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Abstract: Ventilation systems are amongst the most essential components of a mine. As the indicators
of ventilation systems are in general of ambiguity or uncertainty, the selection of ventilation systems
can therefore be regarded as a complex fuzzy decision making problem. In order to solve such
problems, a decision making framework based on a new concept, the hesitant linguistic preference
relation (HLPR), is constructed. The basic elements in the HLPR are hesitant fuzzy linguistic numbers
(HFLNs). At first, new operational laws and aggregation operators of HFLNs are defined to overcome
the limitations in existing literature. Subsequently, a novel comparison method based on likelihood is
proposed to obtain the order relationship of two HFLNs. Then, a likelihood-based consistency index
is introduced to represent the difference between two hesitant linguistic preference relations (HLPRs).
It is a new way to express the consistency degree for the reason that the traditional consistency indices
are almost exclusively based on distance measures. Meanwhile, a consistency-improving model is
suggested to attain acceptable consistent HLPRs. In addition, a method to receive reasonable ranking
results from HLPRs with acceptable consistency is presented. At last, this method is used to pick out
the best mine ventilation system under uncertain linguistic decision conditions. A comparison and a
discussion are conducted to demonstrate the validity of the presented approach. The results show
that the proposed method is effective for selecting the optimal mine ventilation system, and provides
references for the construction and management of mines.
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1. Introduction

The ventilation system is one of the most important technologies to ensure the safety of mines [1].
In the process of mining, it is necessary to provide enough fresh air and exclude harmful gases,
heat and dust [2]. Then, a good working environment can be created to guarantee the health and
safety of underground workers. Therefore, choosing an applicable mine ventilation system is essential
and important for mines. Since there is much ambiguity and uncertainty in the evaluation process,
the selection of mine ventilation systems can be deemed as a fuzzy decision making problem.

In the process of decision making, experts or decision makers (DMs) may prefer to do comparisons
among each pair of systems or construct a preference matrix when expressing their opinions [3,4].
On the other hand, because of the complexity of alternatives and the fuzziness of human cognitions,
many people may tend to give preference information in the form of language phrases, such as
“good”, “bad” and so on [5–7]. Thereafter, the decision making problems based on linguistic preference
relations (LPRs) have attracted extensive attention [8–10]. However, there is a hypothesis that the
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membership degree of each element in LPRs is a certain number “one”. It is unable to accurately depict
the professionals’ supporting or hesitant degrees of linguistic assessment information.

Accordingly, Rodriguez et al. [11] put forward the concept of hesitant fuzzy linguistic term set
(HFLTS) to express the experts’ hesitation or inconsistency. HFLTS is an orderly limited subset of
linguistic terms. Different varieties of aggregation operators [12–14], measures [15,16] and decision
making approaches [17–19] based on HFLTS and its extensions were proposed. For instance,
Liu et al. [20] defined the distance measures for HFLTS to deal with hesitant fuzzy linguistic
multi-criteria decision making problems; Adem et al. [21] proposed an integrated model using SWOT
analysis and HFLTS for evaluating occupational safety risks in the life cycle of wind turbines. Besides,
Zhu and Xu [22] came up with the concept of hesitant fuzzy linguistic preference relations (HFLPRs),
where the basic elements are in the form of HFLTS.

Subsequently, numerous researchers had great interest in studying preference matrices under
hesitant fuzzy linguistic conditions. Zhang and Wu [23] introduced the multiplicative consistency of
HFLPRs based on distance measures. Wang and Xu [24] defined the additive and weak consistency
of extended HFLPRs on the basis of graph theory. Wu and Xu [25] discussed the consistency and
consensus of HFLPRs in a group decision environment. Gou et al. [26] proposed the compatibility
measures and weights determination approach for HFLPRs, and then applied them in selecting a
desirable aspect in the medical and health system reform process. Li et al. [27] recommended an
approach of obtaining the interval consistency degree of HFLPRs. Xu et al. [28] constructed a group
decision support model for HFLPRs to reach consistency and consensus.

Nevertheless, HFLTS cannot reflect the membership degree of an element that belongs to a specific
concept [29], such as a certain ventilation system in this paper. It is only a collection of several linguistic
evaluation values, and it has strong subjectivity and fuzziness [30]. In order to overcome the inherent
defects of linguistic variables and HFLTS, hesitant fuzzy linguistic sets (HFLSs) were introduced by
Lin et al. [31]. They can describe hesitant degrees of DMs with some membership degrees based on a
given linguistic term. Compared with uncertain linguistic variables, they have the edge on describing
the fuzziness [29]. HFLSs combine linguistic term sets with hesitant fuzzy sets (HFSs), which include
both the quantitative and qualitative evaluation information [32]. Each element in the HFLSs can
be called a hesitant fuzzy linguistic number (HFLN). For instance, half of the specialists in Group A
think that vs1 is a good ventilation system, and 80 percent in Group B think so. In this case, it can be
expressed with a HFLN < good, {0.5, 0.8} >.

The motivations of this paper are mainly two-fold. (1) The mine ventilation systems selection
context requires dealing with fuzzy evaluation information and building appropriate decision making
models. Hesitant fuzzy linguistic numbers (HFLNs) have advantages in describing the fuzziness and
hesitancy of experts [29]. Moreover, preference relations are among the most powerful tools to select
the best system. (2) Currently, researches on HFLNs are relatively insufficient compared with other
fuzzy sets. Wang et al. [29] developed a decision making method based on the Hausdorff distance of
HFLNs. In addition, Wang et al. [30] put forward the concept of interval-valued HFLNs to deal with
complex decision making issues. Yet, there are still some limitations with existent operational laws
and comparison methods of HFLNs [29,31].

Taking the aforementioned motivations into account, this paper concentrates on selecting the
optimal mine ventilation system under a hesitant linguistic environment.

