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Abstract: In recent years, group theory has been gradually adopted for computational problems
of solid and structural mechanics. This paper reviews the advances made in the application
of group theory in areas such as stability, form-finding, natural vibration and bifurcation of
novel prestressed structures. As initial prestress plays an important role in prestressed structures,
its contribution to structural stiffness has been considered. General group-theoretic approaches
for several problems are presented, where certain stiffness matrices and equilibrium matrices
are expressed in symmetry-adapted coordinate system and block-diagonalized neatly. Illustrative
examples on structural stability analysis, force-finding analysis, and generalized eigenvalue analysis
on cable domes and cable-strut structures are drawn from recent studies by the authors. It shows how
group theory, through symmetry spaces for irreducible representations and matrix decompositions,
enables remarkable simplifications and reductions in the computational effort to be achieved.
More importantly, before any numerical computations are performed, group theory allows valuable
and effective insights on the behavior or intrinsic properties of a prestressed structure to be gained.
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1. Introduction

Symmetry is one of the most common and important features in nature. Different forms of
symmetry can be easily observed from a microscopic view to macroscopic view, from atoms and
crystals to large-scale space structures. At the same time, innovative methods that consider the
inherent symmetry of a system will be systematic and effective [1–3]. As an important branch of
mathematics and vector algebra, group theory is a powerful tool for systematic analysis on symmetric
systems. It simplifies the complex computation process. Moreover, it has a direct and qualitative
understanding on the intrinsic properties of the system. Thus, group theory has been extensively
applied in many fields such as computational physics, electromagnetics, crystal chemistry [4,5] and
molecular vibration [6,7].

Notably, applying group theory into structural analysis can significantly improve computational
efficiency [8,9]. In recent years, group theory has been gradually adopted by some researchers from structural
engineering to solve the involved computational mechanics of symmetric structures [10–14]. Based on
group theory, Zlokoviâc [15] and Zingoni [16] showed how to evaluate irreducible representations and
symmetry subspaces for symmetric structures. They also summarized the main advantage of group theory
through its applications in structural stability, vibration and control. Kangwai et al. [3] briefly described how
to utilize group theory to establish a symmetry-adapted coordinate system and perform static analysis on
symmetric structures. They concluded that the Fourier method was a special case of the symmetry method
using group theory. During nonlinear buckling analysis or frequency analysis of a symmetric structure,
if symmetry subspaces associated with certain irreducible representations are established, the tangential
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stiffness matrix and mass matrix of the structure would be neatly block-diagonalized, and also different
types of buckling modes and vibration shapes can be predicted without further computations [10,16]. Pandia
Raj and Guest [17] successfully introduced group theory to the form-finding analysis of tensegrity structures.
According to the distribution patterns of the symmetry-adapted equilibrium matrices, analytic solutions
for the internal forces of different types of members were effectively obtained. Then, Zhang et al. [18,19]
combined group theory and the force-density method to investigate prestress stability and super stability
of symmetric tensegrity structures. Subsequently, considerable progress has been made, and important
applications have arisen in areas such as vibration, stability, bifurcation and finite element analysis [20–24].

Unfortunately, group theory has not been widely adopted in structural analysis because it is
abstract (i.e., mathematically represented) and not commonly used by most structural engineers.
In addition, conventional symmetry mentioned in structural mechanics generally refers to mirror
symmetry or cyclic symmetry [25]. However, many prestressed space structures are neither cyclically
symmetric nor mirror-symmetric, such as the dihedral star tensegrity structures [19] and the two-orbit
switch-pitch deployable structures [26]. It should be explained that, in this study, novel prestressed
structures refer to a type of engineering structures whose stiffness would be dominated/improved
by initial prestresses or similar measures. For example, cable-strut structures, tension structures,
tensegrity and cable domes. In fact, many seemingly asymmetric structures still retain a number
of symmetry operations [14,27], including proper rotations, reflections, improper rotations, and
the inverse [28]. It should be pointed out that using group theory to investigate novel prestressed
structures can make full use of all the inherent symmetry. Importantly, group-theoretic approaches
can simplify the involved computations [23], and also get fruitful and effective conclusions that might
be difficult to obtain from conventional methods [16,29]. Here, through different areas of structural
mechanics and illustrative examples drawn from recent work of the authors, this study will describe
important developments and applications of group theory for novel prestressed structures. As initial
prestress plays an important role in prestressed structures, its contribution to structural stiffness is
considered. General group-theoretic approaches for the involved problems are presented, where certain
stiffness matrices and equilibrium matrices are expressed in symmetry-adapted coordinate system
and block-diagonalized.

