(s){q(®" + Z‘I’ ;81 o2 CD—I—Z‘I’t _qusla ¥}
| s 1L 9%q g
=C{q(ep+ ) _e9itj) + 5 Z —2)(1+ Zujt]-) - quEifui}/
fa 24 ot = 27 = ot
or,
1< aq 2 L
5 L a5 ) ()@ = CH+ Yo (v(s)¥) — Ot} = q(H)T(#), (57)
i=1 i j=1

where I'(f) is a polynomial in ¢ such that deg I' = 1 with vector functions of s as coefficients.

Considering the degrees of (57), we see that

r
Yl ) (59)
1 1

I
—

for some constant c.
Suppose that there exist ji,...,j; € {1,...,r} such that (aat—?)2 are not a multiple of g(t) for
k

k=1,...,1. By (58), we get
1
0
Y& (50)2 = cg(t) (59)
k=1 Tk
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for some constant c;. By hypothesis, we can put

d
(g = €t + 730
for some constants cj, and polynomials 7;, (t) in t with degr; () < 1fork =1,...,1. Then, Yio, g1 (1)
has to be a multiple of g(t) because of (59), a contradiction. Thus, we have

(5,1)* = 4uiq(t) (60)

which yields
wij = uuj,

by comparing the both sides of (60) for alli,j = 1,...,r. It contradicts that q% is not a polynomial.
Therefore, we have

T
q= (1 + Z Z/l]'tj)z (61)
j=1
forall s and t.
Since 1+ y(s) # 0 on M, the rational function f defined by (54) becomes

P(t)

S = AT un A e

Lemma 4. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold parameterized
by 3) inIL™. Let eq, ey, ..., e, be the orthonormal generators of the rulings along the base curve « such that e}
are non-null forall j = 1,2,...,r. If M has pointwise 1-type Gauss map of the second kind, then we have

I
€j—1/l]0(

forallj=1,2,...,r

Proof. If M is Lorentzian, it is obvious. We now suppose that M is space-like. In this case,

r
gi=1 and g=(1+ Z:u]-tj)2

=1
forallj =1,...,r. Therefore, (55) can be rewritten as
r / r r
3([% it Z% pi+(s)uf)t) (@ + Zi‘f’t =(1+ Z%u]-t]-)l"l(t), ©2)
= = = j=

where we have put

=3} ult)) (' + Y Wity) — (14 Y ujt) (" + Y ¥7't))
+(1+ Y ut) (L wi¥i) + (9 + Y @it} (@ + Y _¥jt;)
— L+ Y uit) (L ub) (@ + Y ¥jty) + 37 (Y uit) (' + ) ¥it))
+y (L) (@ + Y ¥it) — v(1+ Y uit) (@ + Y ¥7') (63)
— (1 + Y uit)) (Y uf) (@ + Y Fity) + (1 + Y uit)* (Y ui¥y)
+3()_uit;)*C = 3()_ uity) (Y pit;)C — (1 + ) ujt;) (Y ul't))C
+(1+Y ut)) o+ Y git))C
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According to (63), we may have put

Ti(t) = Ao(s) + Y Aj(s)t+ Y, Aj(s)tjte, (64)
= ==

where Ao, A; and Aji are vector functions of s for j, k =1, ..., r. Then, by considering the degrees of
polynomials (62) and (64) in t, we can see that

Ao(s) =0 and Aj(s) =0
which implies that
Bui(pj +y(s)up)® = Aj; and 3uj(p;+y(s)uj)¥; = ujAy;
forallj=1,...,r. From the above two equations, we have
wi(pj+ y(s)ui) (¥ — uj®@) = 0. (65)

Y —ud= 0,then)x{1 = 0in(17),thatis,e;- = u]-oc’ forallj=1,...,randa=r+1,...,m—1
Now, we consider J; = {s € I|¥; — u;® # 0} and suppose that J; # @. Then, on Jj,

wi(pj+y(s)u;) =0 (66)

and hence

Ajj

With the help of (63) and (64), the relations Ag = A; = Aj; = 0 provide us with the
following results

=0.

¢C = (L+N{P" = Y wi¥i + (L ui) P} — 9@, (67)
Buj(uj — pj)C = =3(1+)uj(¥; — u;®") + (¥; — w;®) (ujp — yui — ;) (68)

forj =1,...,r. Considering the orthogonality of vectors of the right sides in (67) and (68), we can see
that the p; =< ‘I’;, ® > must be zero. Therefore, it follows from (66) that

(u})>y =0. (69)
Case 1. If ¥ # 0 on some open interval ], (C J;), then u;. = 0 on J,. Then, (55) is simplified as

(1 Powty) (@ + LW ) = (1 Louity)* (L wi¥o)
—(p+ Y ot (@+ Y ¥it) + A+ Y uty) (Y uf)(@+ ) ¥it))

70
= _ "y(l + Zujtj)@)” + Z‘I{]”t]) — ’y(l + Zu]tj) (Zu?)(@ + ZT]f]) ( )
+ ’)/(1 + Zu]t])z(z ui‘I’i) + (1 + Zu]t])((P + Z?]t])c’
(¢ + il pjtj) (P + i‘yjtj) =1+ é”jtj)rz(t)r (71)
j= j= =

where I'; is a polynomial in f with vector functions of s as coefficients.
If To(t) = {a(s) + ¥;bj(s)t;}Y(s) for some functions a, b; of s and a vector Y of s, then
Equation (71) gives us
¢P =aY, (72)
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4)‘Y] + q)]CD = IZM]‘Y + b]Y, (73)
(p]‘F] = Ll]'b]'Y (74)

as the coefficients of terms containing t?, t]l- and tJZ forj=1,...,r. Putting (72) into (73) and substituting
the equation obtained in such a way into (74), we get

(¢j —ujp)(¥;—u;®) =0

which implies that ¢; — u;¢ = 0 on Js.
If T is of the form I'; = Yp(s) + X; Y;(s)t; for some vectors Yo and Y; along s, we also have the
only possible case of (¢ + Y- ¢;t;) = ¢(1+ L ujt;) .
Then, the condition of ¢; = u;¢ renders (70) simple as follows
T+ D"+ Y ¥t — Qw1+ ) uity) + () uf)(®+ Y ¥it)}
=¢{®+) ¥jtj+ (14 ) u;tj)C}.