The novelty and contributions of this paper are listed as follows.

(1) New operational laws and aggregation operators of HFLNs are presented. These new operations
can reflect the relationship of the linguistic term and its corresponding membership degrees.
Furthermore, a hesitant fuzzy linguistic likelihood is presented to compare two arbitrary HFLNs.
It can effectively overcome the limitations of the existing comparison method based on score
function and accuracy function.

(2) The concept of HLPRs is proposed to tackle decision making issues under hesitant fuzzy linguistic
circumstances. A consistency index using likelihood is defined to check the consistency degree of
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HLPRs and a consistency-improving model is introduced to get acceptable consistency. Besides,
a likelihood-based method is adopted to obtain the final ranking result.

(3) The proposed method is applied in the engineering field of choosing appropriate mine ventilation
systems. Thereafter, an in-depth comparison analysis is conducted to demonstrate the validity
and merits of the presented method.

The remainder of this paper is arranged as follows: Introductory knowledge about HFLSs
and preferences relations are briefly reviewed in Section 2. Section 3 proposes new operations and
comparison method of HFLNs. A consistency index is put forward for checking the consistency level of
HLPRs in Section 4. A consistency-improving process may be carried out when a HLPR’s consistency
is unacceptable. And a likelihood-based approach is presented to get the ranking results subsequently.
Section 5 illustrates an example of ventilation systems selection and makes a comparative analysis
to express the effectiveness of the proposed method. Necessary discussions and brief comments are
informed in Section 6.

2. General Concepts

In this section, general concepts related to linguistic variables, HFSs, HFPRs and HFLSs
are recalled.

2.1. Linguistic Variables

Assume lvi stands for a possible linguistic value in a finite and entirely ordered separate term set
LV = {lvi |i = −t, . . . ,−1, 0, 1, . . . , t} [33,34]. It is usually required to meet the following conditions:

(1) There is an order: lvi > lvj, when i > j;
(2) A negation operator exists: ne(lvi) = lv−i.

When the aggregated information is used in the process of decision making, it usually does not
go with the values in the predefined evaluation scope. To reserve all the obtained values, Xu [33]
changed the preceding term set LV into a continuous one LV = {lvi|i ∈ [−p, p]}, where p(p > t) is a
adequately great positive integer.

Taking two linguistic terms lvi, lvj ∈ LV into account, some operations are proposed in
the following:

(1) lvi ⊕Xu lvj = lvi+j;

(2) lvi ⊕Xu lvj = lvj ⊕Xu lvi;

(3) ρlvi = lvρi, ρ ∈ [0, 1].

2.2. Hesitant Fuzzy Sets

Since Zadeh [35] proposed fuzzy sets, it has been widely applied in various fields [36–40] and
many extensions based on fuzzy set have been developed [41,42]. HFSs, as extensions of fuzzy sets,
were firstly presented by Torra [32]. They are defined in coping with several numerical values permitted
to indicate an element’s membership degree [43–45]. The definition of HFSs is given as follows.

Definition 1 [32]. If X is a fixed set, then a hesitant fuzzy set (HFS) on X is in relation to the function, which
can go back a set of numbers between zero and one. It is described as the mathematical sign in the following:

F = {< x, hF(x) > |x ∈ X} (1)

where hF(x) is a subset of several values between zero and one, which represents the probable membership degrees
of an element x ∈ X to a certain set F. Xia and Xu [46] believe that it is convenient to call hF(x) a hesitant
fuzzy element (HFE).
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Preference relations are impactful tools in respect to modeling the decision making process.
On the basis of HFSs, Zhu [47] came up with the concept of hesitant fuzzy preference relations
(HFPRs), which is given as follows.

Definition 2 [47]. Let X = {x1, x2, . . . , xn} be a reference set, then a HFPR G on X is denoted by a matrix
G = (gij)n×n ⊂ X × X, where gij = {[q

σ(l)
ij |l = 1, . . . , |lij|]} is a HFE expressing whole possible preference

degree(s) of the object xi over xj. Furthermore, gij (i, j = 1, 2, . . . , n; i < j) should meet the following
requirements:

qσ(l)
ij + qσ(l)

ji = 1, qσ(l)
ii = 0.5, |lij| = |lji| (2)

qσ(l)
ij < qσ(l+1)

ij , qσ(l+1)
ji < qσ(l)

ji (3)

where qσ(l)
ij is the l-th largest element in gij, and |lij| is the number of elements in gij.

2.3. Hesitant Fuzzy Linguistic Sets

The concept, operational laws and comparison method of HFLNs are recalled in this section.
Moreover, the limitations of them are discussed in the corresponding places.

Definition 3 [31]. Let X = {x1, x2, . . . , xn} be a fixed set, and lvθ(x) ∈ LV. Then, the hesitant fuzzy linguistic
set (HFLS) U in X can be described as the subsequent object:

U =
{
< x, lvθ(x), hU(x) > |x ∈ X

}
(4)

where hU(x) is a set of finite numbers in [0,1] and signifies the possible degrees of membership that x belongs
to lvθ(x).

There are two special cases of HFLNs: (1) A hesitant fuzzy linguistic number (HFLN): There is
only one element in the set X = {x1, x2, . . . , xn}, and HFLS U is reduced to < lvθ(x), hU(x) >; (2) A
fuzzy linguistic number: There is only one element in hB(x), like hU(x) = {u}, and HFLS U is reduced
to < lvθ(x), u >. For example, < lv3, 0.5 > shows that the membership degree of x belongs to lv3 is 0.5.

The operational laws about HFLNs are introduced in literature [31] as follows. Based on them,
many aggregation operators are also presented in this paper.

