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Abstract: It is well-known that the different products of graphs are some of the more symmetric
classes of graphs. Since we are interested in hyperbolicity, it is interesting to study this property in
products of graphs. Some previous works characterize the hyperbolicity of several types of product
graphs (Cartesian, strong, join, corona and lexicographic products). However, the problem with the
direct product is more complicated. The symmetry of this product allows us to prove that, if the
direct product G1 × G2 is hyperbolic, then one factor is bounded and the other one is hyperbolic.
Besides, we prove that this necessary condition is also sufficient in many cases. In other cases,
we find (not so simple) characterizations of hyperbolic direct products. Furthermore, we obtain good
bounds, and even formulas in many cases, for the hyperbolicity constant of the direct product of
some important graphs (as products of path, cycle and even general bipartite graphs).
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1. Introduction

An interesting topic in graph theory is the study of the different types of products of graphs [1].
In particular, given two graphs G1, G2, the direct product G1 × G2 is defined as the graph with vertices
the (Cartesian) product of V(G1) and V(G2), and two vertices (u1, v1), (u2, v2) ∈ V(G1 × G2) are
connected by an edge if and only if [u1, u2] ∈ E(G1) and [v1, v2] ∈ E(G2). The direct product is
associative and commutative. Direct product was introduced in Principia Mathematica by Russell
and Whitehead.

Weichsel observed that G1 × G2 is connected if and only if the graphs G1 and G2 are connected
and G1 or G2 is not a bipartite graph [2], i.e., there exists an odd cycle. The direct product is known
with different names: tensor product, conjunction, categorical product, Kronecker product and cardinal
product. There are many works studying several properties of direct products. These works include
structural results [3–8], hamiltonian properties [9,10], and above all the well-known Hedetniemi’s
conjecture (see [11,12]). Imrich has an algorithm in [13] which can recognize in polynomial time if a
graph is a direct product; furthermore, the algorithm provides a factorization if the graph is a direct
product. This fact facilitates the computational use of the direct product of graphs.

Hyperbolic spaces are an important tool in geometry and group theory [14–16].
Gromov hyperbolicity is a meeting point for different spaces: some of them continuous (hyperbolic
plane and many Riemannian manifolds with negative curvature) and some of them discrete (trees and
many graphs) [14–16].
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Gromov hyperbolicity was introduced in the context of finitely generated groups [16], and it was
applied, in the science of computation, to the study of automatic groups [17,18]. Gromov hyperbolicity
is useful in networking, algorithms and discrete mathematics [19–24]; also, many real networks are
hyperbolic [25–29]. Besides, there are several important applications of hyperbolic spaces to the
Internet [30–34] and to random graphs [35–37]. It has recently been pointed out that also some aspects
of biological systems require hyperbolicity for proper functioning [38]. In [39], it was proven that, for a
large class of Riemannian surfaces endowed with a metric of negative curvature, there is a very simple
graph related with the surface such that the surface is hyperbolic if and only if the graph is hyperbolic;
therefore, it is interesting to study hyperbolic graphs to understand hyperbolic surfaces.

All these facts show the increasing interest of hyperbolic graphs (see,
e.g., [19,24–27,32,33,35–37,39–47] and the references therein).

In this paper, let us denote by G = (V, E) = (V(G), E(G)) a connected graph with V(G) 6= ∅.
We consider that the length of each edge is 1. In addition, we assume that the graph does not have
either multiple edges or loops.

Trees are the graphs with hyperbolicity constant zero. Thus, we can view the hyperbolicity
constant as a measure of how “tree-like” the space is. This is an important subject (see, e.g., [48,49]).

From a computational viewpoint, we can obtain δ(G) in time O(n3.69) for graphs with n
vertices [50]. In addition, there is an algorithm which decides if a Cayley graph is hyperbolic [51].
In [52], this algorithm is improved, allowing to obtain δ(G) in time O(n2), but only if the
graph is given in terms of its distance-matrix. However, it is usually very difficult to decide
if an infinite graph is hyperbolic. Therefore, it is useful to study hyperbolicity for particular
classes of graphs. There are many works dealing with the hyperbolicity of different types of
graphs: median graphs [53], line graphs [54–56], cubic graphs [57], complement graphs [58], regular
graphs [59], chordal graphs [25,42,45,60], planar graphs [61,62], bipartite and intersection graphs [63],
vertex-symmetric graphs [64], periodic graphs [65,66], expanders [34], bridged graphs [67], short
graphs [68], graph minors [69], graphs with small hyperbolicity constant [70], Mycielskian graphs [71],
geometric graphs [56,72], and some types of products of graphs: Cartesian product and sum [46,73],
strong product [74], lexicographic product [75], and corona and join product [76].

Some of these works give results about the hyperbolicity of some unary operations in graphs:
A line graph is hyperbolic if and only if the original graph does [54–56].
For a large class of minor graphs, the minor graph is hyperbolic if and only if the original graph

does [69].
Mycielskian graphs are always hyperbolic [71].
Now, we summarize the known results about the hyperbolicity of the main class of binary

operations in graphs: products of graphs.
The Cartesian product is hyperbolic if and only if one factor graph is bounded and the other one

is hyperbolic [46].
The same holds for the strong product [74].
The corona product G1 � G2 is hyperbolic if and only if the first factor G1 is hyperbolic, and the

join G1 ] G2 is always hyperbolic [76].
The Cartesian sum G1 ⊕ G2 is always hyperbolic, if the factors have at least two vertices [73].
The lexicographic product graph G1 ◦ G2 is hyperbolic if and only if G1 does, if the first factor has

at least two vertices [75].
The goal of this paper is the characterization in many cases of the direct product of graphs which

are hyperbolic. Here, the situation is more complicated than with other products of graphs. This is
partly because the direct product of two bipartite graphs (i.e., graphs without odd cycles) is already
disconnected and the formula for the distance in G1 × G2 is more complicated that in the case of other
products of graphs. The symmetry of this product allows us to show that, if G1 × G2 is hyperbolic,
then one factor is hyperbolic and the other one is bounded (see Theorem 10). Besides, we prove that
this necessary condition is also sufficient in many cases. If G1 is a hyperbolic graph and G2 is a bounded
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graph, then we prove that G1 × G2 is hyperbolic when G2 has some odd cycle (Theorem 3) or G1 and
G2 do not have odd cycles (Theorem 4). One could think that otherwise (if G1 has some odd cycle and
G2 does not have odd cycles) this necessary condition is also sufficient; however, Theorem 15 allows
constructing in an easy way examples G1, G2 (with G1 hyperbolic and G2 bounded) such that G1 × G2

is not hyperbolic. This shows that the characterization of hyperbolic direct products is a more difficult
task when G1 has some odd cycle and G2 does not have odd cycles. Theorems 11 and 12 provide
sufficient conditions for non-hyperbolicity and hyperbolicity, respectively. Besides, Theorems 15 and
Corollary 5 characterize the hyperbolicity of G1 × G2 under some additional conditions. Furthermore,
we obtain good bounds, and even formulas in many cases, for the hyperbolicity constant of the direct
product of some important graphs; in particular, Theorem 18 provides the hyperbolicity constant of
many direct products of bipartite graphs, and Theorems 17 and 19 give the hyperbolicity constant of
many direct products of path and cycle graphs.

We want to remark that, in a general context, the hypothesis on the existence (or non-existence) of
odd cycles is artificial in the context of Gromov hyperbolicity. However, it is an essential hypothesis in
the works on direct products (see Theorem 1). Throughout the development of this work, we have
verified that the existence of odd cycles is also essential in the study of hyperbolic product graphs.

2. Definitions and Background

Let (X, d) be a metric space, and denote by L the length associated to the distance d. A geodesic is
a curve g : [a, b]→ X satisfying L(g|[t,s]) = d(g(t), g(s)) = |t− s| for every s, t ∈ [a, b] (here, g|[t,s] is the
restriction of g to [t, s]). We say that the metric space X is a geodesic metric space if for each p, q ∈ X there
is a geodesic connecting them; we denote by [pq] any geodesic form p to q. Hence, a geodesic metric
space is a connected space. When X is a graph and p, q ∈ V(X), [p, q] denotes the edge connecting p
and q if they are adjacent.

Along this paper, we consider the graphs as geodesic metric spaces. To do that, we identify any
edge [p, q] ∈ E(G) with the real interval [0, 1]; therefore, the points in a graph are the vertices and
also the points in the interior of the edges. Hence, we can define a natural distance on the points of
a connected graph G by taking shortest paths in G, and so, we consider G as a metric graph. If p and q
are points in different connected components of the graph, we define d(p, q) = ∞.

Some authors do not consider the internal points of edges in the study. Although this approach
has some advantages, we prefer to consider the internal points since these graphs are geodesic metric
spaces. We use this approach since to work with geodesic metric spaces provides an interesting
geometric viewpoint (for instance, Theorem 2 holds for geodesic metric spaces).

Given a geodesic metric space X and three points x1, x2, x3 ∈ X, the geodesic triangle T =

{x1, x2, x3} is the union of three geodesics [x1x2], [x2x3] and [x3x1]. The points x1, x2, x3 are the
vertices of the triangle T. The geodesic triangle T is δ-thin if any side of T is contained in the
δ-neighborhood of the union of the two other sides. We define the thin constant of the triangle
T by δ(T) := inf{δ ≥ 0 : T is δ-thin }, and the hyperbolicity constant of the space X as δ(X) :=
sup{δ(T) : T is a geodesic triangle in X }. The space X is hyperbolic if δ(X) < ∞, and it is δ-hyperbolic
if X is hyperbolic and the constant δ satisfies δ ≥ δ(X). We say that a triangle with two identical
vertices is a “bigon”. Of course, each bigon in a space (which is δ-hyperbolic) is δ-thin. If {Xi}i∈I are
the connected components of X, then we can define δ(X) := supi∈I δ(Xi), and X is hyperbolic if and
only if δ(X) < ∞.

We want to remark that in the classical references on hyperbolicity [14,15,77] appear many
different definitions of Gromov hyperbolicity. However, the definitions are equivalent: if X is
δ1-hyperbolic for a definition, then it is δ2-hyperbolic for every definition, where the constant δ2

can be obtained from δ1.

We refer to the classical book [1] for definitions and background about direct product graphs.

We need bounds for the distance between points in the direct product. We use the definition given
in [1].
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Definition 1. Let G1 = (V(G1), E(G1)) and G2 = (V(G2), E(G2)) be two graphs. The direct product
G1 × G2 of G1 and G2 has V(G1)×V(G2) as vertex set, so that two distinct vertices (u1, v1) and (u2, v2) of
G1 × G2 are adjacent if [u1, u2] ∈ E(G1) and [v1, v2] ∈ E(G2).

If G1 and G2 are isomorphic, we write G1 ' G2. It is clear that, if G1 ' G2, then δ(G1) = δ(G2).
It is clear that the direct product of two graphs is commutative, i.e., G1 × G2 ' G2 × G1.