Here, we may assume that ¢ # 0. If not, that is, ¢ = 0 = ¢}, it follows from (75) that

(75)

D'+ Z‘f;’tj = (L w¥)(1+ Y ujt;) — (L uf)(@+ ) ¥jt;) (76)

because of 1 + 1y # 0. By computations, u; = 0 and (76) implies that AG = 0. According to Theorem 3.4
in [9], we can see that it is part of an (r 4 1)-plane in L.

Considering the constant terms with respect to ¢ and the coefficients of terms containing ¢; of (75),
we have

A+ {" = Y w¥i+ (Y u)) @} = ¢p(® +C), (77)
L+ LY — (Y wi¥e) + (L u) ¥} = (¥ + u;C). (78)

Differentiating (17) with respect to s gives

m—1 ) m—1 ) m—1 )
¥ = u @+ Y (M) a2 Y ea(AD) T+ Y ez (79)
a=r+1 a=r+1 a=r+1
Here,
,
Ch=egNetN---Ner+ Y ea Aey A NefA--- Ney,
i=1
.
L=eg Net Ao Nep+2) epNep A Aep A Ny (80)

i=1

r r
+ Y eaAer A NG A NN Ner+ Y eaNer ANl A Aer
ki=1 i=1

In (80), we can see that the vectore; Aeg A--- Aeg A--- Aep A--- Ae of & is orthogonal to &,
and other vectors in (80) except the vectors having the same form. Note that

LegNep A Ne N~ NefA---Nep, epNep A= ANeg Ao ANef A= Nep >

0 AL AL (81)
= | A way | = ABAY g (ARAL + ALAR) — uZAlA]
/\2 Ul ulz

fork,l=1,...,randa,b=r+1,..., m—1.
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We multiply u; by (77) and then compare (78) and the equation obtained in such a way. Then,
we can obtain

m—1 ) m—1 . m—1 .
¢ 2 aMhla = (1+ 7(s)){ Z €a(Ah)"80 42 Z ea(A)'E

a=r+1 a=r+1 a=r+1 (82)
m—1 . r ) m—1 .
- eadbly + (Y u?) Y eadha}
a=r+1 i=1 a=r+1

with the help of (17) and (79). By taking the wedge product with e to (82) for some k, (80) and (82)
induce the following

m—1
0=2 Y ei(A))eaner A AegA---Ner Ney

a=r+1
m—1 .
+2 Y e ner A AN Ner A
a=r+1
m—1 . (83)
Y eadhea Aer A Ael A Ner Aeg
a=r+1
m—1 . r
+ Y (Y eaner Ao A A Nef A Neyr Neg).
a=r+1 i#k
Again, taking the wedge product with ¢; to (83) for i # k, we get
sa/\]a‘ea/\el/\~~~/\e§c/\~~/\e§/\-~/\er/\ek/\ei:O (84)

forallj=1,...,randa =r+1,..., m—1. If )\{1 # 0 for some j and a, then putting (16) into (84)
implies that
WAL — w;Af =0 (85)

forb = r+1,...,m — 1. Here, we note that (e})* A (¢/)- = 0 because of wij = u;ug. Using (85),

we can see that the value of (81) becomes zero, which means that the coefficients of &/ in (82) must be
identically zero by the orthogonality of vectors. Therefore, we have A, = 0 and hence e} =u;a’ on Jp,
for all j and a.

Case 2. We consider A = {s € I|y(s) = 0} and suppose that Int(A) # @. Then, on Int(A),
0=<P,C>=<P,C> (86)
and Equation (68) is simplified as

3(u})2C = —Bu;(‘l’} — u]-CD’) + (¥ — uj®) (ujp — ;). (87)

With the help of (86), taking the indefinite scalar product with @' to (87) gives
0=-3ui(<Y,® > —u <, >)+ <Y, > (uj¢ - ¢))

which yields
—2uj(ujp — @) =0
because of < ‘i[’;,CID’ >= —¢;, < P, D >= —pand < ¥;,d' >= u;.. If u; # 0, then ¢; = u;¢,
which implies that e} = uja’ by applying the same arguments used in Case 1. If u; = 0 on Int(A), then,
by continuity, u; = 0 on A and hence ¢; = u;a’ on A for the same reasons as Case 1.
According to Cases 1 and 2, we can conclude that
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/ .
ej = uju
on J; and hence on M. This proof is complete. [

From Lemma 4, the Gauss map G is given by

G=9o
and thus AG = f(G + C) yields
1 aq p 1y .
27— ;¥ = f(@+0) (88)

Taking the indefinite scalar product to (88) with ®, we obtain
1 ~
—,90) = fE+(). (89)

Suppose that ¢(s) = 0 on I. Then we have two cases concerning ¢’

If ® = 0 on I, then the Gauss map G is a constant vector field and hence M is an open part of an
(r 4+ 1)-plane in L™.

Now, we suppose that @’ is null on some interval U. Then the normal part of a” of (18) has to be
null on U as well. Therefore, we havee; =1forj=1,...,r. By (89), we get

f(A+7(s)) =0.