Definition 4 [31]. Given two HFLNs a =< lvθ(a), ha > and b =< lvθ(b), hb > arbitrarily, and λ ∈ [0, 1] , then

(1) a⊕Lin b =< lvθ(a)+θ(b), ∪
r1∈ha ,r2∈hb

{r1 + r2 − r1 · r2} >;

(2) λa =< lvλ·θ(a), ∪r∈ha
{1− (1− r)λ} >.

It is clear that the operations mentioned above are not very reasonable as the linguistic values and
the membership degrees are operated separately. In fact, the membership degrees should be related to
the homologous linguistic values in the operation process.

Definition 5 [29]. If a =< lvθ(a), ha > is a HFLN, then the score function E(a) of a can be described
as follows:

E(a) = s(ha)× f ∗(lvθ(a)) (5)

where s(ha) =
1

#ha
∑r∈ha r, s(ha) is the score function of ha, #ha is the number of values in ha, f ∗(lvi) =

1
2 +

i
2t

is one of the three different expressions of the linguistic scale function defined by Wang et al. [29], and it can be
replaced by another expressions under different semantics. For more details please refer to literature [29].
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Definition 6 [29]. Let a =< lvθ(a), ha >=< lvθ(a),∪r∈ha{r} > be a HFLN, and the variance function
is represented as V∗(ha) = 1

#ha
∑r∈ha [r− s(ha)]

2. Hence, the accuracy function V(a) of a can be shown
as follows:

V(a) = f ∗(lvθ(a)) · [1−V∗(ha)] (6)

where #hα is the number of the values in ha.

The accuracy function V(α) is analogous to the sample variance statistically and can display the
fluctuation of assessment values of ha. The greater the volatility is, the larger the hesitation will be.
Then, the ranking order of HFLNs can be derived by using the score function and accuracy function
as follows.

Definition 7 [29]. If a =< lvθ(a), ha > and b =< lvθ(b), hb > are two arbitrary HFLNs, rσ(l)
a and rσ(l)

b are
regarded as the lth number in ha and hb respectively, and all membership degrees are arranged in ascending
order. Then the comparison method is

(1) If lvθ(a) ≤ lvθ(b), rσ(l)
a ≤σ(l)

b and rσ(#ha)
a ≤ rσ(#hb)

b , then a < b, where at least one of “<” exists,

rσ(l)
a ∈ ha, rσ(l)

b ∈ hb, l = 1, 2, . . . , min(#ha, #hb), #ha and #hb are the numbers of values in ha and hb
respectively;

(2) If E(a) < E(b) but a < b, then a ≺ b;
(3) If E(a) = E(b) and V(a) < V(b), then a ≺ b;
(4) If E(a) = E(b) and V(a) = V(b), then a = b.

Example 1. Suppose a =< lv0, {0.1, 0.4} >, b =< lv−3, {0.1, 0.4} > and c =< lv0, {0.2, 0.3} > are three
HFLNs. Let f ∗(lvi) =

1
2 + i

2t and t = 3, then:

(1) lvθ(b) = lv−3 < lvθ(a) = lv0, rσ(1)
b = rσ(1)

a = 0.1, rσ(2)
b = rσ(2)

a = 0.4, thus b < a;

(2) E(b) = 0, E(c) = 0.125, i.e., E(b) < E(c), thus b ≺ c;
(3) E(a) = E(c) = 0.125, V(a) = 0.48875, V(c) = 0.49875, i.e., V(a) < V(c), thus a ≺ c.

There is no doubt that the amounts of calculations are increased when the score function or
even the accuracy function needs to be calculated. Besides, according to this comparison method,
if E(a) = E(b) and V(a) = V(b) are true simultaneously, a conclusion is that a = b. It is reasonable in
most conditions. However, it is not well tenable when the linguistic scale function f ∗(lvi) = 0 and the
possible memberships in a certain HFLN are not strictly superior to the memberships in another HFLN.
For instance, assume α =< lv−3, {0.1, 0.7} >, β =< lv−3, {0.1, 0.9} > and η =< lv−3, {0.5, 0.6} >
are three HFLNs. Let f ∗(lvi) = 1

2 + i
2t and t = 3, then E(α) = E(β) = E(η) = 0 and

V(α) = V(β) = V(η) = 0 are true, a decision is that α < β according to part (1) of the comparison
method, and a decision is that α = η and β = η according to part (3) of this method. It is clear that
these conclusions are self-contradictory and counterintuitive.

3. New Operations and Comparison Method

As mentioned in Section 2.3, there are some weaknesses in the existent operational laws and
comparison method with HFLNs. Thus, new operations and comparison methods are presented in
this section.

3.1. New Operational Laws and Aggregation Operators

To overcome the limitations of operations proposed in Section 2.3, some new operational laws
on the HFLNs are raised in this section. Afterwards, the hesitant fuzzy linguistic weighted average
(HFLWA) operator and hesitant fuzzy linguistic average (HFLA) operator based on them are presented.
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Definition 8. If a =< lvθ(a), ha > and b =< lvθ(b), hb > are HFLNs, and λ ∈ [0, 1], then

(1) a⊕ b =< lvθ(a)+θ(b), ∪
r1∈ha ,r2∈hb

{
(θ(a)+t)·r1+(θ(b)+t)·r2

(θ(a)+t)+(θ(b)+t)

}
>;

(2) λa =< lvλ·θ(a), ha >.

It is easily verified that all operational results mentioned above are still HFLNs. Although there
are no practical meanings with the operational results, the basic operations are necessary to be defined
in practice. When these operations are used together, the actual significance can be reflected in reality.

In view of Definition 8, the equivalent relations can be further acquired as follows.

(1) Commutativity: a⊕ b = b⊕ a;
(2) Associativity: (a⊕ b)⊕ c = a⊕ (b⊕ c);
(3) Distributivity: λ(a⊕ b) = λa⊕ λb, λ ∈ [0, 1];
(4) Distributivity: λ1a⊕ λ2a = (λ1 + λ2)a, λ1, λ2 ∈ [0, 1].