Therefore, the conclusion of every result in this paper with some “non-symmetric” hypothesis also
holds if we change the roles of G1 and G2 (see, e.g., Theorems 3, 4, 11, 12 and 15 and Corollary 5).

Denote by πi the projection map πi : V(G1 × G2)→ V(Gi) for i ∈ {1, 2}. In fact, this projection is
well defined as a map πi : G1 × G2 → Gi for i ∈ {1, 2}.

We need some previous results of [1]. If u, u′ ∈ V(G), then by a u, u′-walk in G we mean a path
joining u and u′ where repeating vertices is allowed.

Proposition 1. ([1], Proposition 5.7) Suppose (u, v) and (u′, v′) are vertices of the direct product G1 × G2,
and n is an integer for which G1 has a u, u′-walk of length n and G2 has a v, v′-walk of length n. Then, G1 × G2

has a walk of length n from (u, v) to (u′, v′). The smallest such n (if it exists) equals dG1×G2((u, v), (u′, v′)).
If no such n exists, then dG1×G2((u, v), (u′, v′)) = ∞.

Proposition 2. ([1], Proposition 5.8) Suppose x and y are vertices of G1 × G2. Then,

dG1×G2(x, y) = min
{

n ∈ N | each factor Gi has a πi(x), πi(y)-walk of length n for i = 1, 2
}

,

where it is understood that dG1×G2(x, y) = ∞ if no such n exists.

Definition 2. If G is a connected graph, the diameter of its vertices is

diam V(G) := sup{dG(u, v) : u, v ∈ V(G)},

and the diameter of G is
diam G := sup{dG(x, y) : x, y ∈ G}.

Corollary 1. We have for every (u, v), (u′, v′) ∈ V(G1 × G2)

dG1×G2((u, v), (u′, v′)) ≥ max
{

dG1(u, u′), dG2(v, v′)
}

and, consequently,
diam V(G1 × G2) ≥ max

{
diam V(G1), diam V(G2)

}
.

Furthermore, if dG1(u, u′) and dG2(v, v′) have the same parity, then

dG1×G2((u, v), (u′, v′)) = max
{

dG1(u, u′), dG2(v, v′)
}

and, consequently,
diam V(G1 × G2) = max

{
diam V(G1), diam V(G2)

}
.

By trivial graph, we mean a graph which has only a vertex.
The following result characterizes when a direct product is connected. By cycle, we mean a simple

closed curve, i.e., a path with different vertices, unless the last one, which is equal to the first vertex.
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Theorem 1. ([1], Theorem 5.9) Suppose G1 and G2 are connected non-trivial graphs. If at least one of G1 or
G2 has an odd cycle, then G1 × G2 is connected. If both G1 and G2 are bipartite, then G1 × G2 has exactly
two connected components.

Corollary 2. ([1], Corollary 5.10) A direct product of connected non-trivial graphs is connected if and only if at
most one of the factors is bipartite. In fact, the product has 2max{k,1}−1 connected components, where k is the
number of bipartite factors.

Consider the metric spaces (X, dX) and (Y, dY). Given constants α ≥ 1, β ≥ 0, a map f : X −→ Y
is an (α, β)-quasi-isometric embedding if

α−1dX(x, y)− β ≤ dY( f (x), f (y)) ≤ αdX(x, y) + β,

for x, y ∈ X. We say that f is ε-full if for each y ∈ Y there is x ∈ X with dY( f (x), y) ≤ ε.
We say that f is a quasi-isometry if there exist constants α, β, ε, such that f is an ε-full

(α, β)-quasi-isometric embedding.
Two metric spaces X and Y are quasi-isometric if there exists a quasi-isometry f : X −→ Y.

One can check that to be quasi-isometric is an equivalence relation. An (α, β)-quasi-geodesic in X is
an (α, β)-quasi-isometric embedding between an interval of R and X.

We need the following result ([15], p. 88).

Theorem 2 (Invariance of hyperbolicity). Let f : X −→ Y be an (α, β)-quasi-isometric embedding between
the geodesic metric spaces X and Y. If Y is δY-hyperbolic, then X is δX-hyperbolic, where δX is a constant which
just depends on α, β, δY.

Besides, if f is ε-full for some ε ≥ 0 (a quasi-isometry) and X is δX-hyperbolic, then Y is δY-hyperbolic,
where δY is a constant which just depends on α, β, δX , ε.

There are several explicit expressions for δX = δX(α, β, δY), some of them very complicated. In [78]
appears the best possible formula for δX :

δX(α, β, δY) = 8α(2α2(A1b + A2δY) + 4δY + β).

for some explicit constants A1, A2.

3. Hyperbolic Direct Products

Let us start with a necessary condition for hyperbolicity.

Proposition 3. Let G1 and G2 be two unbounded connected graphs. Then, G1 × G2 is not hyperbolic.

Proof. Since G1 and G2 are unbounded graphs, for each positive integer n there exist two geodesic
paths P1 := [w1, w2] ∪ [w2, w3] ∪ · · · ∪ [wn−1, wn] in G1 and P2 := [v1, v2] ∪ [v2, v3] ∪ · · · ∪ [vn−1, vn] in
G2. If n is odd, then we can consider the geodesic triangle T in G1 × G2 (see Figure 1) defined by the
following geodesics:

γ1 := [(w1, v2), (w2, v1)] ∪ [(w2, v1), (w3, v2)] ∪ [(w3, v2), (w4, v1)] ∪ · · · ∪ [(wn−1, v1), (wn, v2)],

γ2 := [(w1, v2), (w2, v3)] ∪ [(w2, v3), (w1, v4)] ∪ [(w1, v4), (w2, v5)] ∪ · · · ∪ [(w1, vn−1), (w2, vn)],

γ3 := [(w2, vn), (w3, vn−1)] ∪ [(w3, vn−1), (w4, vn−2)] ∪ [(w4, vn−2), (w5, vn−3)] ∪ · · · ∪ [(wn−1, v3), (wn, v2)],

Corollary 1 gives that γ1, γ2, γ3 are geodesics.
Let m := n+1

2 and consider the vertex (wm, vm+1) in γ3. For every vertex (wi, vj) in γ1, j ∈ {1, 2},
we have dG1×G2((wm, vm+1), (wi, vj)) ≥ dG2(vm+1, vj) ≥ m + 1− 2 = n−1

2 by Corollary 1. We have for
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every vertex (wi, vj) in γ2, i ∈ {1, 2}, by Corollary 1, dG1×G2((wm, vm+1), (wi, vj)) ≥ dG1(wm, wi) ≥
m− 2 = n−3

2 . Hence, dG1×G2

(
(wm, vm+1), γ1 ∪ γ2

)
≥ n−3

2 and δ(G1 × G2) ≥ δ(T) ≥ n−3
2 . Since n is

arbitrarily large, G1 × G2 is not hyperbolic.

vn-1

w1 P1

P2

w2
wn

v1

v2

wn-1

vn

(wm ,vm+1)

(wn ,v2)(w1 ,v2)

(w2 ,vn)

γ1

γ2

γ3

…

…

Figure 1. If G1 and G2 are unbounded, for any odd n, there is a geodesic triangle T ⊂ G1 × G2 with
δ(T) ≥ n−3

2 .

Lemma 1. Consider two connected graphs G1 and G2. If f : V(G1) −→ V(G2) is an (α, β)-quasi-isometric
embedding, then there exists an (α, α + β)-quasi-isometric embedding g : G1 −→ G2 with g = f on V(G1).
In addition, if f is ε-full, then g is (ε + 1

2 )-full.

Proof. For each x ∈ G1, let us choose a closest point vx ∈ V(G1) from x, and define g(x) := f (vx).
Note that vx = x if x ∈ V(G1) and so g = f on V(G1). Given x, y ∈ G1, we have

dG2(g(x), g(y)) = dG2( f (vx), f (vy)) ≤ αdG1(vx, vy) + β ≤ α
(
dG1(x, y) + 1

)
+ β,

dG2(g(x), g(y)) = dG2( f (vx), f (vy)) ≥ α−1dG1(vx, vy)− β ≥ α−1(dG1(x, y)− 1
)
− β,

and g is an (α, α + β)-quasi-isometric embedding, since α ≥ 1 ≥ α−1.
In addition, if f is ε-full, then g is (ε + 1

2 )-full since g(G1) = f (V(G1)).

Given a graph G, let gI(G) denote the odd girth of G, that is, the length of the shortest odd cycle
in G.

Theorem 3. Let G1 be a connected graph and G2 be a non-trivial bounded connected graph with some odd cycle.
Then, G1 × G2 is hyperbolic if and only if G1 is hyperbolic.

Proof. Fix v0 ∈ V(G2) with v0 contained in an odd cycle C with L(C) = gI(G2). Consider the map
i : V(G1)→ V(G1 × G2) such that i(w) := (w, v0) for every w ∈ V(G1).

By Corollary 1, for every w1, w2 ∈ V(G1), dG1(w1, w2) ≤ dG1×G2

(
(w1, v0), (w2, v0)

)
. In addition,

Proposition 2 gives the following.
If a geodesic joining w1 and w2 has even length, then

dG1×G2

(
(w1, v0), (w2, v0)

)
= dG1(w1, w2).
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If a geodesic joining w1 and w2 has odd length, then C defines a v0, v0-walk with odd length and

dG1×G2

(
(w1, v0), (w2, v0)

)
≤ max{dG1(w1, w2), gI(G2)} ≤ dG1(w1, w2) + gI(G2).

Thus, i is a
(
1, gI(G2)

)
quasi-isometric embedding.

Consider any (w, v) ∈ V(G1 × G2). Then, if the geodesic joining v and v0 has even length,

dG1×G2

(
(w, v), (w, v0)

)
= dG2(v, v0).

If a geodesic joining v and v0 has odd length, [vv0] ∪ C defines a v, v0-walk with even
length. Therefore,

dG1×G2

(
(w, v), (w, v0)

)
≤ dG2(v, v0) + gI(G2).

Thus, i is
(

diam(V(G2)) + gI(G2)
)
-full.

Hence, by Lemma 1, there is a
(
diam(V(G2)) + gI(G2) +

1
2
)
-full

(
1, gI(G2) + 1

)
-quasi-isometry,

j : G1 → G1 × G2, and G1 × G2 is hyperbolic if and only if G1 is hyperbolic by Theorem 2.

Theorem 4. Let G1 be a connected graph without odd cycles and G2 be a non-trivial bounded connected graph
without odd cycles. Then, G1 × G2 is hyperbolic if and only if G1 is hyperbolic.

Proof. Fix some vertex w0 ∈ V(G1) and some edge [v1, v2] ∈ E(G2).
By Theorem 1, there are exactly two components in G1×G2. Since there are no odd cycles, there is

no (w0, v1), (w0, v2)-walk in G1 × G2. Thus, let us denote by (G1 × G2)
1 the component containing the

vertex (w0, v1) and by (G1 × G2)
2 the component containing the vertex (w0, v2).

Consider i : V(G1) → V(G1 × G2)
1 defined as i(w) := (w, v1) for every w ∈ V(G1) such that

every w0, w-walk has even length and i(w) := (w, v2) for every w ∈ V(G1) such that every w0, w-walk
has odd length.