2. Group Theory and Its Matrix Representations

A symmetry group G describes all the inherent symmetry of a structure by a set of elements
G = {gi, i ∈ [1, τ]}, where each element gi denotes an independent symmetry operation, and τ denotes
the total number of symmetry operations. This group must obey the following four group properties:

i. Identity: ∃E ∈ G, for any element gi ∈ G, it satisfies gi · E = E · gi = gi.
ii. Inverses: gi ∈ G, ∃g−1

i ∈ G ⇔ gi · g
−1
i = E .

iii. Closure: ∀gi, gj ∈ G ⇒ gi · gj ∈ G .

iv. Associativity: ∀gi, gj, gk ∈ G⇒ (gi · gj) · gk = gi · (gj · gk).

where · denotes the multiplication between different elements. In fact, each element gi in the
symmetry group describes an independent symmetry operation for the structure [2]. Under every
symmetry operation, the structure can be transformed into a new configuration that is equivalent
or indistinguishable from the original configuration. For structures with finite nodes and members,
all symmetry operations can be divided into the following five types [14,30]: (a) the identity E;
(b) rotation Cn about an n-fold symmetry axis; (c) reflection σn along a symmetry plane; (d) inverse S2;
and (e) improper rotation Sn.

Mathematically speaking, each symmetry operation can be taken as a linear transformation in
2D/3D space, and thus the configuration can be expressed as a matrix form:

XS = RS ·X (1)
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where the matrices X and XS are the generalized nodal coordinates for the initial configuration and the
transformed configuration by the symmetry operation S, and RS is the corresponding transformation
matrix. As the base vectors are variable for different coordinate systems, the transformation matrix
RS is not unique. Fortunately, group theory can be utilized to neatly construct a symmetry-adapted
coordinate system, and to decompose the reducible transformation matrix RS into a series of irreducible
representations [23,29]:

RS = α1Γ(1) ⊕ α2Γ(2) + · · · (2)

where the parameters α1 and α2 are the coefficients for the first and second irreducible representations
Γ(1) and Γ(2). Generally, a symmetry group G has µ ≥ 1 independent irreducible representations,
Γ(i) (i ∈ [1, µ]). The character χ

(
Γ(i)
)

for each irreducible representation keeps constant in different
coordinate systems. Specific values associated with different kinds of symmetry operations can be
directly read from group theory books [15,28].

3. Stability Analysis on Prestressable Pin-Jointed Structures

Note that novel prestressed structures described in this study refer to various types of prestressable
pin-jointed structures, including cable domes, cable nets, tensegrity structures and cable-strut tension
structures [31–33]. These structures have innovative and attractive geometries, and often contain
internal mechanism modes. Thus, the stability of a prestressable pin-jointed structure, that is, whether
it can keep a stable state by the initial prestresses, is the basic and key problem that structural engineers
need to solve [29,34,35].

3.1. Positive Definiteness of the Tangent Stiffness Matrix for a Prestressed Pin-Jointed Structure

It is known that the potential energy ΠR of a stable structure states at a minimum [36]. In other
words, for an arbitrary virtual nodal displacement vector δd, the second-order variation of the potential
energy δ2ΠR should satisfy

δ2ΠR = δdTKTδd > 0 for all δd (3)

which is expressed by the quadratic form of the tangent stiffness matrix KT of the structure. Therefore,
stability analysis of the structure is transformed into the positive definiteness problem of the tangent
stiffness matrix [34,35,37]. Guest [38,39] has established a unifying approach for the tangent stiffness
matrix of a general prestressed pin-jointed structure:

KT = KE + KG (4)

In Equation (4), KE is the elastic stiffness matrix, and KG is the geometric stiffness matrix
contributed by the initial prestresses. Unlike conventional prestressed structures with positive definite
matrix KE, novel prestressed structures have internal mechanisms M, which come from the null space
of the positive semi-definite matrix KE and satisfy

KEM = 0 (5)