Definition 9. Let ai =< lvθ(ai)
, hai > be a group of HFLNs with i = 1, 2, . . . , n. The HFLWA operator can be

denoted as follows:
HFLWA(a1, a2, . . . , an) = ω1a1 ⊕ω2a2 ⊕ · · · ⊕ωnan (7)

where ω = (ω1, ω2, . . . , ωn)
T is the weight vector of ai (i = 1, 2, . . . , n), ωi ∈ [0, 1] and ∑n

i=1 ωi = 1.

Particularly, if ω = ( 1
n , 1

n , . . . , 1
n )

T
, then the HFLWA operator is degenerated to the HFLA operator

as follows:
HFLA(a1, a2, . . . , an) =

1
n
(a1 ⊕ a2 ⊕ · · · ⊕ an) (8)

Theorem 1. Assume ai =< lvθ(ai)
, hai > are a set of HFLNs, and ω = (ω1, ω2, . . . , ωn)

T is the weight vector
of ai (i = 1, 2, . . . , n), ωi ∈ [0, 1] and ∑n

i=1 ωi = 1, then the aggregated result through applying the HFLWA
operator is still a HFLN, and

HFLWA(a1, a2, . . . , an) =< lv n
∑

i=1
Ci

, ∪
r1∈ha1 ,r2∈ha2 ,...,rn∈han


n
∑

i=1
Di · ri

n
∑

i=1
Di

 > (9)

where Ci = ωiθ(ai) and Di = ωi(θ(ai) + t) for all i = 1, 2, . . . , n.

Proof. Clearly, by Definition 8, the aggregated data by exploiting the HFLWA operator remains a
HFLN. Next, Equation (9) is proved through utilizing mathematical induction on n.

(1) When n = 2: we have ω1a1 =< lvC1 , ha1 > and ω2a2 =< lvC2 , ha2 >, then HFLWA(a1, a2) =

ω1a1 ⊕ω2a2 = < lvC1+C2 , ∪
r1∈ha1 ,r2∈ha2

{
D1·r1+D2·r2

D1+D2

}
> = < lv 2

∑
i=1

Ci

, ∪
r1∈ha1 ,r2∈ha2


2
∑

i=1
Di ·ri

2
∑

i=1
Di

 >.

(2) For n = k: If Equation (9) holds, then HFLA(a1, a2, . . . , ak) =<

lv k
∑

i=1
Ci

, ∪
r1∈ha1 ,r2∈ha2 ,...,rk∈hak


k
∑

i=1
Di ·ri

k
∑

i=1
Di

 >. Hence, for n = k + 1, from Definition

8, that is HFLA(a1, a2, . . . , ak+1) = < lv k
∑

i=1
Ci

, ∪
r1∈ha1 ,r2∈ha2 ,...,rk∈hak


k
∑

i=1
Di ·ri

k
∑

i=1
Di

 >
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⊕(ωk+1 · ak+1), = < lv k
∑

i=1
Ci+Ck+1

, ∪
r1∈ha1 ,r2∈ha2 ,...,rk+1∈hak+1



k
∑

i=1
Di ·

k
∑

i=1
Di ·ri

k
∑

i=1
Di

+Dk+1·rk+1

k
∑

i=1
Di+Dk+1


> =

< lvk+1
∑

i=1
Ci

, ∪
r1∈ha1 ,r2∈ha2 ,...,rk+1∈hak+1


k+1
∑

i=1
Di ·ri

k+1
∑

i=1
Di

 >.

i.e., for n = k + 1, Equation (9) follows.
Therefore, combined (1) with (2), Equation (9) follows for all n ∈ N, then the proof of Theorem 1

is completed. �

3.2. Likelihood of Hesitant Fuzzy Linguistic Numbers

The likelihood-based comparison method is an effective way to compare fuzzy numbers.
Inspired by literature [48,49], a new method based on likelihood to compare HFLNs is proposed.
From an example, it can be seen that the limitations of the comparison method mentioned in Section 2.3
have been overcome when the proposed likelihood-based comparison method is adopted.

The likelihood between two HFLNs is described in the following:

Definition 10. If a =< lvθ(a), ha > and b =< lvθ(b), hb > are two optional HFLNs, then the likelihood
between a and b can be demonstrated as follows:

L(a ≥ b) =



1, 0vθ(a) > lvθ(b) , h+a > h−b
1

#ha#hb

#ha
∑

i=1

#hb
∑

j=1

rσ(i)
a

rσ(i)
a +rσ(j)

b

, lvθ(α) = lvθ(β)

1
#ha#hb

#ha
∑

i=1

#hb
∑

j=1

f ∗(lvθ(a))·r
σ(i)
a

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

, lvθ(a) 6= lvθ(b)

1, lvθ(a) < lvθ(a), h−a < h+b

(10)

where γ
σ(i)
a and γ

σ(j)
b are the i-th and j-th largest value, #ha and #hb are the numbers of element in ha and hb

respectively.

Property 1. Suppose Ω is a set with all HFLNs, ∀a,b,c ∈ Ω, the likelihood satisfies the following properties:

(1) 0 ≤ L(a ≥ b) ≤ 1;
(2) If lvθ(a) ≤ lvθ(b), h+a < h−b , then L(a ≥ b) = 0;

(3) If lvθ(a) ≥ lvθ(b), h−a > h+b , then L(a ≥ b) = 1;

(4) L(a ≥ b) + L(b ≥ a) = 1;
(5) If L(a ≥ b) = L(b ≥ a), then L(a ≥ b) = L(b ≥ a) = 0.5;
(6) If L(a ≥ c) ≥ 0.5, and L(c ≥ b) ≥ 0.5, then L(a ≥ b) ≥ 0.5.