By Proposition 2, dG1×G2

(
i(w1), i(w2)

)
= dG1(w1, w2) for every w1, w2 ∈ V(G1) and i is

a (1, 0)-quasi-isometric embedding.
Let (w, v) ∈ V(G1 × G2)

1. Let vj with j ∈ {1, 2} such that every v, vj-walk has even length.
Then, by Proposition 2, dG1×G2

(
(w, v), (w, vj)

)
= dG2(v, vj) ≤ diam(G2). Therefore, i is diam(G2)-full.

Hence, by Lemma 1, there is a
(
diam(G2) +

1
2
)
-full

(
1, 1
)
-quasi-isometry, j : G1 → (G1 × G2)

1,
and (G1 × G2)

1 is hyperbolic if and only if G1 is hyperbolic by Theorem 2.
The same argument proves that (G1 × G2)

2 is hyperbolic.

Denote by P2 the path graph with two vertices and an edge.

Lemma 2. Let G1 be a connected graph with some odd cycle and G2 a non-trivial bounded graph without odd
cycles. Then, G1 × G2 and G1 × P2 are quasi-isometric and δ(G1 × P2) ≤ δ(G1 × G2).

Proof. By Theorem 1, we know that G1 × G2 and G1 × P2 are connected graphs.
Denote by v1 and v2 the vertices of P2 and fix [w1, w2] ∈ E(G2). The map f : V(G1 × P2) −→

V(G1 × [w1, w2]) defined as f (u, vj) := (u, wj) for every u ∈ V(G1) and j = 1, 2, is an isomorphism of
graphs; hence, it suffices to prove that G1 × G2 and G1 × [w1, w2] are quasi-isometric.

Consider the inclusion map i : V(G1 × [w1, w2]) −→ V(G1 × G2). Since G1 × [w1, w2] is
a subgraph of G1 × G2, we have dG1×G2(x, y) ≤ dG1×[w1,w2]

(x, y) for every x, y ∈ V(G1 × [w1, w2]).
Since G2 is a graph without odd cycles, every w1, w2-walk has odd length and every wj, wj-walk

has even length for j = 1, 2. Thus, Proposition 2 gives, for every x = (u, w1), y = (v, w2) ∈ V(G1 ×
[w1, w2]),

dG1×[w1,w2]
(x, y) = dG1×G2(x, y) = min

{
L(g) | g is a u, v-walk of odd length

}
.
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Furthermore, for every x = (u, wj), y = (v, wj) ∈ V(G1 × [w1, w2]) and j = 1, 2,

dG1×[w1,w2]
(x, y) = dG1×G2(x, y) = min

{
L(g) | g is a u, v-walk of even length

}
.

Hence, dG1×[w1,w2]
(x, y) = dG1×G2(x, y) for every x, y ∈ V(G1 × [w1, w2]), and the inclusion map i

is an (1, 0)-quasi-isometric embedding. Therefore, δ(G1 × P2) = δ(G1 × [w1, w2]) ≤ δ(G1 × G2).
Since G2 is a graph without odd cycles, given any w ∈ V(G2), we have either that every w, w1-walk

has even length and every w, w2-walk has odd length or that every w, w2-walk has even length and
every w, w1-walk has odd length. In addition, since G1 is connected, for each u ∈ V(G1) there is some
u′ ∈ V(G1) such that [u, u′] ∈ E(G1). Therefore, by Proposition 2, for every (u, w) ∈ V(G1 × G2),
if min

{
dG2(w, w1), dG2(w, w2)

}
is even, then

dG1×G2

(
(u, w), V(G1 × [w1, w2])

)
= dG1×G2

(
(u, w), V(u× [w1, w2])

)
= min

{
dG2(w, w1), dG2(w, w2)

}
,

and if min
{

dG2(w, w1), dG2(w, w2)
}

is odd, then

dG1×G2

(
(u, w), V(G1× [w1, w2])

)
= dG1×G2

(
(u, w), V(u′× [w1, w2])

)
= min

{
dG2(w, w1), dG2(w, w2)

}
.

In both cases,
dG1×G2

(
(u, w), V(G1 × [w1, w2])

)
≤ diam V(G2),

and i is
(
diam V(G2)

)
-full. By Lemma 1, there exists a

(
diam V(G2) +

1
2
)
-full (1, 1)-quasi-isometry

g : G1 × [w1, w2] −→ G1 × G2.

A subgraph Γ of G is said isometric if dΓ(x, y) = dG(x, y) for any x, y ∈ Γ. One can check that Γ is
isometric if and only if dΓ(u, v) = dG(u, v) for any u, v ∈ V(Γ).

Lemma 3. ([47], Lemma 5) If Γ is an isometric subgraph of G, then δ(Γ) ≤ δ(G).

A u, v-walk g in G is a shortcut of a cycle C if g∩C = {u, v} and L(g) < dC(u, v) where dC denotes
the length metric on C.

A cycle C′ is a reduction of the cycle C if both have odd length and C′ is the union of a subarc η of
C and a shortcut of C joining the endpoints of η. Note that L(C′) ≤ L(C)− 2. We say that a cycle is
minimal if it has odd length and it does not have a reduction.

Lemma 4. If C is a minimal cycle of G, then L(C) ≤ 4δ(G).

Proof. We prove first that C is an isometric subgraph of G. Assume that C is not an isometric subgraph.
Thus, there exists a shortcut g of C with endpoints u, v. There are two subarcs η1, η2 of C joining u
and v; since C has odd length, we can assume that η1 has even length and η2 has odd length. If g has
even length, then C′ := g ∪ η2 is a reduction of C. If g has odd length, then C′′ := g ∪ η1 is a reduction
of C. Hence, C is not minimal, a contradiction, and so C is an isometric subgraph of G.

It is easy to show that any isometric cycle C has length 4δ(C). This fact and Lemma 3 give
L(C) = 4δ(C) ≤ 4δ(G).

Given any w0, wk-walk g = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] in G1 and P2 = [v1, v2], if L(g) is
either odd or even, then we define the (w0, v1), (wk, vi)-walk for i ∈ 1, 2,

Γ1g := [(w0, v1), (w1, v2)] ∪ [(w1, v2), (w2, v1)] ∪ [(w2, v1), (w3, v2)] ∪ · · · ∪ [(wk−1, v1), (wk, v2)],

Γ1g := [(w0, v1), (w1, v2)] ∪ [(w1, v2), (w2, v1)] ∪ [(w2, v1), (w3, v2)] ∪ · · · ∪ [(wk−1, v2), (wk, v1)],

respectively.
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Remark 1. By Proposition 2, if g is a geodesic path in G1, then Γ1g is a geodesic path in G1 × P2.

Let us define the map R : V(G1 × P2)→ V(G1 × P2) as R(w, v1) = (w, v2) and R(w, v2) = (w, v1)

for every w ∈ V(G1), and the path Γ2g as Γ2g = R(Γ1g).
Let us define the map (Γ1g)′ : g → Γ1g which is an isometry on the edges and such that

(Γ1g)′(wj) = (wj, v1) if j is even and (Γ1g)′(wj) = (wj, v2) if j is odd. In addition, let (Γ2g)′ : g→ Γ2g
be the map defined by (Γ2g)′ := R ◦ (Γ1g)′.

Given a graph G, denote by C the set of minimal cycles of G.

Lemma 5. Let G1 be a connected graph with some odd cycle and P2 = [v1, v2]. Consider a geodesic
g = [w0wk] = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] in G1. Let us define w′0 := (Γ1g)′(w0) = (w0, v1)

and w′k := (Γ2g)′(wk), i.e., w′k := (wk, v1) or w′k := (wk, v2) if k is odd or even, respectively. Then,

dG1×P2(w
′
0, w′k) >

√
dG1

(
wj, C(G1)

)
for every 0 ≤ j ≤ k.

Proof. Fix 0 ≤ j ≤ k. Define

P :=
{

σ | σ is a w0, wk-walk such that L(σ) has a parity different from that of k
}

.

Proposition 2 gives
dG1×P2(w

′
0, w′k) = min

{
L(σ) | σ ∈ P

}
.

Choose σ0 ∈ P such that L(σ0) = dG1×P2(w
′
0, w′k). Since L(g) + L(σ0) is odd, we have L(g) +

L(σ0) = 2t + 1 for some positive integer t. Thus, dG1×P2(w
′
0, w′k) = L(σ0) >

1
2 (2t + 1).

If g ∪ σ0 is a cycle, then let us define C0 := g ∪ σ0. Thus, L(C0) = 2t + 1 and dG1

(
wj, C0

)
= 0 for

every 0 ≤ j ≤ k. Otherwise, we may assume that g ∩ σ0 = [w0wi1 ] ∪ [wi2 wk] for some 0 ≤ i1 < i2 ≤ k.
If σ1 = σ0 \ g, then let us define C0 := [wi1 wi2 ] ∪ σ1 (where [wi1 wi2 ] ⊂ g). Hence, C0 is a cycle,
L(C0) ≤ 2t− 1 and dG1

(
wj, C0

)
< 1

2 (2t + 1).
If C0 is not minimal, then consider a reduction C1 of C0. Let us repeat the process until we obtain

a minimal cycle Cs. Note that L(C1) ≤ L(C0)− 2 and for every point p1 ∈ C0, dG1

(
p1, C1

)
< 1

2 L(C0).
Now, repeating the argument, for every 1 < i ≤ s, L(Ci) ≤ L(Ci−1)− 2 and for every point pi ∈ Ci−1,
dG1

(
pi, Ci

)
< 1

2 L(Ci−1). Therefore,

dG1

(
wj, C(G1)

)
≤ dG1

(
wj, Cs

)
≤ dG1

(
wj, C0

)
+

1
2

L(C0) +
1
2

L(C1) + · · ·+
1
2

L(Cs)

<
1
2
(2t + 1) +

1
2
(2t− 1) + · · ·+ 5

2
+

3
2

.

Hence,

dG1

(
wj, C(G1)

)
<

1
2

t

∑
i=1

(2i + 1) =
1
2

t2 + t <
(1

2
(2t + 1)

)2
<
(

dG1×P2(w
′
0, w′k)

)2
.

Corollary 3. Let G1 be a hyperbolic connected graph with some odd cycle and P2 = [v1, v2]. Consider a geodesic
g = [w0wk] = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] in G1. Let us define w′0 := (Γ1g)′(w0) = (w0, v1) and
w′k := (Γ2g)′(wk). Then, we have for every 0 ≤ j ≤ k,

1
2

(
k +

√
dG1

(
wj, C(G1)

) )
≤ dG1×P2(w

′
0, w′k) ≤ k + 2dG1

(
wj, C(G1)

)
+ 4δ(G1).