Since 1+ y(s) # 0, we see that f = 0 on U. Then, Equation (88) is rewritten as
- / / . 2
(Z%eujt]')cb —(1+ Zisujtj)cb =0
= =

which yields
®"=0 and u;=0
forallj =1,...,r. By the definition of ® and Lemma 4, we have
r
0=0" =" Ney A~ ANep+ Y a" Net Ao Neg_g A Aegr A=+ Aey. (90)
k=1
Taking the wedge product with e to (90) for some k, we obtain
0=a"Neg A= - Neg_g Aep Negg A Aer Aeg
=a"Neg A Neg_g Auga Negg A+ ANep Aey.
Without loss of generality, we may assume that 1 is a non-zero constant. So we have

" Ney A Nep_ i AN Negpr A ANer Aeg =10

which means that «” is tangent to M, a contradiction.
Therefore, we conclude that if ¢(s) = 0 on I, then &' = 0 and M is part of an (r + 1)-plane in ™.
We now suppose that the open subset | = {s € I|¢(s) # 0} is not empty. Then, we may put

)
f= ey o1
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Usingg = (1+ Y eu;t;)? and putting (91) into (88), we have

(]; M;’t]')q)/ -1 —I—]; Zfl]‘t]«)q)” — _@;"W(l —‘r]; u]l‘])((b +QC). (92)

In (92), considering the constant terms with respect to t and the coefficients of terms containing t;,
we see

and hence
u}CD’ =0

forallj =1,2,...,r. Since ®'(s) # 0, u; are constant forallj=1,2,...,rand s € J. Together with
Lemma 4, we have

Lemma 5. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold parameterized
by (3) in L™ with pointwise 1-type Gauss map of the second kind. Let eq, o, . . ., e, be the orthonormal generators
of the rulings along the base curve a. If e]’- are non-null forall j = 1,2,...,r, then the functions

uj(s) = (&', ¢}) and wij(s) = (e}, €})

are constant functions on the open interval | = {s € I|¢p(s) # 0} foralli,j = 1,2,...,r, where $(s) =<
D(s), D"(s) > .

Furthermore, for the case that e;- are non-null for all j, we have

Lemma 6. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold parameterized
by (3) in L™. We suppose that e; are non-null forall j = 1,2,...,r. If M has pointwise 1-type Gauss map of

the second kind, we can choose an orthonormal frame {e, ;”;rlﬂ

satisfying

of the normal space (T, M) of M along a

ehna'(s) =0

foralla=r+1,...,m—1.
Proof. It is sufficient to see Lemma 3.5 in [20]. O

Proposition 1. Let M be an (r + 1)-dimensional non-cylindrical and non-planar ruled submanifold
parameterized by (3) in L™. Let ey, e, . .., e, be the orthonormal generators of the rulings along the base curve
« such that e;» are non-null forall j = 1,2,...,r. If M has pointwise 1-type Gauss map of the second kind,
then the parametrization of M is given by

r

X(S,tl,...,fr) :tlﬁ(s)+2tiai+D, (94)
i=2

where B(s) is part of a circle or a hyperbola in L™ with ay, as, ..., a, orthonormal constant vectors satisfying
(B'(s),a;) = (B(s),a;) =0, D a constant vector and t; € I; for some open intervals I; and i =2,...,r.

Proof. Suppose ¢(s) = 0 on the whole domain I of . In this case, we showed that M is part of an
(r +1)—plane in L”. Clearly, a plane can be parameterized as (94) for some suitable constant vectors
a,...,ar.

Now, we suppose that M is not part of an (r + 1)—plane, thatis, ] = {s € I|¢(s) # 0} is not
empty. Note that
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/ m—1
<P P >= —%, <P, ®>=0 and ¢=—-¢ Y equs. (95)
a=r+1
Then, Equation (93) implies
¢’ ¢ /
_—_— = C = ,
2 " itq > 7
or, equivalently,
1 / = !/
SR Gl o) (96)
2¢  (E+7)
on J. Equation (96) yields
1 T
Alg+7|
|¢]
for some positive constant A. Therefore, from (93) we get
PP (®+C)
for some non-zero constant A.
Meanwhile, according to Lemma 6, we can put
r m—1
— Y eiuiei— Y equqe, and e = euqn’ (97)
= a=r+1

foralla=r+1,...,m — 1. Since

®" — @ is constant, by straightforward computation, we have

1
A lgl?

m—1 /

u
0= a —a) a— U
e Ui

A\/W }gﬂ

(98)
uptea Ney A---Nej_g A’ Nejpi A--- Ney,

2
ﬂzméfs“”“{ e G

where i = (a”,a”). By the orthogonality of the vectors a’, ¢; and e, forall j = 1,...,r and a =
r+1,...,m—1,(98) yields

(99)

() tha + (s ity =

p At (—— =
AP AP
foralla=r+1,...,m—1.Since¢ #O0on Jand ¢ = —&), eaug, there exists a non-zero function u,
forsomeb =r+1,...,m — 1. Then, (99) implies

Sl _ 1
Aol

So we can see that
3 2 13
|p|* = Apuy, o1, uy = ?|<P|2
b

for some non-zero real number A;. By (95), we have

¢ = clgp|?
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for some negative constant ¢, which means that the function ¢ is constant and hence the functions
u, are constant foralla = r +1,...,m — 1 by virtue of (99). By continuity, the interval | is the whole
domain I of a. Furthermore, (97) implies

o = —pa’ (100)

for the constant y = ) siul«z + ¥, eqau2. By Lemma 2, we can see that the curve & is contained in a
2-dimensional subspace of .". Equation (100) gives that the curvature is non-zero constant and hence
the plane curve « is part of a circle or a hyperbola.

Considering Lemmas 4-6, we may put

as) = i(61 —a;) and ¢(s) = —e(s) +b; (101)
U1 Uy
for some constant vectors a; and b; for i = 2,...,r such that e;(s), by, b3, ..., b, are linearly
independent for each s. By applying Gram-Schmidt’s orthogonalization, we get orthonormal constant
vectors ap, ..., a, from by, ..., b,. {e1(s),b;) are constant and thus (e;(s), a;) are also constant for all
i=2,...,r1.
We put v; = (e1(s),a;) foralli =2,...,r. Define

T
Bi(s) = ei(s) — Z Tivia;,
r=2
where 7; = (a;,a;)(= £1). Then (B1(s), B1(s)) = €1 — Lj_, T;v? is a non-zero constant since ¢; (s), a,

..., a, are linearly independent. Take B(s) = Hgigz;\\’ where ||B1(s)|| = /|(B1, B1)|- After appropriate

change of parameters ¢4, ty, ..., t;, the parametrization of (3) for M can be reduced to

for some constant vector D.
If « is a circle, we can see that the trace of position vectors of (s) is a circle on the unit sphere by
virtue of the first equation of (101). [

Note that if g < 0, that is, « is time-like, then we can see that « is part of a hyperbola in L. by
applying the same arguments developed in the proof of Proposition 1. Therefore, we can also obtain
the parametrization (94) for M such that the curve f is part of a hyperbola.