Proof. We only prove (4) of Property 1 in the paper, as the other properties can be easily proven.

(1) If lvθ(a) < lvθ(b), h+a < h−b or lvθ(a) > lvθ(b), h−a < h+b , according to Definition 10, it is true that
L(a ≥ b) + L(b ≥ a) = 1.
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(2) If lvθ(a) = lvθ(b), the following deduction can be derived: L(a ≥ b) = 1
#ha#hb

#ha
∑

i=1

#hb
∑

j=1

rσ(i)
a

rσ(i)
a +rσ(j)

b

and

L(a ≤ b) = L(b ≥ a) = 1
#ha#hb

#ha
∑

i=1

#hb
∑

j=1

rσ(i)
a

rσ(i)
a +rσ(j)

b

, then L(a ≥ b) + L(a ≤ b)= 1
#ha#hb

#ha
∑

i=1

#hb
∑

j=1

rσ(i)
a

rσ(i)
a +rσ(j)

b

+

1
#ha#hb

#hb
∑

j=1

#ha
∑

i=1

rσ(j)
b

rσ(i)
a +rσ(j)

b

= 1
#ha#hb

#hb
∑

j=1

#ha
∑

i=1

rσ(i)
a +rσ(j)

b

rσ(i)
a +rσ(j)

b

= 1.

(3) If lvθ(a) 6= lvθ(b), similar to proof (2), we can obtain the following:

L(a ≤ b) = L(b ≥ a) = 1
#ha#hβ

#hb
∑

j=1

#ha
∑

i=1

f ∗(lvθ(b))·r
σ(j)
b

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

, L(a ≥ b) + L(a ≤ b) =

1
#ha#hβ

#ha
∑

i=1

#hb
∑

j=1

f ∗(lvθ(a))·r
σ(j)
a

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

+ 1
#ha#hβ

#hb
∑

j=1

#ha
∑

i=1

f ∗(lvθ(b))·r
σ(j)
b

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

=

1
#ha#hβ

#hb
∑

j=1

#ha
∑

i=1

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

f ∗(lvθ(a))·r
σ(i)
a + f ∗(lvθ(b))·r

σ(j)
b

= 1.

Therefore, L(a ≥ b) + L(a ≤ b) = 1.
Now, the proof is completed. �

Definition 11. If a =< lvθ(a), ha > and b =< lvθ(b), hb > are two HFLNs. The new comparison method for
HFLNs can be defined as follows:

(1) If L(a ≥ b) > 0.5, then a is superior to b, expressed by a > b;
(2) If L(a ≥ b) < 0.5, then a is inferior to b, expressed by a < b;
(3) If L(a ≥ b) = 0.5, then a is indifferent to b, expressed by a = b.

Example 2. Suppose that three HFLNs are the same as Example 1, the comparison results with new proposed
comparison method are given as follows.

(1) L(a ≥ b) = 1, L(b ≥ a) = 0, then b < a.
(2) L(b ≥ c) = 0, L(c ≥ b) = 1, then b < c.
(3) L(a ≥ c) = 0.455, L(c ≥ a) = 0.5446, then a < c.

It is true that the results in Examples 1 and 2 are the same, which verifies the validity of the
presented comparison method. Moreover, assume α =< lv−3, {0.1, 0.7} >, β =< lv−3, {0.1, 0.9} >
and η =< lv−3, {0.5, 0.6} > are three HFLNs, f ∗(lvi) =

1
2 + i

2t and t = 3, then L(α ≥ β) = 0.4781,
L(α ≥ η) = 0.3578 and L(β ≥ η) = 0.3881. So we get a conclusion that α < β < η, which is more
reasonable than the results obtained by using the previous comparison method.

4. Decision Making Framework

In this section, a decision making framework is proposed to handle decision making problems
under a hesitant linguistic environment. Original preference information is expressed by HLPRs and
the consistency level is checked and improved. Then, a likelihood-based model is suggested to derive
a ranking from HLPRs with acceptable consistency.

4.1. Original Preference Information

When making evaluations for some alternatives under a hesitant linguistic environment,
DMs can provide original preference information with HLPRs. To facilitate the following discussions,
the concepts of HLPRs and consistent HLPRs are defined as follows.

Definition 12. If X = {x1, x2, . . . , xn} is a set of alternatives, then the HLPR K on X can be described as a
matrix K = (kij)n×n ⊂ X × X. Each element kij =< lvij, rij > is a HFLN, where lvij and rij demonstrate
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respectively, the degree of xi preferred to xj and the possible membership degrees that x belongs to lvij. Then,
for kij (i, j = 1, 2, . . . , n, i < j), the following requirements should be met:

lvij ⊕ lvji = lv0, lvii = lv0, rσ(l)
ij = rσ(l)

ji , rσ(l)
ii = 1, |kij| = |k ji| (11)

where rσ(l)
ij is the l-th element in rij, and |kij| is the number of values in kij.

Definition 13. Let K = (kij)n×n be a HLPR, if

rσ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj = rσ(l)
ij · lvij (i, j, k = 1, 2, . . . n) (12)

then K is a consistent HLPR.

Example 3. Given a HLPR K1 =

 < lv0, {1} > < lv1, {0.3, 0.9} > < lv−2, {0.1, 0.6} >
< lv−1, {0.3, 0.9} > < lv0, {1} > < lv2, {0.4, 0.9} >
< lv2, {0.1, 0.6} > < lv−2, {0.4, 0.9} > < lv0, {1} >

.

Since rσ(1)
13 · lv13 = lv−0.2, rσ(1)

12 · lv12 ⊕ rσ(1)
23 · lv23 = lv1.1, rσ(1)

13 · lv13 6= rσ(1)
12 · lv12 ⊕ rσ(1)

23 · lv23, then K1

is not a consistent HLPR.