Proof. Corollary 1 and Lemma 5 give dG1×P2(w
′
0, w′k) ≥ k and dG1×P2(w

′
0, w′k) ≥

√
dG1

(
wj, C(G1)

)
,

and these inequalities provide the lower bound of dG1×P2(w
′
0, w′k).
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Consider a geodesic γ joining wj and C ∈ C(G1) with L(γ) = dG1(wj, C) = dG1

(
wj, C(G1)

)
and

the w0, wk-walk
g′ := [w0wj] ∪ γ ∪ C ∪ γ ∪ [wjwk].

One can check that Γ1g′ is a w′0, w′k-walk in G1 × P2, and so Lemma 4 gives

dG1×P2(w
′
0, w′k) ≤ L(Γ1g′) = L(g′) = k + 2dG1

(
wj, C(G1)

)
+ L(C) ≤ k + 2dG1

(
wj, C(G1)

)
+ 4δ(G1).

If [v1, v2] is an edge of G, then the point x ∈ [v1, v2] with dG(x, v1) = dG(x, v2) = 1/2 is the
midpoint of the edge [v1, v2]. Denote by J(G) the set of vertices and midpoints of edges in G. Consider
the set T1(G) of geodesic triangles T in G which are cycles and such that the vertices of T are in J(G).
We denote by δ1(G) the infimum of the constants µ such that any triangle in T1(G) is µ-thin.

The following three results are used throughout the paper.

Theorem 5. ([40], Theorem 2.5) For every connected graph G, we have δ1(G) = δ(G).

Theorem 6. ([40], Theorem 2.6) Let G be any connected graph. Then, δ(G) is always a multiple of 1/4.

Theorem 7. ([40], Theorem 2.7) For any hyperbolic connected graph G, there exists a geodesic triangle
T ∈ T1(G) such that δ(T) = δ(G).

Consider the set Tv(G) of geodesic triangles T in G that are cycles and such that the three vertices
of the triangle T are also vertices of G. δv(G) denotes the infimum of the constants µ such that every
triangle in Tv(G) is µ-thin.

Theorem 8. For every connected graph G, we have δv(G) ≤ δ(G) ≤ 4δv(G) + 1/2. Hence, G is hyperbolic if
and only if δv(G) < ∞. Furthermore, if G is hyperbolic, then there are a geodesic triangle T = {a, b, c} ∈ Tv(G)

and q ∈ [ab] ∩ J(G) such that d(p, [ac] ∪ [cb]) = δ(T) = δv(G). In addition, δv(G) is an integer multiple
of 1/2.

Proof. The inequality δv(G) ≤ δ(G) is direct.
Consider the set T′v(G) of geodesic triangles T in G such that the three vertices of the triangle T

belong to V(G), and denote by δ′v(G) the infimum of the constants µ such that every triangle in T′v(G)

is µ-thin. The argument in the proof of (ref. [79], Lemma 2.1) gives that δ′v(G) = δv(G).
Let us prove now δ(G) ≤ 4δv(G)+ 1/2. Let us assume that G is hyperbolic. If δ′v(G) = ∞, then the

inequality is trivial. Thus, it suffices to consider the case δ′v(G) < ∞. By Theorem 7, there is a triangle
T = {a, b, c} that is a cycle with a, b, c ∈ J(G) and q ∈ [ab] such that d(q, [ac] ∪ [cb]) = δ(T) = δ(G).
Assume that a, b, c ∈ J(G) \ V(G) (otherwise, the argument is simpler). Let a1, a2, b1, b2, c1, c2 ∈
T ∩ V(G) such that a ∈ [a1, a2], b ∈ [b1, b2], c ∈ [c1, c2] and a2, b1 ∈ [ab], c2, d1 ∈ [cd], d2, a1 ∈ [ac].
Since H := {a2, b1, b2, c1, c2, a1} is a geodesic hexagon with vertices in V(G), it is 4δ′v(G)-thin and every
point w ∈ [b1, b2] ∪ [b2c1] ∪ [c1, c2] ∪ [c2a1] ∪ [a1, a2] verifies d(w, [ac] ∪ [cb]) ≤ 1/2, we have

δ(G) = d(q, [ac] ∪ [cb]) ≤ d(q, [b1, b2] ∪ [b2c1] ∪ [c1, c2] ∪ [c2a1] ∪ [a1, a2]) + 1/2

≤ 4δ′v(G) + 1/2 = 4δv(G) + 1/2.

Assume that G is not hyperbolic. Therefore, for each M > 0 there is a triangle T = {a, b, c} which
is a cycle with a, b, c ∈ J(G) and q ∈ [ab] with d(q, [ac] ∪ [cb]) ≥ M. The previous argument gives
M ≤ 4δv(G) + 1/2 and, since M is arbitrary, we conclude δv(G) = ∞ = δ(G).

Finally, consider any geodesic triangle T = {a, b, c} in Tv(G). Since d(q, [ac] ∪ [cb]) = d(q, ([ac] ∪
[cb]) ∩ V(G)), d(q, [ac] ∪ [cb]) attains its maximum value when q ∈ J(G). Hence, δ(T) is a multiple
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of 1/2 for any triangle T ∈ Tv(G). Since the set of non-negative numbers that are multiple of
1/2 is a discrete set, δ(G) is an integer multiple of 1/2 if G is hyperbolic, and there is a triangle
T = {a, b, c} ∈ Tv(G) and q ∈ [ab] ∩ J(G) with d(q, [ac] ∪ [cb]) = δ(T) = δv(G). This finishes
the proof.

Theorem 9. If G1 is a non-hyperbolic connected graph, then G1 × P2 is not hyperbolic.

Proof. Since G1 is not hyperbolic, by Theorem 8, given any R > 0 there exists a triangle T = {x, y, z}
wich is a cycle, with x, y, z ∈ V(G1) and such that T is not R-thin. Therefore, there exists some point
m ∈ T, let us assume that m ∈ [xy], such that dG1(m, [yz] ∪ [zx]) > R.

Seeking for a contradiction let us assume that G1 × P2 is δ-hyperbolic.
Suppose that for some R > δ, there is a geodesic triangle T = {x, y, z} that is an even cycle in G1,

with x, y, z ∈ V(G1) and such that T is not R-thin. Consider the (closed) path Λ = [xy] ∪ [yz] ∪ [zx].
Then, since T has even length, the path Γ1Λ defines a cycle in G1× P2. Let γ1, γ2, γ3 be the paths in Γ1Λ
corresponding to [xy], [yz], [zx], respectively. By Corollary 1, the curves γ1, γ2 and γ3 are geodesics,
and dG1×P2

(
(Γ1Λ)′(m), γ2 ∪ γ3

)
> δ, leading to contradiction.

Suppose that, for every R > 0, there is a geodesic triangle T = {x, y, z} which is an odd cycle,
with x, y, z ∈ V(G1) and such that T is not R-thin.

Let T1 = {x, y, z} be a geodesic triangle as above and let us assume that diam(T1) = D > 8δ.
Let T2 = {x′, y′, z′} be another triangle as above such that T2 is not 3(D + 8δ)-thin, this is, there is

a point m in one of the sides, let us call it σ, of T2 such that dG1(m, T2\σ) > 3(D + 8δ).
Let g = [w0wk] with w0 ∈ T1 and wk ∈ T2 be a shortest geodesic in G1 joining T1 and T2 (if T1 and

T2 intersect, just assume that g is a single vertex, w0 = wk, in the intersection). See Figure 2.
Let us assume that w0 ∈ [xz] and wk ∈ [x′z′]. Then, let us consider the closed path C in G1 given

by the union of the geodesics in T1, g, the geodesics in T2 and the inverse of g from wk to w0, this is,

C := [w0x] ∪ [xy] ∪ [yz] ∪ [zw0] ∪ [w0wk] ∪ [wkx′] ∪ [x′y′] ∪ [y′z′] ∪ [z′wk] ∪ [wkw0].

Since T1, T2 are odd cycles, C is an even closed cycle. Therefore, Γ1C defines a cycle in G1 × P2.
Moreover, by Remark 1, Γ1C is a geodesic decagon in G1 × P2 with sides γ1 = (Γ1C)′([w0x]), γ2 =

(Γ1C)′([xy]), γ3 = (Γ1C)′([yz]), γ4 = (Γ1C)′([zw0]), γ5 = (Γ1C)′([w0wk]), γ6 = (Γ1C)′([wkx′]),
γ7 = (Γ1C)′([x′y′]), γ8 = (Γ1C)′([y′z′]), γ9 = (Γ1C)′([z′wk]) and γ10 = (Γ1C)′([wkw0]).

Since we are assuming that G1 × P2 is δ-hyperbolic, then for every 1 ≤ i ≤ 10 and every point
p ∈ γi, dG1×P2(p, C\γi) ≤ 8δ.

Let p := (Γ1C)′(m).
Case 1. Suppose that dG1(m, T1 ∪ g) > 8δ. See Figure 2.
By assumption, dG1(m, T2\σ) > 8δ. If σ = [x′y′] (resp. σ = [y′z′]), then p ∈ γ7 (resp. p ∈ γ8)

and, by Corollary 1, dG1×P2(p, C\γ7) > 8δ (resp. dG1×P2(p, C\γ8) > 8δ) leading to contradiction.
If σ = [x′z′], since [x′z′] = [x′wk] ∪ [wkz′], let us assume m ∈ [x′wk]. Then, since dG1(m, wk) > 8δ,
it follows that dG1(m, [wkz′]) > 8δ. Thus, p ∈ γ6 and, by Corollary 1, dG1×P2(p, C\γ6) > 8δ leading
to contradiction.

Case 2. Suppose that dG1(m, T1 ∪ g) ≤ 8δ and L(g) ≤ 8δ. See the left side of Figure 3.
Then, for every point q in T1 ∪ g, dG1(m, q) ≤ 8δ + D + 8δ. In particular, dG1(m, wk) ≤ 8δ + D + 8δ.
Therefore, m ∈ [x′z′] and let us assume that m ∈ [x′wk]. Since dG1(m, x′) ≥ dG1(m, [x′y′] ∪ [y′z′]) >
3(D + 8δ), there is a point m′ ∈ [x′m] ⊂ [x′wk] such that dG1(m, m′) = 2(D + 8δ). Then,
dG1(m

′, T1 ∪ g) ≥ 2(D + 8δ) − D − 8δ − 8δ = D > 8δ. In addition, it is trivial to check that
dG1(m

′, [x′y′]∪ [y′z′]) > 3(D+ 8δ)− 2(D+ 8δ) > 8δ and since [x′z′] is a geodesic, dG1(m
′, [z′wk]) > 8δ.

Thus, if p′ := (Γ1C)′(m′), then p′ ∈ γ6 and, by Corollary 1, dG1×P2(p′, C\γ6) > 8δ leading
to contradiction.

Case 3. Suppose that dG1(m, T1 ∪ g) ≤ 8δ and L(g) > 8δ. See the right side of Figure 3. Since g is
a shortest geodesic in G1 joining T1 and T2, this implies that dG1(T1, T2) > 8δ and dG1(m, [w0wk]) ≤ 8δ.
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Moreover, dG1(m, wk) ≤ 16δ. Otherwise, there is a point q ∈ [w0wk] such that dG1(m, q) ≤ 8δ and
dG1(q, wk) > 8δ which means that dG1(q, w0) < dG1(w0, wk)− 8δ and dG1(m, w0) < dG1(w0, wk) leading
to contradiction.