We now consider the case that some of the generators of rulings have null derivatives. Let M be
an (r + 1)-dimensional non-cylindrical ruled submanifold parameterized by (3) in L™. Again, if we
use Proposition 3.3 of [19], we may assume that eg #0foralli=1,...,r.

Case 3. Suppose that eg arenull foralli =1,...,r. We then have three possible cases according to the
degree of g.

Subcase 3.1. Let deg g(t) = 0, that is, ¢/ are null with e/(s) Aej(s) = 0 fori, | = 1,2,...,r and
uj = <zx’(s),e}(s)) =0forj=1,2,...,r. Note thate; = 1foralli =1,2,...,r. Then M has the Gauss
map of the form
T
G=0+) 4Y;
j=1
Therefore, AG = f(G + C) implies

?'=-f(®+C) and ¥/ =-fY¥; (102)
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forall j = 1,2,...,r. Equation (102) shows that the function f depends on the parameter s only.
From e/(s) A e;.(s) = 0, we can put

e;- = gjey, (103)

where oj are non-vanishing functions of s foralli,j = 1,2,...,r. Also, e;(s) A e;’ (s) = 0 follows from
ei(s) A e;-(s) = 0 and hence we have
e}’ = h]-e;- (104)

for some functions h]- ofsandj=1,2,...,r. By (18) and (104), we see
m—1
0= = (&) =~ 3 eomn]
a=r+1
which implies
m—1

Y equah) =0. (105)
a=r+1

By straightforward computation, equation ‘I’;-’ = —f¥; of (102) provides that
ojhj =0l + oy and  — f =h + 1 (106)

with the help of (103) and (104).
Now, on the non-empty open interval Iy = {s € I|f(s) # 0}, the first equation of (102) implies

f/q)// _ f@/// +f2q>,- (107)

In this case, we recall that

m—1
P=<P,P">=—- <, >=—("a")y=— Y e (108)
a=r+1

because of < ®, d’ >>= 0. From the definition of ®, we get

m—1 r
O == Y eualat Y a0, (109)
a=r+1 k=1
m—1 r r m—1
Q" =pd— Y equpla+ Y o —2Y Y equa0iOf 4, (110)
a=r+1 k=1 k=1a=r+1
" 3 / ! " . k
O =S¢ @ — ) ealuad +ui)la+ ) (30 — for) Oy
a=r+1 k=1
S (111)
=Y Y ea(Bubor + Buaoihy) QO
k=1a=r+1

with the aid of (18), (103)-(105) and (108), where we have put
Of =’ Aey A Neg_y Nej Nega A--- Ny,
05,1 =e, Net N ANep_ 1 NeyAei1 A Aep.

Considering (107) and (109)—(111), we have the following:

flo= %ffP’, 112)
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flowhi = 3forg, (113)
2" uqa0r = f(Buloy + Suqoihy) (114)

as the coefficients of vectors @, Qk and Qa 1, respectively, forallk =1,...,randa =r+1,...,m — 1.
Note that ¢} are non-vanishing for allk=1,...,r. Multiplying (114) by £,u, and adding the equations
obtained in such a way together with respect to a , we obtain

m—1 m—1 m—1
2f Z gqu = 3f Z eqtiqtily + 3fhy Z eqll2,

a=r+1 a=r+1 a=r+1
or,
3
2f'¢ = 519"+ 3f Pl (115)
forallk =1,2,...,r. By (112), (115) yields that
_1 4’

By putting (112) into (113) and then considering (116), we have
h2 = ¢.

Thus, u = («”,a”) is non-positive because of (108). Since e;- are null and (a”, ¢;) = Oforj =
1,...,r, the vector a” can not be time-like and thus ¢ = 0. Therefore, in (113), we see that

f/U'khk =0

forallk =1,...,r. If f/ # 0, then I = 0 and then f is vanishing because of (106), a contradiction on I.
Therefore, f' = 0 on I and hence f is a non-zero constant function on M by continuity. This means
that G is of 1-type in the usual sense. For ruled submanifolds with finite-type Gauss map, see [10].

Subcase 3.2. Let deg q(t) = 1. In this case, (a/(s),e(s)) # 0 for some i (1 < i < r) and the null vector
fields ¢; satisfy e/ Ae; = 0 fori, | =1,2,...,7. Wenote that# = Tand ¢; = 1 foralli = 1,2,...,r. Thus,
AG = f(G + C) implies

aq r 1 an r A
1+Z”J ~ 5975, ZP )—Eq@(ﬂ‘];”]tf)
2 1 2 - 1, 0q
(¢+ leqvjthEq 2(5) (1+Zujfj)*§q ggui (117)
j= =1 1 : i= 1
+{q® 1+ZuJ +q27(s)} =0.