For a symmetric structure, the tangent stiffness matrix KT can be block-diagonalized
in the symmetry-adapted coordinate system.‘According to the great orthogonal theorem [3],
the transformation matrix U for expressing generalized nodal displacements and external loads
is established:

U =
µ

∑
i=1

li

∑
h=1
⊕U(i−h) (6)
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where U(i−h) denotes the symmetry subspace associated with the irreducible representation Γ(i), µ is the
number of irreducible representations of a symmetry group, and li is the dimension of the irreducible
representation Γ(i). Then, the symmetry-adapted tangent stiffness matrix KT of the structure is

KT = UTKTU = diag
[
K(1−1)

T , · · · , K(i−h)
T , · · · , K

(µ−lµ)
T

]

=



K(1−1)
T 0 0 0 0

0
. . . 0 0 0

0 0 K(i−h)
T 0 0

0 0 0
. . . 0

0 0 0 0 K
(µ−lµ)
T


(7)

where diag [ ] denotes a diagonal matrix, and K(i−h)
T represents a typical small-sized block matrix

along the diagonal of the matrix KT . Equation (7) shows that the original tangential stiffness matrix is
decomposed into a series of block matrices, and the total number of the block matrices is computed by

q =
µ

∑
i=1

li (8)

On condition that the structural configuration and initial prestresses are fully symmetric,
the stiffness matrices KE and KG can be similarly decomposed into the block-diagonalized ones:

KE = UTKEU = diag
[
K(1−1)

E , · · · , K(i−h)
E , · · · , K

(µ−lµ)
E

]
(9)

KG = UTKGU = diag
[
K(1−1)

G , · · · , K(i−h)
G , · · · , K

(µ−lµ)
G

]
(10)

where KE and KG are symmetry-adapted elastic stiffness matrix and geometric stiffness matrix. For a

positive integer h ∈ [1, li], the block stiffness matrices K(i−h)
T , K(i−h)

E , and K(i−h)
G are associated with the

irreducible representation Γ(i).
Therefore, to evaluate the positive definiteness of the original tangent stiffness matrix

KT , each block matrix K(i−h)
T can be independently evaluated by numerical approaches, e.g.,

the eigenvalue decomposition

K(i−h)
T Ψ

(i−h)
= Ψ

(i−h)
λ
(i−h)

, ∀ i ∈ [1, µ], j ∈ [1, li] (11)

where λ
(i−h)

and Ψ
(i−h) are the eigenvalue and eigenvector extracted from the symmetry subspace

associated with the irreducible representation Γ(i). Because any similarity transformations do not
alter the eigenvalues of a matrix [16,40], the eigenvalues obtained from Equation (11) belong to the
eigenvalues λ of the original tangent stiffness matrix

λ
(i−h) ⊂ λ, ∀ i ∈ [1, µ], h ∈ [1, li] (12)

and the corresponding eigenvector Ψ(i−h) can be expressed as

Ψ(i−h) = U(i−h)Ψ
(i−h), ∀ i ∈ [1, µ], h ∈ [1, li] (13)
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where the symmetry subspace (see Equation (6)) reveals that the eigenvector Ψ(i−h) holds the same
symmetry associated with the irreducible representation Γ(i). Subsequently, the full eigenvector matrix
Ψ can be obtained by

Ψ =
µ

∑
i=1

li

∑
h=1
⊕Ψ(i−h) (14)

Hence, by using group theory, the positive definiteness problem of the original tangent stiffness
matrix is transformed into many independent sub-problems. Consequently, the computational
complexity required for eigenvalue decomposition will be significantly reduced.

3.2. Necessary Conditions for Structural Stability of Prestressed Pin-Jointed Structures

In the symmetry-adapted coordinate system, Equation (3) can be rewritten as

δdTKTδd = αTMT(KE + KG
)
Mα = αTMTKGMα > 0 (15)

where δd = Mα is the symmetry-adapted nodal displacement vector, M is the symmetry-adapted
mechanism mode, and KEM = 0 (refer to Equation (5)). To satisfy the structural stability, the matrix
KG should be positive definite or positive semi-definite, i.e., ∑ λ(KG) > 0. Then, a necessary condition
for stability of the symmetric prestressed structure can be obtained [36]. The structure must have at
least a single state of self-stress with full symmetry, given by