Theorem 2. Assume a HLPR K = (kij)n×n, if

max
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
< lv0 or min

{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
> lv0

(i, j, k = 1, 2, . . . n)
(13)

then K = (kij)n×n has a corresponding consistent HLPR.

Proof. The proof is straightforward. According to Equation (11), if min
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}

< lv0 and max
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
> lv0, some calculated membership degrees will be less

than zero. Clearly, it is unreasonable. Therefore, when max
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
< lv0 or,

min
{
⊕n

k=1(r
σ(l)
ik · lvik ⊕ rσ(l)

kj · lvkj)
}
> lv0, the corresponding consistent HLPR of K = (kij)n×n exists.

�

Example 4. Given a HLPR K2 =

 < lv0, {1} > < lv1, {0.3, 0.5} > < lv−1, {0.1, 0.7} >
< lv−1, {0.3, 0.5} > < lv0, {1} > < lv1, {0.4, 0.8} >
< lv1, {0.1, 0.7} > < lv−1, {0.4, 0.8} > < lv0, {1} >

.

Since⊕3
k=1(r

σ(1)
1k · lv1k ⊕ rσ(1)

k3 · lvk3) = lv0.5 > lv0 and ⊕ n
k=1(r

σ(2)
1k · lv1k ⊕ rσ(2)

k3 · lvk3) = lv−0.1 < lv0,
then K2 does not have a consistent HLPR.

Note that: when a HLPR K = (kij)n×n does not have the corresponding consistent HLPR, it should
be adjusted based on Equation (14) until a consistent HLPR exists.

Theorem 3. Assume a HLPR K = (kij)n×n has the consistent HLPR, for all i, j, k = 1, 2, . . . n, if

r∗σ(l)ij · lv∗ij =
1
n
⊕n

k=1 (r
σ(l)
ik · lvik ⊕Xu rσ(l)

kj · lvkj), (14)

lv∗ij = max
{

rσ(1)
1k · lv1k ⊕ rσ(1)

k3 · lvk3

}
(i f ⊕n

k=1 (r
σ(1)
1k · lv1k ⊕ rσ(1)

k3 · lvk3) > lv0) (15)

lv∗ij = min
{

rσ(2)
1k · lv1k ⊕ rσ(2)

k3 · lvk3

}
(i f ⊕ n

k=1(r
σ(2)
1k · lv1k ⊕ rσ(2)

k3 · lvk3) < lv0) (16)
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then K∗ = (k∗ij)n×n
= (lv∗ij, r∗ij)n×n

is a consistent HLPR.

Proof. Since r∗σ(l)ik · lv∗ik ⊕ r∗σ(l) · lv∗kj = 1
n (⊕n

e=1(r
σ(l)
ie · lvie ⊕ rσ(l)

ek · lvek))⊕ 1
n (⊕ n

e=1(r
σ(l)
ke · lvke ⊕ rσ(l)

ej ·

lvej)) = 1
n (⊕ n

e=1(r
σ(l)
ie · lvie⊕ rσ(l)

ek · lvek⊕ rσ(l)
ke · lvke⊕ rσ(l)

ej · lvej)) = 1
n (⊕ n

e=1(r
σ(l)
ie · lvie⊕ rσ(l)

ej · lvej⊕ rσ(l)
ek ·

lv0)) = 1
n (⊕n

e=1(r
σ(l)
ie · lvie⊕ rσ(l)

ej · lvej)) = rσ(l)
ij · lv

∗
ij based on Definition 13, K∗ = (k∗ij)n×n

= (lv∗ij, r∗ij)n×n
is a consistent HLPR. �

Example 5. Assume a HLPR is the same in Example 3. Based on Equation (14), the consistent HLPR K∗1 is obtained

as follows: K∗1 =

 < lv0, {1} > < lv−1, {2/15, 7/15} > < lv1.1, {7/33, 1/11} >
< lv1, {2/15, 7/15} > < lv0, {1} > < lv0.8, {11/24, 5/8} >

< lv−1.1, {7/33, 1/11} > < lv−0.8, {11/24, 5/8} > < lv0, {1} >

.

4.2. Consistency Checking and Improving Models

When an initial preference matrix is constructed, checking and improving its consistency is
necessary and vital [50–52]. The consistency of preference relations reflects the rationality of DMs’
judgments, and inconsistent preference matrices may generate undesirable or improper conclusions.
In this section, a likelihood-based consistency index is defined to test the consistency degree and a
consistency-improving process is presented to modify the consistency level.

Definition 14. Given two arbitrary HLPRs A = (aij)n×n and B = (bij)n×n, then

L(A ≥ B) =
2

n(n− 1)

n

∑
i<j

L(aij ≥ bij) (17)

is called the likelihood between two HLPRs.

The likelihood L(A ≥ B) satisfies Theorem 4 as follows.

Theorem 4. Assume A and B are two HLPRs, the likelihood between them can be represented as L(A ≥ B),
then

(1) 0 ≤ L(A ≥ B) ≤ 1;
(2) L(A ≥ B) + L(B ≥ A) = 1;
(3) If L(A ≥ B) = L(B ≥ A), then L(A ≥ B) = L(B ≥ A) = 0.5.

Definition 15. Suppose a HLPR K and its corresponding consistent HLPR K∗; a consistency index is used to
calculate the deviation between K and K∗, which is defined as

CI(K) =
1

n(n− 1)

n

∑
i 6=j
|L(kij ≥ k∗ij)−

1
2
| (18)

It is true that 0 ≤ CI(K) ≤ 1
2 . Based on Definition 15, a smaller value of CI(K) means a more

consistent HLPR K. As the DMs would be often influenced by many uncertainties when they make
decisions, HLPRs provided by the DMs are not always perfectly consistent.