Note that ¢°(1 + ¥; ujt;) + q2 '7( ) # 0 because of deg g = 1. Therefore, using the function f
obtained from (117), we repeat the same process to get (55). Then, we have the following equation
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- 3 0 s
(1+21u]t]){—§q(aflz>(q)/+z‘f[’;t +q (1)//_’_21_};// _E Z
= =

r
~(@+ L ¥t 2ot ZP];+q ¢+Z¢u 5@2%
=

82q

= U@+ L ¥ih) — (3@ + ;‘Y}fj) “puGdEs é%t")
= =

(D" 1{;// 1 — g 2(p rl}f.._lzriaq
+2 92 (5@ + ) i) — 507 )

2 = ot fut 20 & oot
+q2CP(1),

where we have put

) r 3 ) r 1 aZ r
P(t) =(S22(1+ Y uit)) — 2q50 (Y pjts) — 599 (1+ Y ujt;)
ds = 270s pst 2" 0s =

14 1 r a r
PO+ Y oit) + 50 (D214 Y ujh) — 5q 2 S
j=1 =1 " j=1
Since deg g = 1, the left side of (118) has to be vanishing, that is,

T
1+ L {—5a(5D( ¢'+2‘F]] e @"+2‘f” L
j=

38q

,
—(@+ ) ¥t {545 Ep]] +q° 4’+2‘P1] 2‘7 Zat uiy =0.

j=1
Using g =1+ ), 2u;t; and g—z =) 2u§ti, Equation (119) can be expressed as
14 14 T T
(@ + ) i)+ Y wity) — (Y piti) (D + ) ¥jty) = gW(t)
=1 i=1 i=1 j=1

for some vector W(t). In [29], it was proved that Equation (120) implies

dq

Therefore, (119) is simplified as
.
(1+ Z‘i ujti) (P + Z‘I’“ 2 ui¥;)
= =
r T 2
@@+ Yt - Y u) =
j=1 j=1 i=1

which furnishes us with three equations as follows:

r r
— Zui‘I’i — (I)CD + (2 Mlz)q) = 0,
i=1 i=1

27 of 39

(118)

(119)

(120)

(121)

(122)



Symmetry 2018, 10, 218 28 of 39

r r
¥+ u @ — uj(g u¥;) — @j® — ¢¥; + (2 uf)¥; =0, (123)
1= 1=
uj‘I’;/ - QD]“F] =0 (124)
forallj=1,2,...,r. Combining (122)—(124), we get

’
i=

forall j = 1,2,...,r. By the characters of ¢/ and a/, we see that the functions )\{1(5) of (16) are
non-vanishing for all s and it is impossible to have ¥; = u;®. Thus, we have

)
j — uip+u; Z% uf = (125)
1=

forallj=1,2,...,r.
Meanwhile, we note that e; A eg =0foralli,j=1,...,r. Then, we can put

¢; = fiej, (126)

for some jo with u;; # 0, where f; are non-vanishing functions for alli = 1,...,r. From the definition
of u;, we have
u; = fiujo (127)

which implies that f; are non-zero constant for all i = 1,...,r. Indeed, we see that u; # 0 for all
i=1,...,r. By (14) and (126), we also obtain

o= fig (128)

foralli =1,...,r. Thus, the following vector and function of (121) are induced as

T r r
9;
CI)// + Z‘P;/t] — Z Lli“Fi = l(cp + Z‘Y]tﬂ (129)
j=1 i=1 Ujo j=1
and
14 T 5 q)]o 14
o+ Y ot — Y ui = (L4 ) ujty) (130)
=1 i=1 jo =1

by virtue of (122), (124), (125), (127) and (128). Using 3—2 = 0 and (119), and substituting (129) and (130)
into (118), Equation (118) is rewritten as

q). r r T
(Ca+2) up){v(s)(@+ L ¥ity) — C(1+ Fuit)} =0, (131)
jo i=1 j=1 j=1
We note that %q + 2y u? of (131) is non-vanishing for all s. If this not the case, since ¢ = 1 +
0

Y; 2u;t; is a polynomial in t of degree 1 and Y; u? is constant with respect to ¢, @j, has to be vanishing
for s and hence }; uiz = 0, a contradiction to u; # 0 for all i. Therefore, we have

’)’(S) (q)—F il‘P]t]) = C(l + é”jtj)/
j= j=

or, equivalently,
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Y(s)®=C and (s)¥
forallj =1,...,r. Differentiating “y(s)® = C’ of (132) with respect to s and taking the indefinite scalar

product with ® to the equation obtained in such a way, we get
7'(s) =0

which implies that <y is a non-zero constant function for all s. If not, that is, v = 0, the vector C is zero,
a contradiction. Therefore, (132) yields
_ . !/ !
‘Fj = u]<D and hence ej = uju
forallj =1,...,r. This is also a contradiction to the characters of e; and «'.

Consequently, we can conclude that there is no ruled submanifold with deg 4 = 1 which has
pointwise 1-type Gauss map of the second kind.

Subcase 3.3. Let deg g(t) = 2. In this case, we can easily obtain the same conclusion such as Lemma 4
by referring to the case that e’l, e’z, ..., e, are non-null. But this is impossible according to the characters
of the vectors a’ and ¢!. Therefore, we see that no ruled submanifold in L™ with deg g = 2 has
pointwise 1-type Gauss map of the second kind.

/

Case 4. Suppose that e, ..., ¢]

i, 1=1,...k

In this case, deg q = 2. If we follow a similar argument for the case that ¢], ¢}, .. ., e, are non-null,

_arenull for j; < jo < -+ <jx € {1,2,...,r} and ¢; are non-null for

for the same reason as in Subcase 3.3, we can conclude that there is no ruled submanifold in L™ with
pointwise 1-type Gauss map of the second kind under these assumptions.

Until now, we have considered the necessary conditions for ruled submanifolds to have a
pointwise 1-type Gauss map of the second kind. That is, if the ruled submanifold M in L"
parameterized by (3) has a pointwise 1-type Gauss map of the second kind, then according to the
characters of ¢/, M is part of a product manifold of a right cone (or a hyperbolic cone) and a plane,
or M has a 1-type Gauss map in the usual sense. Conversely, by straightforward computations, we can
see that the Gauss maps of these ruled submanifolds are of pointwise 1-type of the second kind.