Γ(1) ⊂ Γs (16)

where Γs is the symmetry representation of the self-stress states. On the other hand, when the
structure has only self-stress states without full symmetry (Γ(1)Γs), the symmetry of the self-stress
states is associated with the i-th type irreducible representation Γ(i), where 1 < i ≤ µ. Thereafter,
the symmetry-adapted geometric stiffness matrix KG cannot be decomposed into block-diagonalized
matrices. However, it has certain regularity, and all the diagonal blocks are zero matrices. At this point,
the trace of the matrix KG is 0, ∑ λ(KG) =0. Therefore, this matrix is neither a positive definite nor a
negative definite matrix, and does not satisfy the necessary condition for the stability (see Equations
(3) and (15)). In this case, the structure must be an unstable (finite) structure.

3.3. Example: C2v Symmetric Cable-Strut Structures

Stability analysis on two simple two-dimensional symmetric cable-strut structures is presented,
to explain the basic group-theoretic process. As shown in Figure 1, both of the structures consist of two
vertical struts and six cables. The length of struts is Lc = 2000 mm, the distance between the struts is
2000 mm, and the minimum distance from the boundary nodes (nodes 5 and 6) to the struts is 1000 mm.
The elastic modulus of the cables and that of the struts is Et = 1.9× 105 MPa and Ec = 2× 105 MPa;
the cross-sectional area of the cables and that of the struts is At = 500 mm2 and Ac = 3000 mm2.
Both structures have a single mechanism mode (m = 1) and a self-stress state (s = 1). Note that the
initial prestress of the vertical struts is −100 kN, and prestresses of other members can be uniquely
determined by the self-stress state.
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Figure 1. Two-dimensional C2v symmetric cable-structures (a) with horizontal cables; (b) with
cross cables.

The structures are C2v symmetric as they keep equivalent by the following four symmetry
operations: Identity, rotation by π, and the reflections along X and Y axes. These four symmetry
operations constitute a C2v = {E, C2, σX , σY} symmetry group. The C2v group has µ = 4
one-dimensional irreducible representations, Γ(1) = A1, Γ(2) = A2, Γ(3) = B1, Γ(4) = B2,
and l1 = l2 = l3 = l4 = 1. Through Equations (6) and (7), the tangential stiffness matrices can
be decomposed into four 2× 2 block matrices, as listed in Table 1.

Table 1. Different blocks K(i)
T of symmetry-adapted tangent stiffness matrix (×Ec Ac/Lc).

Irreducible Representation Γ(i) A1 A2 B1 B2

Figure 1a
[

2.1121 0.1118
0.1118 0.4288

] [
0.1125 0.1118
0.1118 0.1121

] [
2.1125 0.1118
0.1118 0.1121

] [
0.1121 0.1118
0.1118 0.4285

]
Figure 1b

[
2.2241 0

0 0.2241

] [
0.2241 0

0 0.2238

] [
2.1120 0.1119
0.1119 0.1120

] [
0.1120 0.1119
0.1119 0.1117

]

Therefore, the eigenvalues and eigenvectors can be independently extracted from each of the
block matrices. Figure 2 plots the eigenvalue decomposition results of the tangent stiffness matrix of
the structure shown in Figure 1a. The endpoints of the polyline and the discrete dots are the solutions
obtained by the symmetry method and the conventional method, respectively.
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Figure 2. Eigenvalues extracted from different symmetry subspaces for of the cable-strut structure
shown in Figure 1a.

As the minimum eigenvalue is positive, λmin(KT) > 0, this structure is stable. However,
the minimum eigenvalue is much smaller than the others, as shown in Figure 2. This is because
the structure has an internal and infinitesimal mechanism mode, and the first-order eigenvalue is
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mainly determined by the initial prestress [40,41]. Besides, the results obtained by the symmetry
method are exactly the same as those of the conventional method. Because the tangent stiffness matrix
has been diagonalized into four small-sized blocks, computation cost of the symmetry method is only
0.004 s. However, the conventional method concerns the original matrix and takes 0.0156 s.

In Figure 2, the first, third, sixth, and eighth modes of the eigenvectors obtained from different
symmetry spaces are also plotted, where A1 indicates full symmetry and the others indicate lower-order
symmetry. The short arrows indicate the motion trend of the free nodes. It turns out the eigenvectors
keep consistent with the inherent symmetry properties of specific symmetry subspaces. For instance,
the fifth and eighth eigenvectors come from the full symmetry subspace and thus they have full
symmetry of C2v. Similarly, since the first and fourth eigenvectors are from the symmetry subspace A2,
they exhibit rotational symmetry of C2v. The third and seventh eigenvectors keeps Cv symmetry along
the X axis, while the second and the sixth eigenvectors keeps Cv symmetry along the Y axis.