Definition 16. Given a HLPR K and the corresponding threshold value CI, when the consistency index meets:

CI(K) < CI (19)

then K is regarded as a HLPR whose consistency is acceptable.
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Note: There is an attractive subject about how to determine the value of CI. It may be confirmed
in accordance with the DMs’ knowledge, experience and other conditions.

In some circumstances, the HLPR K constructed by the DMs is always with unacceptable
consistency due to the lack of knowledge or other reasons. Hence, a consistency-improving model is
built to acquire a reasonable solution. Some critical steps in Algorithm 1 can be taken repeatedly until
the predefined consistency threshold is satisfied.

The main steps of this consistency-improving process are shown as follows.

Algorithm 1. Consistency improving model of HLPRs

Input: The original HLPR K = (kij)n×n, the threshold value CI = CI0 and the maximum number of iterative
times smax ≥ 1.
Output: The adjusted HLPR Ka and its consistency index CI(Ka).

Step 1: Let the iterative times s = 0, and the original HLPR K = K(0) = (k(0)ij )
n×n

.
Step 2: According to Equation (14), obtain the corresponding consistent HLPR

K∗(s) = (k∗(s)ij )
n×n

= (< lv∗(s)ij , r∗(s)ij >)
n×n

of HLPR K(s) = (k(s)ij )
n×n

.

Step 3: Based on Equation (10), calculate the likelihood L(k(s)ij ≥ k∗(s)ij ) of the corresponding elements (e.g., k(s)ij

and k∗(s)ij ) in the HLPR K(s) = (k(s)ij )
n×n

and its consistent HLPR K∗(s) = (k∗(s)ij )
n×n

. Then, construct the

likelihood matrix L(s) = (l(s)ij )
n×n

= (L(k(s)ij ≥ k∗(s)ij ))
n×n

of HLPR K(s).

Step 4: Calculate the consistency index CI(K(s)) of HLPR K(s) by Equation (18).
Step 5: If the consistency level of K(s) is acceptable, namely CI(K(s)) < CI0 or the iterative times is maximum,
namely s > smax, then go to Step 7; or else, go to the next step.

Step 6: Find an element l(s)ij in the likelihood matrix L(s) = (l(s)ij )
n×n

, which has the maximum deviation on the

diagonal, namely max
{
|l(s)ij −

1
2 |+ |l

(s)
ji −

1
2 |
}

. If l(s)ij + l(s)ij − 1 < 0, then the DMs may increase their

preference of k(s)ij ; if l(s)ij + l(s)ij − 1 > 0, then the DMs can decrease their values of k(s)ij . And the modified HLPR

is denoted as K(s+1) = (k(s+1)
ij )

n×n
= (< lv(s+1)

ij , r(s+1)
ij >)

n×n
. Let s = s + 1, then return to Step 2.

Step 7: Let the final adjusted HLPR K(s) = Ka, Output Ka and its consistency index CI(Ka).

Theorem 5. Given a HFPR K, which is unacceptably consistent. If CI = CI0 is the consistency threshold,{
K(s)

}
is a HFPR sequence, and CI(K(s)) is the consistency index of K(s). Therefore, we can obtain that for

any s: CI(K(s+1)) < CI(K(s)) and lim
s→∞

CI(K(s)) = 0.

The proof is straightforward. There is no less than one position where |l(s)i j1
− 1

2 | < |l
(s+1)
i j1

− 1
2 | can

be obtained. It follows that CI(K(s+1)) < CI(K(s)).
Theorem 5 guarantees that any HLPR with insupportable consistency can be converted into an

acceptable HLPR. The speed and times may be influenced by the values of the adjusted elements,
which are recommended by the DMs or specialists according to the practical situation. How to
determine the value of adjusted elements more reasonably is also a controversial issue and deserves to
be further investigated.

Example 6. Given an original HLPR K =

 < lv0, {1} > < lv3, {0.6, 0.7} > < lv−2, {0.8, 0.9} >
< lv−3, {0.6, 0.7} > < lv0, {1} > < lv1, {0.2, 0.3} >
< lv2, {0.8, 0.9} > < lv−1, {0.2, 0.3} > < lv0, {1} >

.

Suppose the threshold CI0 = 0.25 and the maximum number of iterative times smax = 3, check and improve its
consistency. The detailed procedures are listed as follows.

Step 1: Let s = 0 and K(0) = K.
Step 2: Based on Equation (14), obtain the consistent HLPR
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K∗(0) =

 < lv0, {1} > < lv2.1, {2/7, 1/3} > < lv−1.8, {2/9, 2/9} >
< lv−2.1, {2/7, 1/3} > < lv0, {1} > < lv−3.9, {10/39, 11/39} >
< lv1.8, {2/9, 2/9} > < lv3.9, {10/39, 11/39} > < lv0, {1} >

.

Step 3: Based on Equation (10), the likelihood matrix is L(0) =

 0.5 1 0.7762
0.5249 0.5 0.9781

1 0.2590 0.5

.

Step 4: Based on Equation (18), calculate the consistency index CI(K(0)) ≈ 0.2534.
Step 5: Since CI(K(0)) > CI0, then go to the next step.
Step 6: Since l(0)13 = max

{
|l(0)ij −

1
2 |+ |l

(0)
ji −

1
2 |
}

and l(0)13 + l(0)31 − 1 > 0, then the DMs decrease their

preference. The modified HLPR is K(1) =

 < lv0, {1} > < lv3, {0.6, 0.7} > < lv−2, {0.1, 0.2} >
< lv−3, {0.6, 0.7} > < lv0, {1} > < lv1, {0.2, 0.3} >
< lv2, {0.1, 0.2} > < lv−1, {0.2, 0.3} > < lv0, {1} >

 and

CI(K(1)) ≈ 0.2230 < CI0.