Therefore, we have

Theorem 2. Let M be an (r + 1)-dimensional non-cylindrical ruled submanifold with non-degenerate rulings
in the Minkowski m-space I.'™. Then, M has a pointwise 1-type Gauss map G of the second kind if and only if
M is one of the following:

(1) M has a 1-type Gauss map in the usual sense, i.e., the Gauss map G satisfies AG = AG + C for some
non-zero A € R and some constant vector C.

(2) M is part of a product manifold of a right cone and a plane of the form Cs x R~ or Cg x L' ~1,

(3) M is part of a product manifold of a hyperbolic cone and a plane Cpy x R™~1.

(4) M is part of an (r + 1)-plane in L™.

4. Generalized Null Scrolls in L™

Let M be an (r + 1)-dimensional ruled submanifold in L™ with degenerate rulings E(s, r) along a
regular curve with a parametrization %(s, t), where t = (t,f,...,t,). Since E(s, ) is degenerate, it can
be spanned by a degenerate frame {B(s) = e1(s),ex(s),...,e-(s)} such that

(B(s),B(s)) = (B(s),ei(s)) = 0, (ei(s),ej(s)) =&, i,j=2,3,...,m.
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Without loss of generality as was shown in Lemma 1, we may assume that

Since the tangent space of M at %(s,t) is non-degenerate and contains the degenerate ruling
E(s,r), there exists a tangent vector field A to M which satisfies

(A(s,t),A(s, 1)) =0, (A(s,t),B(s)) = —1, (A(s,t),ei(s)) =0, i=2,3,...,r

at %(s, t).
Let a(s) be an integral curve of the vector field A on M. Then we can define another
parametrization x of M as follows:

r
x(sr t1,t2, .. ~/t7) = IX(S) + Z tiei(s)

where a/(s) = A(s). A ruled submanifold defined as above is called a generalized null scroll. We refer to
two lemmas for later use.

Lemma 7 ([7]). We may assume that (A(s), B'(s)) = 0 for all s.

Lemma 8 ([8]). Let M be a ruled submanifold with degenerate rulings. Then, the following are equivalent.
(1) M is minimal
(2) B' is tangent to M.

If we put P = (x5, x5) and Q = —(xs, x4, ), Lemma 7 implies

r

Z f+2wu

i=2 ij=1

Qs t) =1+ Zr:vi(s)tl
i=2

where v;(s) = (B(s),ei(s)), ui(s) = (A(s),ej(s)) and wjj(s) = <e§(s),e]’-(s)> fori,j=1,2,...,r
Note that P and Q are polynomialsin t = (t1,tp, ..., t,) with functions in s as coefficients. Then the
Laplacian A of M can be expressed as follows:

P 3 2 »
{JJ* QZ Zat +2Qasat1 PaT§

2

0
_ZQthlat ot _QZZ t2}

where P =P — 12y, 0.
By definition of the indefinite scalar product <, > on G(r + 1, m), we may put

KX AXty AXty Ao AXty, Xs AXty AXpy A= Axy, >= —Q%.

Then the Gauss map G is given by
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G= ‘Q|xs/\xt1/\xt2/\.../\xtr
‘Q|{A/\B/\62/\ /\er+t1B//\B/\€2/\---/\er
+Ztie§/\B/\e2/\---/\er},
i=2

n [9], the authors proved the following theorem.

Theorem 3 ([9]). Let M be a generalized null scroll in ™. Then, the following are equivalent.
(1) M is minimal.
(2) M has a harmonic Gauss map.

We now suppose that a generalized null scroll M has a pointwise 1-type Gauss map AG = f(G +
C). Without loss of generality, we may assume that Q > 0. Then by straightforward computation,
we get

m—1 T r
Z {( Z<B’/€;>fi—vafi)vh‘i‘U;,Q}eh/\B/\ez/\-~~/\e,
h r+1  i=1 i—2
2 m—1
‘.‘@ Z U%A/\B/\ez/\.../\er
h=r+1
2 m—1
QZZ Z viogey, ABAeag A---Nej_1 NANe g AN+ Ney
i=2h=r+1
7 m—1 (133)
sz Z z’h/\zeh/\B/\ez/\ “ANei_1NegNejig N Ney
i=2h,l=r+1
1 r —1
=fl={(1+ )Y_tiv,)ANBAes A--- Ner + Z tlvh+ZAh Yey ABAea A---Neyy +C]
Q i=2 h=r+1 i=2
m—1 )
=fAANBAeyA-- /\er+f Z tlvh+Z/\;iti)ehAB/\EZA"'Aer+fC,
Qh r+1 i=2
where we have put
m—1 m—1 '
- Zviei and €§=UjA—ujB+ Z /\;el (134)
i=2 [=r+1

forj=2,...,randl=r+1,..., m—1

Now, we note that Q is constant with respect to ¢;. Then, by differentiating (133) with respect to
t1, we get

2 m—1
= (B,B') ) vpe, ABAexA---Ne
Q h=r+1
r
=f,ANBAey A Neyp+ f“ 2 (tiog+ Y_Aptien ABAea A--- ey (135)
Qh r+1 =2
m—1
Q Y vnen ABAey A Nep+ £, C
h=r+1

Case 5. f;, =0on M.
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Equation (135) implies that
2 propy 2011
Putting (136) into (133), we obtain the following polynomial in ¢ of degree 1 with functions of s

as coefficients

(136)

r

m—1 r
Z {(Z(B’,eg)ti — Zv}tj)vh +v,Qen ABAey A+ Aey
h=r+1  i=1 j=2

m—1
+Q Y UiAABAe A Aer

h=r+1
r m—1
+QZ Z Ujvheh/\B/\ez/\---/\ej,l/\A/\ejﬂ/\.../\er
i (137)
r  m-—1 .
+QZ Z vh/\;eh/\B/\ez/\A€]71A61A6]+1AAer
j=2h,l=r+1
m—1 r )
:wllQAABAEZA...A€r+wll Z <tlvh+EAit])eh/\BAEZAH-/\er
h=r+1 j=2
“FZUHQC.