On the other hand, stability of the structure shown in Figure 1b is also studied, where the upper
and lower horizontal cables are replaced by two cross cables. As shown in Figure 3, this structure
has a single state of self-stress with full symmetry (i.e., C2v symmetry) and an internal mechanism
mode with lower-order symmetry (i.e., Cv symmetry). However, it has been verified that the internal
mechanism mode cannot be rigidified by prestressing (see Figure 3), as the minimum eigenvalue
λmin(KT) = −0.037 < 0 . Consequently, this structure is unstable, although it satisfies the necessary
conditions given by Equation (16). It should be pointed out that the results for this structure are
consistent with the reported ones [42].
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4. Form-Finding Analysis on Tensegrity Structures

A significance of novel prestressed structures mentioned in this study is that these structures
rely on initial prestresses to obtain or enhance the structural stiffness. Therefore, form-finding
(or force-finding) analysis on these structures is important [43,44]. For a structure with multiple
self-stress states and complex geometry, Yuan et al. [45] considered the symmetry of the structure and
proposed the concepts of integral self-stress state and feasible prestress to seek an effective and proper
distribution for initial prestresses. They proposed the double singular value decomposition(DSVD)
method for form-finding, which manually classified the members into different types and imposed
symmetry constraints on the internal forces in the members. Zhang et al. [46] have utilized the energy
method to obtain the integral self-stress state. Recently, some researchers [17,18,32] have combined the
force density method with the structural symmetry to simplify the form-finding analysis for novel
prestressed structures.

Admittedly, these methods rely on the correct classification for the members. When the
configuration becomes complicated or the number of members rises [47], the involved form-finding
becomes difficult. Notably, in a symmetry-adapted coordinate system, each block matrix is associated
with a certain symmetry subspace, and thus the null space of the block with full symmetry
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necessarily contains independent self-stress states that satisfy the requirements of full symmetry [36,48].
In this section, the authors will describe how to adopt group theory for computing the integral
self-stress states.

4.1. Integral Self-Stress State Obtained from the Block with Full Symmetry

According to the force equilibrium condition for each node of a structure, the equilibrium equation
of the structure can be established:

Ht = P (17)

where H is the equilibrium matrix, t is the internal force vector, and P is the external load vector.
Because most novel prestressed structures are statically indeterminate, the self-stress states S come
from the null space of the singular matrix H (i.e., HS = 0). In the symmetry-adapted coordinate system,
the symmetry-adapted equilibrium matrix H can be transformed from the original matrix H:

H = VT
PHVt = diag

[
H(1−1), · · · , H(i−h), · · · , H(µ−lµ)

]
(18)

where VP is the transformation matrix associated with the load vector P, and Vt is the transformation
matrix associated with the internal force vector t; the positive integer i ∈ [1, µ], h ∈ [1, li], and li
and lµ are the dimensions of the irreducible representations Γ(i) and Γ(µ). Equation (18) indicates

that each block matrix H(i−h) corresponds to a symmetry subspace associated with the irreducible
representation Γ(i). The first block matrix is associated with full symmetry, while the last block indicates
the lowest-order symmetry. Thus, integral self-stress states necessarily come from the first block matrix

of the matrix H. Notably, as each block matrix is independent, the first block matrix H(1−1) can be
directly computed by

H(1−1)
=
(

V(1−1)
P

)T
HV(1−1)

t (19)

where V(1−1)
P and V(1−1)

t are the full symmetry subspaces for the load vector and the internal force
vector, respectively. Both matrices are associated with the first irreducible representation Γ(1−1).

Then, the null space S(1−1)
of the block matrix H(1−1) can be solved, which satisfies

H(1−1)S(1−1)
= 0 (20)

The integral self-stress state of the structure is given by [48]

S′ = V(1−1)
t S(1−1)

(21)

Note that the integral self-stress state in Equation (21) has considered the whole symmetry of the
structure, which allows the members of the same type to retain equal prestress. Thus, the solution
space for the form-finding problem of prestressed structures can be effectively reduced, especially
for the structures with multiple self-stress states [48,49]. Moreover, this symmetry method does not
need to manually classify the members into different groups in advance, and it avoids repeating
calculations of conventional methods. Thus, the involved computation process is simple and
convenient, and particularly suitable for structures with complex geometry [50].