Since dG1(m, wk) ≤ 16δ, m ∈ [x′z′]. Let us assume that m ∈ [x′wk]. Since dG1(m, [x′y′] ∪ [y′z′]) >
3(D + 8δ), there is a point m′ ∈ [x′m] ⊂ [x′wk] such that dG1(m, m′) = 2(D + 8δ). Let us see that
dG1(m

′, [w0wk]) > 8δ. Suppose there is some q ∈ [w0wk] such that dG1(m
′, q) ≤ 8δ. Since m′ ∈ T2

and g is a shortest geodesic joining T1 and T2, dG1(q, wk) ≤ 8δ. However, 32δ < 2(D + 8δ) =

dG1(m
′, m) ≤ dG1(m

′, q) + dG1(q, wk) + dG1(wk, m) ≤ 8δ + 8δ + 16δ which is a contradiction. Hence,
dG1(m

′, [w0wk]) > 8δ. In addition, it is trivial to check that dG1(m
′, [x′y′] ∪ [y′z′]) > 3(D + 8δ)− 2(D +

8δ) > 8δ and since [x′z′] is a geodesic, dG1(m
′, [z′wk]) > 8δ. Thus, if p′ := (Γ1C)′(m′), then p′ ∈ γ6 and,

by Corollary 1, dG1×P2(p′, C\γ6) > 8δ leading to contradiction.

x

y

z

y’

z’

g=[w0wk]

w0
wk

m
8δ

x’

T1

T2

Figure 2. Two geodesic triangles, T1, T2, which are odd cycles and a geodesic g joining them define
an even closed path.

Case 2

x’

y’

z’

m

8δ

m’

y’

z’

m

8δ

m’

x’

Case 3

Figure 3. If dG1 (m, T1 ∪ g) ≤ 8δ, then m ∈ [x′z′] and there is a point m′ ∈ [x′m] ⊂ [x′wk] such that
dG1 (m, m′) = 2(D + 8δ).

Proposition 3, Lemma 2 and Theorems 3, 4 and 9 have the following consequence.

Corollary 4. If G1 is a non-hyperbolic connected graph and G2 is some non-trivial connected graph,
then G1 × G2 is not hyperbolic.

Proposition 3 and Corollary 4 provide a necessary condition for the hyperbolicity of G1 × G2.
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Theorem 10. Let G1, G2 be non-trivial connected graphs. If G1 × G2 is hyperbolic, then one factor graph is
hyperbolic and the other one is bounded.

Theorems 3 and 4 show that this necessary condition is also sufficient if either G2 has some odd
cycle or G1 and G2 do not have odd cycles (when G1 is a hyperbolic graph and G2 is a bounded graph).
We deal now with the other case, when G1 has some odd cycle and G2 does not have odd cycles.

Theorem 11. Let G1 be a connected graph with some odd cycle and G2 a non-trivial bounded connected graph
without odd cycles. Assume that G1 satisfies the following property: for each M > 0 there exist a geodesic g
joining two minimal cycles of G1 and a vertex u ∈ g ∩V(G1) with dG1

(
u, C(G1)

)
≥ M. Then, G1 × G2 is

not hyperbolic.

Proof. If G1 is not hyperbolic, then Corollary 4 gives that G1 × G2 is not hyperbolic. Assume now that
G1 is hyperbolic. By Theorem 2 and Lemma 2, we can assume that G2 = P2 and V(P2) = {v1, v2}.

Fix M > 0 and choose a geodesic g = [w0wk] = [w0, w1] ∪ [w1, w2] ∪ · · · ∪ [wk−1, wk] joining two
minimal cycles in G1 and 0 < r < k with dG1

(
wr, C(G1)

)
≥ M.

Define the paths g1 and g2 in G1 × P2 as g1 := Γ1g and g2 := Γ2g. Since L(g1) = L(g2) = L(g) =
dG1(w0, wk), we have

dG1×P2

(
g1(w0), g1(wk)

)
≤ L(g1) = dG1(w0, wk), dG1×P2

(
g2(w0), g2(wk)

)
≤ L(g2) = dG1(w0, wk).

Corollary 1 gives that

dG1×P2

(
g1(w0), g1(wk)

)
≥ dG1(w0, wk), dG1×P2

(
g2(w0), g2(wk)

)
≥ dG1(w0, wk).

Hence, g1 and g2 are geodesics in G1 × P2. Choose geodesics g3 = [g1(w0)g2(w0)] and g4 =

[g1(wk)g2(wk)] in G1 × P2. Since dP2(v1, v2) = 1 is odd, Proposition 2 gives

dG1×P2

(
g1(w0), g2(w0)

)
= min

{
L(σ) | σ is a w0, w0-walk

}
= min

{
L(σ) | σ cycle of odd length containing w0

}
.

Since w0 belongs to a minimal cycle, L(g3) ≤ 4δ(G1) by Lemma 4. In a similar way, we obtain
L(g4) ≤ 4δ(G1).

Consider the geodesic quadrilateral Q := {g1, g2, g3, g4} in G1 × P2. Thus, dG1×P2

(
g1(wr), g2 ∪

g3 ∪ g4
)
≤ 2δ(G1× P2). Since max

{
L(g3), L(g4)

}
≤ 4δ(G1), we deduce dG1×P2

(
g1(wr), g2

)
≤ 2δ(G1×

P2) + 4δ(G1).
Let 0 ≤ j ≤ k with dG1×P2

(
g1(wr), g2

)
= dG1×P2

(
g1(wr), g2(wj)

)
. Let us define w′r := g1(wr) and

w′j := g2(wj). Thus, Lemma 5 gives

√
M ≤

√
dG1

(
wr, C(G1)

)
≤ dG1×P2(w

′
r, w′j) = dG1×P2(w

′
r, g2) ≤ 2δ(G1 × P2) + 4δ(G1),

and since M is arbitrarily large, we deduce that G1 × P2 is not hyperbolic.

Lemma 6. Let G1 be a hyperbolic connected graph and suppose there is some constant K > 0 such that for
every vertex w ∈ G1, dG1(w, C(G1)) ≤ K. Then, G1 × P2 is hyperbolic.

Proof. Denote by v1 and v2 the vertices of P2. Let i : V(G1)→ V(G1 × P2) defined as i(w) := (w, v1)

for every w ∈ G1.
For every x, y ∈ V(G1), by Corollary 1, dG1(x, y) ≤ dG1×P2(i(x), i(y)). By Corollary 3,

dG1×P2(i(x), i(y)) ≤ dG1(x, y) + 2dG1

(
x, C(G1)

)
+ 4δ(G1) ≤ dG1(x, y) + 2K + 4δ(G1).
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Therefore, i : V(G1)→ V(G1 × P2) is a
(
1, 2K + 4δ(G1)

)
-quasi-isometric embedding.

Notice that for every (w, v1) ∈ V(G1 × P2), (w, v1) = i(w). In addition, for any (w, v2) ∈
V(G1 × P2), since G1 is connected, there is some edge [w, w′] ∈ E(G1) and we have [(w, v2), (w′, v1)] ∈
E(G1 × P2). Therefore, i : V(G1)→ V(G1 × P2) is 1-full.

Thus, by Lemma 1, G1 and G1 × P2 are quasi-isometric and, by Theorem 2, G1 × P2

is hyperbolic.

Theorem 3 and Lemmas 2 and 6 give the following result.

Theorem 12. Let G1 be a hyperbolic connected graph and G2 some non-trivial bounded connected graph. If there
is some constant K > 0 such that for every vertex w ∈ G1, dG1(w, C(G1)) ≤ K, then G1 × G2 is hyperbolic.

We finish this section with a characterization of the hyperbolicity of G1 × G2, under an additional
hypothesis. We present first some lemmas.

Let J be a finite or infinite index set. Now, given a graph G1, we define some graphs related to
G1 which will be useful in the following results. Let Bj := BG1(wj, Kj) with wj ∈ V(G1) and Kj ∈ Z+,
for any j ∈ J, such that supj Kj = K < ∞, Bj1 ∩ Bj2 = ∅ if j1 6= j2, and every odd cycle C in G1 satisfies
C ∩ Bj 6= ∅ for some j ∈ J. Denote by G′1 the subgraph of G1 induced by V(G1) \ (∪jBj). Let Nj :=
∂Bj = {w ∈ V(G1) : dG1(w, wj) = Kj}. Denote by G∗1 the graph with V(G∗1 ) = V(G′1) ∪ (∪j{w∗j }),
where w∗j are additional vertices, and E(G∗1 ) = E(G′1)∪ (∪j{[w, w∗j ] : w ∈ Nj}). We have G′1 = G1 ∩G∗1 .

Lemma 7. Let G1 be a connected graph as above. Then, there is a quasi-isometry g : G1 → G∗1 such that
g(wj) = w∗j for every j ∈ J.

Proof. Let f : V(G1) → V(G∗1 ) defined as f (u) = u for every u ∈ V(G′1), and f (u) = w∗i for every
u ∈ V(Bi). It is clear that f : V(G1)→ V(G∗1 ) is 0-full.

Now, we focus on proving that f : V(G1) → V(G∗1 ) is a (K, 2K)-quasi-isometric embedding.
For every u, v ∈ V(G1), it is clear that dG∗1

( f (u), f (v)) ≤ dG1(u, v).
Let us prove the other inequality. Fix u, v ∈ V(G1) and consider an oriented geodesic γ in G∗1

from f (u) to f (v).
Assume that u, v ∈ V(G′1). If L(γ) = dG1(u, v), then dG1(u, v) = dG∗1

( f (u), f (v)). If L(γ) <

dG1(u, v), then γ meets some w∗j . Since γ is a compact set, it intersects only a finite number of w∗j ’s,
which we denote by w∗j1 , . . . w∗jr . Since γ is an oriented curve from f (u) to f (v), we can assume that γ

meets w∗j1 , . . . w∗jr in this order.
Let us define the following vertices in γ

w1
i = [ f (u)w∗ji ] ∩ Nji , w2

i = [w∗ji f (v)] ∩ Nji ,

for every 1 ≤ i ≤ r. Note that [w2
i w1

i+1] ⊂ G′1 for every 1 ≤ i < r (it is possible to have w2
i = w1

i+1).
Since dG∗1

(w1
i , w2

i ) = 2 and dG1(w
1
i , w2

i ) ≤ 2K, we have dG∗1
(w1

i , w2
i ) ≥

1
K dG1(w

1
i , w2

i ) for every
1 ≤ i ≤ r. Thus,

dG∗1
( f (u), f (v)) = dG∗1

( f (u), w1
1) +

r

∑
i=1

dG∗1
(w1

i , w2
i ) +

r−1

∑
i=1

dG∗1
(w2

i , w1
i+1) + dG∗1

(w2
r , f (v))

≥ dG1(u, w1
1) +

1
K

r

∑
i=1

dG1(w
1
i , w2

i ) +
r−1

∑
i=1

dG1(w
2
i , w1

i+1) + dG1(w
2
r , v)

≥ 1
K

(
dG1(u, w1

1) +
r

∑
i=1

dG1(w
1
i , w2

i ) +
r−1

∑
i=1

dG1(w
2
i , w1

i+1) + dG1(w
2
r , v)

)
≥ 1

K
dG1(u, v).
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Assume that f (u) = f (v). Therefore, there exists j with u, v ∈ Bj and

dG∗1
( f (u), f (v)) = 0 > dG1(u, v)− 2K.