Comparing the constant terms with respect to ¢ of (137) and using wy = ¥/, vjz + Z;’;}H v?,

we have
m—1

r
_ 2
fw 1 C= ) v;leh/\B/\ez/\"'/\er—ZvjAABAezA.--Aer
h=r+1 j=2
r m—1
+2 Z v]-vheh/\B/\ez/\~~~/\e]-_1/\A/\e]-+1/\---/\er (138)
j=2h=r+1
r  m—1 .
+Y Y wMNeyABAes A Aej_i AegAej A Aey.
=2 hl=r+1

From (136) we see that wy1(s) # 0.
Differentiating (137) with respect to t; (j = 2,...,r), with the aid of (138) we get

m—1 ,
Y. (B ef)v, — vioy, — wnA,)ep ABAex A Aep =0,
h=r+1
which implies
m—1 , .
o Y vphl — vioy, — wi A, =0 (139)
p=r+1

as the coefficient of the vectore;, ABAex A---Neyforallj=2,...,randh=r+1,...,m—1.

If v, = 0 for all i, (134) implies that B’ is tangent to M. With the help of Lemma 8 and Theorem 3,
we can see that M is minimal and hence the Gauss map G of M is harmonic. In this case, G can be
chosen as the constant vector —C. That is, M is part of a Lorentzian (r + 1)-plane in L™.

Now, we suppose that v, # 0 forsome h € {r+1,...,m —1}. If we put

T .
e, =vA—upB—Y Aej (140)
=2

in the same manner as (15) by virtue of Lemma 1, differentiating (138) with respect to s provides
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m—1 r r m—1 .
wyC= ) {v Z vF Uy — Z vy + Y Z vp)\] )t] Yo N (M)}
h=r+1 j=2p=r+1 j=2p=r+1

es, NBAey N+ Ney

Z 0y, ZZv]v]+Z Z v]A V) ANBAey A Ne

p=r+1 j=2 j=2p=r+1

m—1 r .
+ Y (o= Y viopA)en Aey Aea A Aer (141)

h,p=r+1 j=2

r m—1 r ’ m—1 . m—1 .

/

=Y Y (ol + (X oA, + (o) = (L AL+ Y vpApup}

j=2h=r+1 k=1 p=r+1 p=r+1

A/\B/\ez/\"'/\Ej_lAeh/\ej_,’_l/\.../\er

r
—l—Z Z {vh/\ vhup+(vh)\])}ehABAezA “NejyNep A Ner.
j=2h,p=r+1

Comparing the coefficients of the vectors in (138) and (141), we obtain the following
four equations:

W' r r  m—=1 .
Lo, = o + () 0?) uh—Zv]u]vthZ Z oM =Y Y (M), (142)
w11 j=2 j=2p=r+1 j=2p=r+1
w/
- Z vpv), ZZv]v]+Z Z v]A Vp, (143)
w11 j:2 p=r+1 j=2p=r+1
T . r .
ol — Y. ooy~ oo + L oopky =0, (14
=2 =2
why 20y T Y . Y
—Lojo, = vjoy + () o)A, + (oon) = (), o)A, +on Y, vpAy. (145)
w11 k=2 p=r+1 p=r+1

Substituting (139) into (143), we get
w11 r Wi -k
—n (o) 2 OpT) = Zv] ) o (146)
11 j=2 p=r+1 Un k=

for some h with v, # 0. Putting (146) into (144) gives

Upvh - 'Uhvp,

which implies
vp(s) = cgvp(s)

for some constant cg. Therefore, we can put
op(s) = cpvr4a(s) (147)

for some constantsc, and h=r+1,...,m — 1.
Recall that Equation (139) is valid forallh =r+1,...,m — 1. By replacing h withr +1,...,m —1,
respectively, and comparing equations obtained in such a way, with the help of (147) we can get
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Ny(s) = cnl () (148)

forallj =2,...,rand forallh = r+1,...,m — 1. By virtue of (147) and (148), Equation (142) is
simplified as

w T
Lo, =, + () 0]2‘)“}1 - Y ojujoy (149)
w11 ! =2
forallh =r+1,...,m— 1. Putting (147) into (149) and repeating the method to get (148), we have
up(s) = cpttr11(s) (150)

forallh =r+1,...,m— 1. If we put (147) and (148) into (139), then we obtain

v U1 = Z v)A r+1 (151)

because of wy; = Y U]2 +Yu U%. Substituting (139) into (145) provides

w/ r

willvjvr+1 - 2{ Ur+l) + (Z vi)/\iu,_l}/
11 k=2
which yields
w/
0i(=Lo =20, 1) =0 (152)
w11
with the help of (151).

If v; = 0, (138) implies that

m—1

wi1C= ) Ve ABAey A Ne (153)
h=r+1
and hence
m—1
wh;C = Z vyen ABAey Ao Nep+ Y 00l ANBAes A Ney. (154)
h=r+1 h=r+1

Combining (153) and (154), we have

m—1
Y v, =0,

h=r+1

which means that the function wi; = Y7, v% is constant. Since w1 = v% 12k cﬁ, the function v, is
constant, so are vy, forallh =r+1,...,m — 1. In (153), we can see that C is a zero vector because of
w11 # 0, a contradiction. Therefore, from (152), we conclude that

w/

11 /
—Ury1 = 20,49,
w11
or, equivalently,
2
w11 = dr 10544 (155)

for some positive constant d, 1. Since wi; = Y v] + Y vh Y v/ + Ur+1 Y Ch' we see that

m—1

)
Y07 = (de— ) i)ung (156)

j=2 h=r+1
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We now introduce another kind of generalized null scroll as follows:
For a null curve &(s) in L™, we consider a null frame {A(s), B(s) = e1(s),ea(s),...,em—1(s)}
along &(s) satisfying

—
b
—~
wn
N
N
S
—~
»
NP
=
I
—
os]
—
»
N
= X
os]
N =
wn
N
=
Il

(A(s),ei(s)) = (B(s),ex(5)) =0,
1, (ei(s),¢i(5)) = by, @(s) = A(s)

fori,j=2,3,...,m—1.