4.2. Example: A D3 Symmetric Tensegrity Structure

Figure 4 shows the geometric configuration and symmetry rotations for a simple prismatic
tensegrity structure, which consists of six pin-joints, six tension cables and three compression struts.
The twist angle between the bottom and top triangles is π/6; the radius of the circumcircle of the
triangles is unit length, and the vertical height of the structure is unit length.
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This symmetric structure has τ = 6 independent symmetry operations: the identity, two rotations
around the vertical C3 axis, and three two-fold rotations C2 around the axes connecting the center of
the structure and the mid-points of the diagonal cables (indicated by the dotted lines in Figure 4a).
Thus, this structure belongs to the D3 group [34,51]. Thereafter, the full symmetry subspaces
corresponding to the internal force vector and the load vector are

V(1−1)
t =

 0.41 0.41 0.41 0.41 0.41 0.41 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0.58 0.58 0.58
0 0 0 0 0 0 0.58 0.58 0.58 0 0 0


T

(22)

V(1−1)
P =

 −0.41 0 0 0.2 0.35 0 0.2 −0.35 0 −0.41 0 0 0.2 0.35 0 0.2 −0.35 0
0 −0.41 0 −0.35 0.2 0 0.35 0.2 0 0 0.41 0 0.35 −0.2 0 −0.35 −0.2 0
0 0 −0.41 0 0 −0.41 0 0 −0.41 0 0 0.41 0 0 0.41 0 0 0.41


T

(23)

Then, the first block matrix H(1−1) of the symmetry-adapted equilibrium matrix is obtained by
Equation (19)

H(1−1)
=
(

V(1−1)
P

)T
HV(1−1)

t =

 0.447 −0.562 0
−1.669 −0.324 −1.253

0 1.267 0.656

 (24)

Because this 3 × 3 matrix H(1−1) is a rank-deficient (its rank r(1−1) = 2), it has a s(1−1) =

1-dimensional null space

S(1−1)
=
[

0.500 0.398 −0.769
]T

(25)

Therefore, the integral self-stress state of the structure is:

S′ = V(1−1)
t S(1−1)

= [t1 · · · t6 | t7 · · · t9 | t10 · · · t12]
T

= [0.204 · · · 0.204 | 0.230 · · · 0.230 | − 0.444 · · · − 0.444]T
(26)

As shown in Figure 4b, the obtained integral self-stress state satisfies the feasibility condition
for the members, where six horizontal cables, three vertical cables, or three struts respectively belong
to the same type. All the cables are in tension while the struts are in compression. It should be
pointed out that this symmetry method just computes the null space of the first block matrix and
extract integral self-stress states from all the independent self-stress. Because the dimension of the first
block matrix is significantly smaller than that of the original matrix, the computational complexity is
effectively reduced. In comparison with the conventional DSVD method, this method avoids manual
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classification on the members and repeated computations on the matrices. As far as a highly symmetric
structure with many self-stress states and members is concerned, the computational efficiency of this
symmetry method is considerably improved [48].

5. Generalized Eigenvalue Problems of Symmetric Prestressed Structures

5.1. Symmetry-Adapted Frequency Analysis

Generalized eigenvalue problems can be frequently found among structural analysis [16,40],
which generally is a challenge from a computational perspective. For example, frequency analysis can
be taken as a well-known generalized eigenvalue problem in terms of the tangent stiffness matrix KT
and the mass matrix M

KTΨ−ω2MΨ = 0 (27)

which describes free vibrations of a general structure. In Equation (27), ω denotes a circular frequency
and Ψ is the corresponding mode shape. On condition that this structure is symmetric, group-theoretic
process considers smaller block matrices rather than the full matrices. Using the transformation matrix
U in Equation (7), the mass matrix M can be decomposed into similar block-diagonalized forms

M = UTMU = diag
[
M(1−1), · · · , M(i−h), · · · , M(µ−lµ)