Assume now that u and/or v does not belong to V(G′1) and f (u) 6= f (v). Let u0, v0 be the
closest vertices in V(G′1) ∩ γ to f (u), f (v), respectively (it is possible to have u0 = f (u) or v0 = f (v)).
Since u0, v0 ∈ V(G′1), u0 = f (u0), v0 = f (v0), we have dG1(u, u0) < 2K and dG1(v, v0) < 2K. Hence,

dG∗1
( f (u), f (v)) = dG∗1

( f (u), u0) + dG∗1
(u0, v0) + dG∗1

(v0, f (v))

≥ dG∗1
( f (u0), f (v0))

≥ 1
K

dG1(u0, v0)

≥ 1
K

(
dG1(u, v)− dG1(u, u0)− dG1(v, v0)

)
>

1
K

dG1(u, v)− 4.

If K ≥ 2, then dG∗1
( f (u), f (v)) > 1

K dG1(u, v)− 2K. If K = 1, then dG1(u, u0) ≤ 1, dG1(v, v0) ≤ 1,
and dG∗1

( f (u), f (v)) ≥ dG1(u, v)− 2.
Finally, we conclude that f : V(G1) → V(G∗1 ) is a (K, 2K)-quasi-isometric embedding.

Thus, Lemma 1 provides a quasi-isometry g : G1 → G∗1 with the required property.

Definition 3. Given a connected graph G1 and some index set J, let BJ = {Bj}j∈J be a family of balls where
Bj := BG1(wj, Kj) with wj ∈ V(G1), Kj ∈ Z+ for any j ∈ J, supj Kj = K < ∞ and Bj1 ∩ Bj2 = ∅ if j1 6= j2.
Suppose that every odd cycle C in G1 satisfies that C ∩ Bj 6= ∅ for some j ∈ J. If there is some constant M > 0
such that for every j ∈ J, there is an odd cycle Cj such that Cj ∩ Bj 6= ∅ with L(Cj) < M, then we say that BJ
is M-regular.

Remark 2. If J is finite, then there exists M > 0 such that {Bj}j∈J is M-regular.

Denote by G∗ the graph with V(G∗) = V(G′1 × P2)∪ (∪j{w∗j }), where G′1 is a graph as above and
w∗j are additional vertices, and E(G∗) = E(G′1 × P2) ∪ (∪j{[w, w∗j ] : π1(w) ∈ Nj}).

Lemma 8. Let G1 be a connected graph as above and P2 with V(P2) = {v1, v2}. If G1 is hyperbolic and BJ as
above is M-regular, then there exists a quasi-isometry f : G1 × P2 → G∗ with f (wj, vi) = w∗j for every j ∈ J
and i ∈ {1, 2}.

Proof. Let F : V(G1 × P2)→ V(G∗) defined as F(v, vi) = (v, vi) for every v ∈ V(G′1), and F(v, vi) =

w∗j for every v ∈ V(Bj). It is clear that F : V(G1 × P2) → V(G∗) is 0-full. Recall that we denote by
π1 : G1 × P2 → G1 the projection map. Define π∗ : G∗ → G1 as π∗ = π1 on G′1 × P2 and π∗(x) = wj
for every x with dG∗(x, w∗j ) < 1 for some j ∈ J.

Now, we focus on proving that F : V(G1 × P2) → V(G∗) is a quasi-isometric embedding.
For every (w, vi), (w′, vi′) ∈ V(G1 × P2), one can check

dG∗(F(w, vi), F(w′, vi′)) ≤ dG1×P2((w, vi), (w′, vi′)).

To prove the other inequality, let us fix (w, vi), (w′, vi′) ∈ V(G′1 × P2) (the inequalities in other
cases can be obtained from the one in this case, as in the proof of Lemma 7). Consider a geodesic
γ := [F(w, vi)F(w′, vi′)] in G∗. If L(γ) = dG1×P2((w, vi), (w′, vi′)), then

dG∗(F(w, vi), F(w′, vi′)) = dG1×P2((w, vi), (w′, vi′)).
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If L(γ) < dG1×P2((w, vi), (w′, vi′)), then π∗(γ) meets some Bj. Since γ is a compact set, π∗(γ)

intersects just a finite number of Bj’s, which we denote by Bj1 , . . . Bjr . We consider γ as an oriented
curve from F(w, vi) to F(w′, vi′); thus we can assume that π∗(γ) meets Bj1 , . . . , Bjr in this order.

Let us define the following set of vertices in γ

{w1
i , w2

i } := γ ∩ (Nji × P2),

for every 1 ≤ i ≤ r, such that dG1×P2((w, vi), w1
i ) < dG1×P2((w, vi), w2

i ). Note that [w2
i w1

i+1] ⊂ G′1 × P2

for every 1 ≤ i < r and dG1×P2(w
2
i , w1

i+1) ≥ 1 since Bji ∩ Bji+1 = ∅.
If dG1(π(w1

i ), π(w2
i )) = dG1×P2(w

1
i , w2

i ) for some 1 ≤ i ≤ r, then dG1×P2(w
1
i , w2

i ) ≤ 2K. Since
dG1×P2(w

2
i , w1

i+1) ≥ 1 for 1 ≤ i < r, we have that dG1×P2(w
1
i , w2

i ) ≤ 2K dG1×P2(w
2
i , w1

i+1) in this case.
If dG1(π1(w1

i ), π1(w2
i )) < dG1×P2(w

1
i , w2

i ) for some 1 ≤ i ≤ r, then dG1(π1(w1
i ), π1(w2

i )) +

dG1×P2(w
1
i , w2

i ) is odd.
Since BJ is M-regular, consider an odd cycle C with C ∩ Bji 6= ∅ and L(C) < M, and let

bi ∈ C ∩ Bji and [π1(w1
i )bi], [biπ1(w2

i )] geodesics in G1. Thus, [π1(w1
i )bi] ∪ [biπ1(w2

i )] and
[π1(w1

i )bi] ∪ C ∪ [biπ1(w2
i )] have different parity which means that one of them has different

parity from [π1(w1
i )π1(w2

i )]. Then, dG1×P2(w
1
i , w2

i ) ≤ L([π1(w1
i )bi] ∪ C ∪ [biπ1(w2

i )]) ≤ 4K + M.

Since dG1×P2(w
2
i , w1

i+1) ≥ 1 for 1 ≤ i < r, we have that dG1×P2(w
1
i , w2

i ) ≤
(

4K + M
)

dG1×P2(w
2
i , w1

i+1)

in this case.
Thus, we have that dG1×P2(w

1
i , w2

i ) ≤ 4K + M for every 1 ≤ i ≤ r and dG1×P2(w
1
i , w2

i ) ≤
(

4K +

M
)

dG1×P2(w
2
i , w1

i+1) for every 1 ≤ i < r. Therefore,

dG1×P2 ((w, vi), (w′, vi′ )) ≤ dG1×P2 ((w, vi), w1
1) +

r

∑
i=1

dG1×P2 (w
1
i , w2

i ) +
r−1

∑
i=1

dG1×P2 (w
2
i , w1

i+1)

+ dG1×P2 (w
2
r , (w′, vi′ ))

≤ dG1×P2 ((w, vi), w1
1) + dG1×P2 (w

2
r , (w′, vi′ )) +

(
4K + M + 1

) r−1

∑
i=1

dG1×P2 (w
2
i , w1

i+1)

+ dG1×P2 (w
1
r , w2

r )

= dG∗ (F(w, vi), F(w1
1)) + dG∗ (F(w2

r ), F(w′, vi′ )) +
(

4K + M + 1
) r−1

∑
i=1

dG∗ (F(w2
i ), F(w1

i+1))

+ dG1×P2 (w
1
r , w2

r )

≤
(

4K + M + 1
)(

dG∗ (F(w, vi), F(w1
1)) + dG∗ (F(w2

r ), F(w′, vi′ )) +
r−1

∑
i=1

dG∗ (F(w2
i ), F(w1

i+1))
)
+ 4K + M

≤
(

4K + M + 1
)

dG∗ (F(w, vi), F(w′, vi′ )) + 4K + M.

We conclude that F : V(G1 × P2) → V(G∗) is a quasi-isometric embedding. Thus, Lemma 1
provides a quasi-isometry f : G1 × P2 → G∗ with the required property.

Definition 4. Given a geodesic metric space X and closed connected pairwise disjoint subsets {ηj}j∈J of X,
we consider another copy X′ of X. The double DX of X is the union of X and X′ obtained by identifying the
corresponding points in each ηj and η′j .

Definition 5. Let us consider H > 0, a metric space X, and subsets Y, Z ⊆ X. The set VH(Y) := {x ∈ X :
d(x, Y) ≤ H} is called the H-neighborhood of Y in X. The Hausdorff distance of Y to Z is defined by
H(Y, Z) := inf{H > 0 : Y ⊆ VH(Z), Z ⊆ VH(Y)}.

The following results in [15,80] will be useful.
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Theorem 13. ([80], Theorem 3.2) Let us consider a geodesic metric space X and closed connected pairwise
disjoint subsets {ηj}j∈J of X, such that the double DX is a geodesic metric space. Then, the following conditions
are equivalent:

(1) DX is hyperbolic.
(2) X is hyperbolic and there exists a constant c1 such that for every k, l ∈ J and a ∈ ηk, b ∈ ηl we have

dX(x,∪j∈Jηj) ≤ c1 for every x ∈ [ab] ⊂ X.
(3) X is hyperbolic and there exist constants c2, α, β such that for every k, l ∈ J and a ∈ ηk, b ∈ ηl we have

dX(x,∪j∈Jηj) ≤ c2 for every x in some (α, β)-quasi-geodesic joining a with b in X.

Theorem 14. ([15], p. 87) For each δ ≥ 0, a ≥ 1 and b ≥ 0, there exists a constant H = H(δ, a, b) with the
following property:

Let us consider a δ-hyperbolic geodesic metric space X and an (a, b)-quasigeodesic g starting in x and
finishing in y. If γ is a geodesic joining x and y, thenH(g, γ) ≤ H.

This property is called geodesic stability. It is well-known that hyperbolicity is, in fact,
equivalent to geodesic stability [81].