Let X(s) be the matrix (A(s) B(s) ex(s) - - - e;4—1(s)) consisting of column vectors of A(s), B(s),
ex(s), ..., e;—1(s) with respect to the standard coordinate system in L”. Then we have

X'(s)EX(s) =T,

where X!(s) denotes the transpose of X(s), E =diag(—1, 1,..., 1) and

0 =10 --- 0
T—| 0 0o 1 --- 0
o 0 0 --- 1

X'(s) = X(s)M(s), (157)
where
0 0 (%] e Uy Urt1 Cr420r+41 0 Cm—1Ur41
0 0 —Uuz T —Ur —Urp1 —Crp2Upp1 o —COp1Ur
—u2 2 0 e 0 _)\erl _Cr+2)‘%+1 e _Cm—l/\%ﬂ
—Uus u3 0 T 0 */\L:’-H *Cr+2)‘3+1 —Cm-1A7 4
M(s) = —uy vy 0 e 0 A e = U I
U1 Vpi1 A2, Al 0 0 e 0
—Cry2Urp1 Cr420r41 Cr+2/\3+1 e Cr+2/\:+1 0 0 e 0
“Cm—1Ur4+1  Cm—10r+1 Cm—1A$+1 T Cm—l)\:+1 0 0 Tt 0
wherev; (2 <i < r+1),u]- 2<j<r+1) zmd/\’r‘+1 2<k<r, r+1<b<m-—1)aresome smooth
functions of s and ¢, (r +1 < h < m — 1) are constant satisfying
= 5 2 j
/
Y vi =duyy, vj=—do, 1A, and
=2
, (158)
W11 1 I =, .
—o =00+ () U7 )Upi1 — ) OjljOri1
w11 =2 j=2

for some positive constant d.
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For a given initial condition X(0) = (A(0) B(0) e2(0) - - - e,,_1(0)) satisfying X!(0)EX(0) = T,
there exists a unique solution to X’(s) = X(s)M(s) on the whole domain I of &(s) containing 0. Since
T is symmetric and MT is skew-symmetric, ; (X!(s)EX(s)) = 0 and hence we have

X'(s)EX(s) =T

foralls € I Therefore A( ) B(s), e2(s), ..., e;—1(s) form a null frame along a null curve &(s) in L™
onl Leta(s) = [j A

We now give the following definition.

Definition 2. A generalized null scroll satisfying (157) parameterized by
x(s,ty,ta, -+ 1) = a(s) + 1 B(s —I—Zte, (159)

is called the generalized B-scroll kind.
Remark 2. In the case of m = 3 with v, € R, a generalized B-scroll kind is a so-called B-scroll.
Therefore, we can see that the parametrization of a generalized null scroll M with a pointwise

1-type Gauss map of the second kind can be given by (159). Furthermore, by combining the first two
equations of (158), we can see that these ruled submanifolds satisfy

r .
/ _ 2/
V== ) oA
j=2

Conversely, for a generalized B-scroll kind M parameterized by (159), by computation, AG can be

expressed as
2ZU11

AG = ol (G+C),
where C is the constant vector given by
1 -1 14
cC=—{ Z chvy1en ABAey A - er—Zv]ZA/\B/\ez/\~~/\er
w1 55 j=2
r m—1
+ Z 2 0j6h07+18h/\B/\62/\ e AEj_l AAAEJ‘_H A-.‘Aer}.

j=2h=r+1

It means that the Gauss map G of M is of pointwise 1-type of the second kind.
Case 6. f;, # 0.

In this case, the open subset W = {p € M|f, (p) # 0} is non-empty. Comparing the vectors
composing the constant vector C of (133) and (135), by the orthogonality of them, we get

vjvp =0 and vh)xé, - vp/\{Z =0

onWforallj=2,...,randh,p=r+1,..., m—1.

Ifv, =0forallh =r—+1,...,m —1, we obtain the result that the open subset W of M is part of a
Lorentzian (r + 1)-plane by Lemma 8 and Theorem 3.

If v, # 0forsomeh € {r+1,...,m— 1}, then vi =0and Q = 1forallj = 2,...,7. Then,
Equation (133) is simplified as
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m—1 r

2 Y {(Y_(B.ej)opti+v) ey ABAes A=+ Ny
h=r+1 i=1
m—1
+2 Y 0JAABAe A Ae (160)
h=r+1
m—1 r .
=fAANBAeyA---Nee+f Y (top+ Y At)ey ABAes A--- Aep+ fC,
h=r+1 j=2
or,
1 m—1 T
C=—{2 Y {()_(B.e))opti+vy) ey ANBAex A--- Ney
f h=r+1 i=1
m—1
+(2 Y vi—f)AABAer A+ Aer} (161)
h=r+1
m—1 r .
— Y (hop+ Y Ntj)en ABAea - Ney
h=r+1 =2

on W. By differentiating (160) with respect to t; and using (161), we can obtain

Zf—tl mZ—:l v%zO

f h=r+1

as the coefficients of AAB Aey A--- Aey. Since fi, 7 0on W, we have ), vi = 0, a contradiction to
vy, # 0 for some h.

Therefore, we can conclude that if the open set W is non-empty, then the functions v}, are identically
zeroon Wforallh =r+1,...,m —1, and hence we see that W is an open part of a Lorentzian plane
in L™. By continuity, M is a Lorentzian (r + 1)-plane.

Therefore, we have

Theorem 4. Let M be a generalized null scroll in the Minkowski m-space IL™. Then, M has a pointwise 1-type
Gauss map of the second kind if and only if M is part of a Lorentzian (r + 1)-plane in L™ or a generalized
B-scroll kind.

In particular, by straightforward computation, we have

Corollary 1. Let M be a null scroll in the Minkowski 3-space IL3. Then, M has a pointwise 1-type Gauss map
of the second kind if and only if M is part of a time-like plane or a flat B-scroll.
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