]
(28)

where M is a symmetry-adapted mass matrix. For any positive integer h ∈ [1, li], the block

matrices K(i−h)
T and M(i−h) come from the specific symmetry subspace associated with the irreducible

representation Γ(i). Therefore, to analyze the vibration characteristics of the structure, eigenvalue

problems with smaller matrices can be independently solved. For the block matrices K(i−h)
T and M(i−h),

it satisfies
K(i−h)

T Ψ
(i−h) −

[
ω(i−h)

]2
M(i−h)

Ψ
(i−h)

= 0, ∀ i ∈ [1, µ], h ∈ [1, li] (29)

where ω(i−h) and Ψ
(i−h) are the eigenvalues and eigenvectors extracted from the symmetry subspace

associated with the irreducible representation Γ(i). Since the similarity transformation does not change
the eigenvalues of the matrix, the obtained generalized eigenvalues are included in the solutions to the
original eigenvalue problem [40],

ω(i−h) ⊂ ω, ∀ i ∈ [1, µ], h ∈ [1, li] (30)

The corresponding mode shape can be expressed as

Ψ(i−h) = U(i−h)Ψ
(i−h), ∀ i ∈ [1, µ], h ∈ [1, li] (31)

where the symmetry subspace U(i−h) associated with Γ(i) indicates the symmetry of the eigenvector
Ψ(i−h). It is helpful for predicting the vibration modes for a symmetric structure. In addition,
the complete vibration mode matrix Ψ can be obtained from

Ψ =
µ

∑
i=1

li

∑
h=1
⊕Ψ(i−h) (32)

In summary, using the symmetry method based on group theory, the original frequency analysis
has been transformed into a series of independent sub-problems.
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5.2. Symmetry-Adapted Buckling Analysis

Buckling analysis of a structure is essentially about the generalized eigenvalue problem of the
tangent stiffness matrix and the geometric stiffness matrix:

f (Φ, λ) = (KT + λKG)Φ = 0 (33)

where the function f is defined to describe the buckling problem of the structure, λ is the eigenvalue
and Φ is the corresponding eigenvector. According to the inherent symmetry of the structure, the
above equation satisfies [52]:

f (RsΦ, λ) = Rs f (Φ, λ), ∀ s ∈ [1, τ] (34)

where Rs is the transformation matrix for a symmetry operation S. According to the external loads and
their symmetries, symmetry subspaces need to be established in a certain subgroup G1 ⊆ G. Then,
the stiffness matrices KT and KG in Equation (33) can be decomposed into a similar block-diagonal
form:

KT = VTKTV = diag
[
KT

(1−1), · · · , KT
(1−l1), KT

(2−1), · · · , KT
(2−l2), · · · , KT

(µ−1), · · · , KT
(µ−lµ)

]
(35)

KG = VTKGV = diag
[
KG

(1−1), · · · , KG
(1−l1), KG

(2−1), · · · , KG
(2−l2), · · · , KG

(µ−1), · · · , KG
(µ−lµ)

]
(36)

where the matrix V is an orthogonal transformation matrix for expression in the symmetry-adapted
coordinate system. Because each block matrix is independent, the original buckling problem can be
solved by solving the subproblems in parallel [52]

(KT
(i−j)

+ λ
(i−j)

KG
(i−j)

)Φ(i−j)
= 0, ∀ i ∈ [1, µ], j ∈ [1, li] (37)

Recall that similarity transformations do not alter the generalized eigenvalues of the original

matrix, the eigenvalues λ
(i−j)

obtained from Equation (37) are included in the solutions to the original
buckling problem,

λ
(i−j) ⊂ λ, ∀ i ∈ [1, µ], j ∈ [1, li] (38)

and the corresponding buckling shape can be expressed as

Φ(i−j) = V(i−j) ·Φ(i−j), ∀ i ∈ [1, µ], j ∈ [1, li] (39)

5.3. Illustrative Example: A C12v Symmetric Cable Dome Structure

The well-known Levy cable dome is a typical prestressed cable-strut structure [40,53]. Figure 5
shows a highly symmetric Levy cable dome with a diameter of 100 m. This structure is composed
of 84 pin-joints, 36 compression struts and 168 tension cables, where the boundary nodes 1–12 are
constrained in three directions. Note that cross-sectional areas and initial prestresses of different types
of members of this cable dome structure have been reported [40].
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Figure 5. A C12v symmetric cable dome structures [40]: (a) twelve rotations and twelve reflections
indicated in the plan view; (b) 3D geometric configuration.