Theorem 15. Let G1 be a connected graph and Bj := BG1(wj, Kj) with wj ∈ V(G1) and Kj ∈ Z+, for any
j ∈ J, such that supj Kj = K < ∞, Bj1 ∩ Bj2 = ∅ if j1 6= j2, and every odd cycle C in G1 satisfies C ∩ Bj 6= ∅
for some j ∈ J. Suppose {Bj}j∈J is M-regular for some M > 0. Let G2 be a non-trivial bounded connected
graph without odd cycles. Then, the following statements are equivalent:

(1) G1 × G2 is hyperbolic.
(2) G1 is hyperbolic and there exists a constant c1, such that for every k, l ∈ J and wk ∈ Bk, wl ∈ Bl there

exists a geodesic [wkwl ] in G1 with dG1(x,∪j∈Jwj) ≤ c1 for every x ∈ [wkwl ].
(3) G1 is hyperbolic and there exist constants c2, α, β, such that for every k, l ∈ J we have dG1(x,∪j∈Jwj) ≤ c2

for every x in some (α, β)-quasi-geodesic joining wk with wl in G1.

Proof. Items (2) and (3) are equivalent by geodesic stability in G1 (see Theorem 14).
Assume that (2) holds. By Lemma 7, there exists an (α, β)-quasi-isometry f : G1 → G∗1 with

f (wj) = w∗j for every j ∈ J. Given k, l ∈ J, f ([wkwl ]) is an (α, β)-quasi-geodesic with endpoints w∗k
and w∗l in G∗1 . Given x ∈ f ([wkwl ]), we have x = f (x0) with x0 ∈ [wkwl ] and dG∗1

(x,∪j∈Jw∗j ) ≤
αdG1(x0,∪j∈Jwj) + β ≤ αc1 + β. Taking X = G∗1 , DX = G∗ and ηj = w∗j for every j ∈ J, Theorem 13
gives that G∗ is hyperbolic. Now, Lemma 8 gives that G1 × P2 is hyperbolic and we conclude that
G1 × G2 is hyperbolic by Lemma 2.

Now, suppose (1) holds. By Lemma 2, G1 × P2 is hyperbolic and, by Theorem 9, G1 is hyperbolic.
Then, Lemma 8 gives that G∗ is hyperbolic and taking X = G∗1 , DX = G∗ and ηj = w∗j for every j ∈ J,
by Theorem 13, (2) holds.

Theorem 15 and Remark 2 have the following consequence.

Corollary 5. Let G1 be a connected graph and suppose that there are a positive integer K and a vertex w ∈ G1,
such that every odd cycle in G1 intersects the open ball B := BG1(w, K). Let G2 be a non-trivial bounded
connected graph without odd cycles. Then, G1 × G2 is hyperbolic if and only if G1 is hyperbolic.

4. Bounds for the Hyperbolicity Constant of Some Direct Products

The following well-known result will be useful (see a proof, e.g., in ([47], Theorem 8)).

Theorem 16. In any connected graph G the inequality δ(G) ≤ (diam G)/2 holds.

Remark 3. Note that, if G1 is a bipartite connected graph, then diam G1 = diam V(G1). Furthermore, if G2 is
a bipartite connected graph, then the product G1 × G2 has exactly two connected components, which are denoted
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by (G1 × G2)
1 and (G1 × G2)

2, where each one is a bipartite graph and, consequently, diam(G1 × G2)
i =

diam V((G1 × G2)
i) for i ∈ {1, 2}.

Remark 4. Let Pm, Pn be two path graphs with m ≥ n ≥ 2. The product Pm × Pn has exactly two
connected components, which will be denoted by (Pm × Pn)1 and (Pm × Pn)2. If u, v ∈ V((Pm × Pn)i) for
i ∈ {1, 2}, then d(Pm×Pn)i (u, v) = max

{
dPm(π1(u), π1(v)), dPn(π2(u), π2(v))

}
and diam(Pm × Pn)i =

diam V((Pm × Pn)i) = m− 1.
Furthermore, if m1 ≤ m and n1 ≤ n, then δ(Pm × Pn) ≥ δ(Pm1 × Pn1).

Lemma 9. Let Pm, Pn be two path graphs with m ≥ n ≥ 3, and let γ be a geodesic in Pm × Pn such that there
are two different vertices u, v in γ, with π1(u) = π1(v). Then, L(γ) ≤ n− 1.

Remark 5. Note that the conclusion of Lemma 9 does not hold for n = 2, since we always have L(γ) ≥ 2.

Proof. Let γ := [xy], and let V(Pm) = {v1, . . . , vm}, V(Pn) = {w1, . . . , wn} be the sets of vertices in
Pm, Pn, respectively, such that [vj, vj+1] ∈ E(Pm) and [wi, wi+1] ∈ E(Pn) for 1 ≤ j < m, 1 ≤ i < n.
Seeking for a contradiction, assume that L(γ) > n − 1. Notice that if [uv] denotes the geodesic
contained in γ joining u and v, then π2 restricted to [uv] is injective. Consider two vertices u′, v′ ∈ γ

such that [uv] ⊆ [u′v′] ⊆ γ, π2 is injective in [u′v′] and π2(u′) = wi1 , π2(v′) = wi2 with i2− i1 maximal
under these conditions. See Figure 4.

Since L(γ) > n− 1 ≥ i2 − i1, either there is an edge [v′, w] in G1 × G2 such that [v′, w] ∩ (γ \
[u′v′]) 6= ∅ or there is an edge [u′, w′] in G1 × G2 such that [u′, w′] ∩ (γ \ [u′v′]) 6= ∅. In addition,
since L(γ) > n− 1, notice that π2 is not injective in γ. Moreover, since i2 − i1 is maximal, if π2(w) =

wi2+1, then w /∈ γ, and since L(γ) > n− 1, u′ /∈ {x, y} and π2(w′) = wi1+1. Thus, either π2(w) = wi2−1
or π2(w′) = wi1+1.

Hence, let us assume that there is an edge [v′, w] in G1×G2 such that [v′, w]∩ (γ \ [u′v′]) 6= ∅ with
π2(w) = wi2−1 (otherwise, if there is an edge [u′, w′] in G1 × G2 such that [u′, w′] ∩ (γ \ [u′v′]) 6= ∅
with π2(w′) = wi1+1, the proof is similar).

Suppose π1(v′) = vj. Let v′′ be the vertex in [u′v′] such that π2(v′′) = wi2−1. Then, by construction
of G1 × G2, since v′′ 6= w, it follows that {π1(v′′), π1(w)} = {vj−1, vj+1}. Therefore, in particular,
1 < j < m.

Assume that v′′ = (vj−1, wi2−1) (if v′′ = (vj+1, wi2−1), then the argument is similar). Therefore,
w = (vj+1, wi2−1).

Consider the geodesic

σ = [(vj+1, wi2−1), (vj, wi2−2)] ∪ [(vj, wi2−2), (vj−1, wi2−3)] ∪ [(vj−1, wi2−3), (vj−2, wi2−4)] ∪ . . .

Since π1(u) = π1(v), there is a vertex ξ of V(Pm × Pn) in [u′v′] ∩ σ. Let s ∈ [v′, w] ∩ γ with s 6= v′.
Let σ0 be the geodesic contained in σ joining ξ and w. Let γ0 be the geodesic contained in γ joining ξ

and s. Hence, L(σ0 ∪ [ws]) < L(σ0) + 1 < L(γ0) leading to contradiction.
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Figure 4. For any geodesic γ in Pm × Pn with π1(u) = π1(v) for some different vertices u, v in γ,
then L(γ) ≤ n− 1.

Theorem 17. Let Pm, Pn be two path graphs with m ≥ n ≥ 2. If n = 2, then δ(Pm × P2) = 0. If n ≥ 3, then

min
{m

2
, n− 1

}
− 1 ≤ δ(Pm × Pn) ≤ min

{m
2

, n
}
− 1

2
.

Furthermore, if m ≤ 2n− 3 and m is odd, then δ(Pm × Pn) = (m− 1)/2.

Proof. If m ≥ 2, then Pm × P2 has two connected components isomorphic to Pm, and δ(Pm × P2) = 0.
Assume that n ≥ 3. By symmetry, it suffices to prove the inequalities for δ((Pm × Pn)1). Hence,

Theorem 16 and Remark 4 give δ((Pm × Pn)1) ≤ m−1
2 . By Theorem 7, there exists a geodesic triangle

T = {x, y, z} ∈ T1(Pm × Pn) with p ∈ γ1 := [xy], γ2 := [xz], γ3 := [yz], and δ((Pm × Pn)1) = δ(T) =
d(Pm×Pn)1(p, γ2 ∪ γ3). Let u ∈ V(γ1) such that d(Pm×Pn)1(p, u) ≤ 1/2.

To prove δ((Pm × Pn)1) ≤ n− 1/2, we consider two cases.
Assume first that there is at least a vertex v ∈ V((Pm × Pn)1) ∩ T \ {u} such that π1(u) = π1(v).

If v /∈ γ1, then v ∈ γ2 ∪ γ3 and

δ(T) = d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ 1/2 + d(Pm×Pn)1(u, v) ≤ n− 1/2.

If v ∈ γ1, then L(γ1) ≤ n− 1 by Lemma 9, and

δ(T) = d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ d(Pm×Pn)1(p, {x, y}) ≤ (n− 1)/2 < n− 1/2.

Assume now that there is not a vertex v ∈ V((Pm× Pn)1)∩ T \ {u} such that π1(u) = π1(v). Then,
there exist two different vertices v1, v2 in T \ {u} such that d(Pm×Pn)1(u, v1) = d(Pm×Pn)1(u, v2) = 1,
and π1(v1) = π1(v2). If v1 or v2 belongs to γ2∪γ3, then δ(T) = d(Pm×Pn)1(p, γ2∪γ3) ≤ 3/2 ≤ n− 1/2.
Otherwise, v1, v2 ∈ γ1 \ {u}. Lemma 9 gives L(γ1) ≤ n− 1, and we have that

δ(T) = d(Pm×Pn)1(p, γ2 ∪ γ3) ≤ d(Pm×Pn)1(p, {x, y}) ≤ (n− 1)/2 < n− 1/2.
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To prove the lower bound, denote the vertices of Pm and Pn by V(Pm) = {w1, w2, w3, . . . , wm}
and V(Pn) = {v1, v2, v3, . . . , vn}, with [wi, wi+1] ∈ E(Pm) for 1 ≤ i < m and [vi, vi+1] ∈ E(Pn) for
1 ≤ i < n.

Let (Pm × Pn)1 be the connected component of Pm × Pn containing (w1, vn−1).
Assume first that m ≥ 2n− 3. Consider the following curves in (Pm × Pn)1:

γ1 := [(w1, vn−1), (w2, vn)] ∪ [(w2, vn), (w3, vn−1)] ∪ [(w3, vn−1), (w4, vn)] ∪ · · · ∪ [(w2n−4, vn), (w2n−3, vn−1)],

γ2 := [(w1, vn−1), (w2, vn−2)] ∪ [(w2, vn−2), (w3, vn−3)] ∪ · · · ∪ [(wn−2, v2), (wn−1, v1)] ∪ [(wn−1, v1), (wn, v2)]

∪ · · · ∪ [(w2n−4, vn−2), (w2n−3, vn−1)].

Corollary 1 gives that γ1, γ2 are geodesics. If B is the geodesic bigon B = {γ1, γ2}, then Remark 4
gives that

δ(Pm × Pn) ≥ δ(B) ≥ d(Pm×Pn)1((wn−1, v1), γ1) = n− 2.

If m is odd with m ≤ 2n− 3, then n− (m+ 1)/2 ≥ 1 and we can consider the curves in (Pm× Pn)1:

γ1 := [(w1, vn−1), (w2, vn)] ∪ [(w2, vn), (w3, vn−1)] ∪ [(w3, vn−1), (w4, vn)] ∪ · · · ∪ [(wm−1, vn), (wm, vn−1)],

γ2 := [(w1, vn−1), (w2, vn−2)] ∪ [(w2, vn−2), (w3, vn−3)] ∪ · · · ∪ [(w(m+1)/2−1, vn−(m+1)/2+1), (w(m+1)/2, vn−(m+1)/2)]

∪ [(w(m+1)/2, vn−(m+1)/2), (w(m+1)/2+1, vn−(m+1)/2+1)] ∪ · · · ∪ [(wm−1, vn−2), (wm, vn−1)].

Corollary 1 gives that γ1, γ2 are geodesics. If B = {γ1, γ2}, then Remark 4 gives that

δ(Pm × Pn) ≥ δ(B) ≥ d(Pm×Pn)1((w(m+1)/2, vn−(m+1)/2), γ1) = (m− 1)/2.

By Remark 4, if m is even with m− 1 ≤ 2n− 3, then we have that

δ(Pm × Pn) ≥ δ(Pm−1 × Pn) ≥ (m− 2)/2.

Hence,

δ(Pm × Pn) ≥
{

n− 2, if m ≥ 2n− 3
(m− 2)/2, if m ≤ 2n− 2

}
= min

{
n− 2,

m− 2
2

}
= min

{m
2

, n− 1
}
− 1.

Furthermore, if m ≤ 2n − 3 and m is odd, then we have proven (m − 1)/2 ≤ δ(Pm × Pn) ≤
(m− 1)/2.

Theorem 18. If G1 and G2 are bipartite connected graphs with k1 := diam V(G1) and k2 := diam V(G2)

such that k1 ≥ k2 ≥ 1, then

max
{

min
{ k1 − 1

2
, k2 − 1

}
, δ(G1), δ(G2)

}
≤ δ(G1 × G2) ≤

k1

2
.

Furthermore, if k1 ≤ 2k2 − 2 and k1 is even, then δ(G1 × G2) = k1/2.

Proof. Corollary 1, Theorem 16 and Remark 3 give us the upper bound.
To prove the lower bound, we can see that there exist two path graphs Pk1+1, Pk2+1 which are

isometric subgraphs of G1 and G2, respectively. It is easy to check that Pk1+1 × Pk2+1 is an isometric
subgraph of G1 × G2. By Lemma 3 and Theorem 17, we have

min
{ k1 − 1

2
, k2 − 1

}
≤ δ(Pk1+1 × Pk2+1) ≤ δ(G1 × G2).

Using a similar argument as above, we have δ(P2×G2) ≤ δ(G1×G2) and δ(G1× P2) ≤ δ(G1×G2).
Thus, since (G1 × P2)

i ' G1 and (P2 × G2)
i ' G2 for i ∈ {1, 2}, we obtain the first statement.
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Furthermore, if k1 + 1 ≤ 2(k2 + 1)− 3 and k1 + 1 is odd, then Theorem 17 gives δ(Pk1+1× Pk2+1) =

k1/2, and we conclude δ(G1 × G2) = k1/2.

The following result deals just with odd cycles since otherwise we can apply Theorem 18.

Theorem 19. For every odd number m ≥ 3 and every n ≥ 2,

δ(Cm × Pn) =


m/2, if n− 1 ≤ m,
(n− 1)/2, if m < n− 1 < 2m,
m− 1/2, if n− 1 ≥ 2m.

Proof. Let V(Cm) = {w1, . . . , wm} and V(Pn) = {v1, . . . , vn} be the sets of vertices in Cm and Pn,
respectively, such that [w1, wm], [wj, wj+1] ∈ E(Cm) and [vi, vi+1] ∈ E(Pn) for j ∈ {1, . . . , m − 1},
i ∈ {1, . . . , n− 1}. Note that for 1 ≤ j, r ≤ m and 1 ≤ i, s ≤ n, we have dCm×Pn

(
(wj, vi), (wr, vs)

)
=

max{|i− s|, |j− r|}, if |i− s| ≡ |j− r|(mod 2), or dCm×Pn

(
(wj, vi), (wr, vs)

)
= max{|i− s|, m− |j− r|},

if |i− s| 6≡ |j− r|(mod 2). Besides, we have diam(Cm × Pn) = diam
(
V(Cm × Pn)

)
, i.e., diam(Cm ×

Pn) = m if n− 1 ≤ m, and diam(Cm × Pn) = n− 1 if n− 1 > m. Thus, by Theorem 16, we have

δ(Cm × Pn) ≤
{

m/2, if n− 1 ≤ m,
(n− 1)/2, if n− 1 > m.

Assume first that n− 1 ≤ m. Note that Cm × P2 ' C2m and Cm × Pn′ is an isometric subgraph of
Cm × Pn, if n′ ≤ n. By Lemma 3, we have δ(Cm × Pn) ≥ δ(C2m) = m/2, and we obtain the result in
this case.

Assume now that n− 1 > m. Consider the geodesic triangle T in Cm× Pn defined by the following
geodesics

γ1 :=[(w1, vn), (w2, vn−1)] ∪ [(w2, vn−1), (w3, vn)] ∪ [(w3, vn), (w4, vn−1)] ∪ . . . ∪ [(wm−1, vn−1), (wm, vn)],

γ2 :=[(w(m+1)/2, v1), (w(m−1)/2, v2)] ∪ [(w(m−1)/2, v2), (w(m−3)/2, v3)] ∪ . . . ∪ [(w2, v(m−1)/2), (w1, v(m+1)/2)]∪

[(w1, v(m+1)/2), (wm, v(m+3)/2)] ∪ [(wm, v(m+3)/2), (w1, v(m+5)/2)] ∪ [(w1, v(m+5)/2), (wm, v(m+7)/2)] ∪ . . . ,

γ3 :=[(w(m+1)/2, v1), (w(m+3)/2, v2)] ∪ [(w(m+3)/2, v2), (w(m+5)/2, v3)] ∪ . . . ∪ [(wm−1, v(m−1)/2), (wm, v(m+1)/2)]∪

[(wm, v(m+1)/2), (w1, v(m+3)/2)] ∪ [(w1, v(m+3)/2), (wm, v(m+5)/2)] ∪ [(wm, v(m+5)/2), (w1, v(m+7)/2)] ∪ . . . ,

where (w1, vn)
(
respectively, (wm, vn)

)
is an endpoint of either γ2 or γ3, depending of the parity of n.

Since T is a geodesic triangle in Cm × Pn, we have δ(Cm × Pn) ≥ δ(T). If n− 1 < 2m and M is the
midpoint of the geodesic γ3, then δ(Cm × Pn) ≥ δ(T) = dCm×Pn(M, γ1 ∪ γ2) = L(γ3)/2 = (n− 1)/2.
Therefore, the result for m < n− 1 < 2m follows.

Finally, assume that n− 1 ≥ 2m. Let us consider N ∈ γ3 such that dCm×Pn

(
N, (w(m+1)/2, v1)

)
=

m− 1/2. Thus, δ(Cm × Pn) ≥ δ(T) ≥ dCm×Pn(N, γ1 ∪ γ2) = dCm×Pn

(
N, (w(m+1)/2, v1)

)
= m− 1/2.

To finish the proof, it suffices to prove that δ(Cm × Pn) ≤ m− 1/2. Seeking for a contradiction, assume
that δ(Cm × Pn) > m − 1/2. By Theorems 6 and 7, there is a geodesic triangle 4 = {x, y, z} ∈
T1(Cm × Pn) and p ∈ [xy] with dCm×Pn(p, [yz] ∪ [zx]) = δ(Cm × Pn) ≥ m − 1/4. Then, L([xy]) =

dCm×Pn(x, p)+ dCm×Pn(p, y) ≥ 2m− 1/2. Let Vx (respectively, Vy) be the closest vertex to x (respectively,
y) in [xy], and consider a vertex Vp in [xy] such that dCm×Pn

(
p, V(Cm× Pn)

)
= dCm×Pn(p, Vp). Note that

dCm×Pn(p, [yz]∪ [zx]) ≥ m− 1/4 implies that dCm×Pn(p, Vp) ≤ 1/2. Since x, y, z ∈ J(Cm× Pn), we have
dCm×Pn(Vx, Vy) ≥ 2m− 1 > m and, consequently, π2([xy]) is a geodesic in Pn. Since π2([yz] ∪ [zx]) is
a path in Pn joining π2(x) and π2(y), there exists a vertex (u, v) ∈ [xz] ∪ [zy] such that π2(Vp) = v
and u 6= π1(Vp). Therefore, dCm×Pn

(
Vp, (u, v)

)
≤ m− 1 and, consequently, dCm×Pn(p, [xz] ∪ [zy]) ≤

dCm×Pn(p, Vp) + dCm×Pn(Vp, [xz] ∪ [zy]) ≤ 1/2 + m− 1, leading to contradiction.
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5. Conclusions

In this paper, we characterize in many cases the hyperbolic direct product of graphs. Here,
the situation is more complex than with other graph products, partly because the direct product of
two bipartite graphs is already disconnected and the formula for the distance in G1 × G2 is more
complicated than in the case of other products of graphs. Although in the study of hyperbolicity in
a general context the hypothesis on the existence (or non-existence) of odd cycles is artificial, in the
study of hyperbolic direct products, it is an essential hypothesis. We have proven that, if G1 × G2 is
hyperbolic, then one factor is hyperbolic and the other one is bounded. Besides, we prove that this
necessary condition is also sufficient in many cases. If G1 is a hyperbolic graph and G2 is a bounded
graph, then we prove that G1 × G2 is hyperbolic when G2 has some odd cycle or G1 and G2 do not
have odd cycles. Otherwise, the characterization of hyperbolic direct products is a more difficult
task. If G1 has some odd cycle and G2 does not have odd cycles, we provide sufficient conditions
for non-hyperbolicity and hyperbolicity, respectively. Besides, we characterize the hyperbolicity of
G1 × G2 under some additional conditions.

A natural open problem is the complete characterization of hyperbolic direct products.
A second open problem is to compute the precise value of the hyperbolicity constant of the graphs

appearing in Theorems 17 and 18 with unknown hyperbolicity constant.
Direct product of graphs is a subject closely related to lift of graphs, which have been intensively

studied (see, e.g., [82] and the references therein). Another interesting problem is to study the
hyperbolicity of lift of graphs. We think that it is possible to obtain some similar results in this
context, although the odd cycles may not play an important role in the study of hyperbolic lifts
of graphs.
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