In the view of symmetry, this cable dome structure keeps unshifted by twelve rotations along the
12-fold rotation axis C12, and twelve reflections σ1 − σ12, as shown in Figure 5a. Thus, this structure is
C12v symmetric. According to the point-group theory table [28], the C12v symmetry group has four
one-dimensional (li∈[1,4] = 1) irreducible representations A1, A2, B1 and B2, and five two-dimensional
(li∈[5,9] = 2) irreducible representations E1 − E5. To establish the symmetry-adapted coordinate system,
the 216 × 216 orthogonal transformation matrix U for the cable dome is obtained from Equation
(6). This matrix is composed by independent vectors associated with fourteen symmetry subspaces,
where the first vector U(A1) for the full symmetry subspace is a 216× 12 matrix, U(A2) is a 216× 6
matrix, U(B1) is a 216× 10 matrix, U(B2) is a matrix, and all the vectors U(E11)–U(E52) for the lower-order
symmetry subspaces are 216× 18 matrices. These 14 independent symmetry subspaces are utilized
to decompose the 216× 216 stiffness matrix or the mass matrix into 14 block matrices with smaller
dimensions. For example, the distribution patterns of nonzero entries of the original tangent stiffness
matrix and the block-diagonalized matrix are shown in Figure 6. As shown in Figure 6b, all the block
matrices are independent and distribute along the main diagonal.
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As far as the frequency analysis is concerned, the original problem is neatly simplified into
fourteen sub-problems involved with small-sized matrices. Figure 7 shows the first 100 frequencies
obtained by the proposed symmetry method, which is compared with the results by the conventional
numerical method. In addition, to study the influence of initial prestresses on the natural frequencies,
the C12v symmetric cable dome with different prestress levels are analyzed by the proposed method
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(the symmetry subspaces keep invariant). The prestress levels are respectively 0, 0.25t, 0.5t, 2t and 4t,
and the initial prestresses t are determined by the feasible prestress modes [40].
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It can be noticed from Figure 7 that the obtained results are in good agreement with those of
the numerical method, where the maximum error is 10−9. Lower-order natural frequencies are low
and intensively distributed. Notably, the first 14 frequencies are dominated by the prestress level,
as they are associated with m = 14 infinitesimal mechanism modes. In fact, the initial prestresses also
improve the structural stiffness of the cable dome. After increasing the initial prestress level, the first
50 frequencies of this structure increase significantly.

On the other hand, Figure 8 depicts the first eight vibration shapes of the C12v symmetric cable
dome [40]. It can be noticed that this symmetric dome structure has many repeated eigenvalues and
equivalent eigenvectors, such as modes 1–2, modes 3–4, and modes 5–6. In fact, this phenomenon is
ubiquitous for most symmetric structures. This is because the roots computed from the symmetry
spaces for multi-dimensional irreducible representations are identical, and the generalized eigenvalues
for these symmetry subspaces are exactly the same. In addition, each vibration shape obtained from
lower-order symmetry subspace U(i−h) does not maintain its full symmetry (i.e., C12v). Then, it may
be reduced to a low-order symmetry. Because the seventh vibration shape is obtained from the
symmetry subspace Γ(2−1) = A2, it has rotational symmetry (i.e., C12). In other words, the symmetry
of all the vibration modes can be predicted from symmetry subspaces in advance [16,29], without
numerical computing.
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6. Conclusions

This paper has described some new developments of symmetry analysis on novel prestressed
structures using group theory. Through theoretical group-theoretic approaches and illustrative
examples, basic process and key features of group-theoretic approaches in stability analysis,
form-finding analysis, frequency analysis and buckling analysis have been identified. A significant
advantage of these group-theoretic approaches is that the involved large-sized matrices can be neatly
block-diagonalized into many smaller-sized and independent matrices. Thus, the computational
complexity for dealing with the original problem will be significantly reduced. More importantly,
these methods can qualitatively reveal certain physical meanings and obtain effective insights into
the involved problems. It is worth mentioning that group-theoretic approaches are systematic and
general. When a structure has only the lowest-order symmetry, the method still works and degenerates
into a conventional method. This research is helpful for enriching developments in the field of
symmetric structures.
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