Step 7: Let Ka = K(1), Output Ka =

 < lv0, {1} > < lv3, {0.6, 0.7} > < lv−2, {0.1, 0.2} >
< lv−3, {0.6, 0.7} > < lv0, {1} > < lv1, {0.2, 0.3} >
< lv2, {0.1, 0.2} > < lv−1, {0.2, 0.3} > < lv0, {1} >


and CI(Ka) ≈ 0.2230.

4.3. Likelihood-Based Ranking Method

As the likelihood between two HFLNs is a useful tool to make comparisons, a likelihood-based
method is introduced to derive a ranking from the consistent HLPRs in this section.

Pondering over the decision making problem within the hesitant fuzzy linguistic context, assume
that the DMs’ plan to select the optimal alternative or get a ranking order from n objects. Let X =

{x1, x2, . . . , xn} be a discrete set of alternatives being chosen and K = (kij)n×n (i, j = 1, 2, . . . , n) is the
preference matrix, where kij is the preference value in the form of HFLNs. The entire procedures of
earning the ideal order of alternatives are shown in Algorithm 2.

Algorithm 2. Likelihood-based ranking method

Input: The initial HLPR K = (kij)n×n.
Output: The optimal alternative x∗.
Step 1: Obtain the acceptable HLPR Ka by Algorithm 1.
Step 2: Utilize the HFLA operator based on Equation (8) to aggregate each row of the HLPR Ka, then
determine the overall preference degree pi of each alternative xi (i = 1, 2, . . . , n).
Step 3: According to Equation (10), calculate the likelihood lij = L(pi ≥ pj) between pi and pj (i = 1, 2, . . . , n,
j = 1, 2, . . . , n), then construct a likelihood matrix L = (lij)n×n.

Step 4: Calculate the dominance degree ϕ(xi) =
1
n ∑n

j=1 lij of alternative xi(i = 1, 2, . . . , n), where ϕ(xi)

represents the degree of xi preferred to other alternatives. Obviously, the greater the value of ϕ(xi), the better
the alternative xi.
Step 5: Rank all the alternatives on the basis of the dominance degree ϕ(xi) of each alternative
xi(i = 1, 2, . . . , n). Then obtain the ranking results and the optimal alternative(s) is denoted as x∗.

5. Selection of Mine Ventilation Systems

In this section, an example of mine ventilation systems selection is afforded for voicing the
application of the suggested method.

Sanshandao gold mine is the first subsea hard rock mine in China, which lies in Sanshandao
Town, Laizhou City, Shandong Province, China [53]. As the mine is going into the stage of deep
exploitation, the distance of ventilation becomes longer and the temperature also rises severely.
Therefore, some problems are beginning to appear after using the traditional ventilation systems,
for instance, the temperature is so high that laborers find it hard to work efficiently; exhaust gas
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emitted by diesel equipment pollutes underground air seriously; and the concentration of dust exceeds
the national standard. Accordingly, a better ventilation system needs to be adopted.

After a thorough survey, four ventilation systems, i.e., {vs1, vs2, vs3, vs4}, are under consideration,
and a group of professionals are invited to select the optimal ventilation system. The linguistic term set
lv = {lv−4 = tremendously worse, lv−3 = a lot worse, lv−2 = worse, lv−1 = a little worse, v0 = f air,
lv1 = a little better, lv2 = better, lv3 = a lot better, lv4 = tremendously better} is used. The preference
values are shown in the form of HFLNs. Suppose all DMs have a consensus on the selected linguistic
term, and all teams provided their membership degrees (preference) in line with the researches of
the above four systems and their preference simultaneously. Then, all of the probable membership
degrees are gathered with the previous linguistic set. When a team does not give a membership degree,
we consider it as 0.5. And when the same membership degrees about identical linguistic terms are
given, we may regard them as different data in a HFLN.

Consequently, after a heated discussion, experts decided the threshold value CI0 = 0.18 and the
maximum number of iterative times smax = 3. Then, the preference information was given in Table 1.

Table 1. Original HLPR VS.

VS vs1 vs2 vs3 vs4

vs1 < lv0, {1} > < lv3, {0.2, 0.3, 0.6} > < lv1, {0.4, 0.6, 0.8} > < lv2, {0.3, 0.4, 0.8} >
vs2 < lv−3, {0.2, 0.3, 0.6} > < lv0, {1} > < lv−2, {0.3, 0.4, 0.7} > < lv3, {0.2, 0.5, 0.6} >
vs3 < lv−1, {0.4, 0.6, 0.8} > < lv2, {0.3, 0.4, 0.7} > < lv0, {1} > < lv−1, {0.4, 0.5, 0.9} >
vs4 < lv−2, {0.3, 0.4, 0.8} > < lv−3, {0.2, 0.5, 0.6} > < lv1, {0.4, 0.5, 0.9} > < lv0, {1} >

5.1. Illustrative Example

Steps outlined in Section 4.3 are completed to get satisfied ventilation system(s) in this section.
Step 1: Obtain the acceptable HLPR VSa by Algorithm 1.
Based on Equation (14), the consistent HLPR VS∗ is shown in Table 2. And the likelihood

matrix L(0) is calculated based on Equation (10), as shown in Table 3. Then, calculate the consistency
index CI(VS(0)) ≈ 0.1956 > 0.18 by Equation (18). Since l(0)34 = max

{
|l(0)ij −

1
2 |+ |l

(s)
ji −

1
2 |
}

and

l(0)34 + l(0)43 − 1 > 0, then the DMs decrease their preference, and the modified HLPR VS(1) is in Table 4.
Since CI(VS(1)) ≈ 0.1754 < 0.18, let VSa = VS(1).

Table 2. Consistent HLPR VS∗.

VS∗ vs1 vs2 vs3 vs4

vs1 < lv0, {1} > < lv2.2,
{

1
4 , 25

88 , 7
11 , 7

11

}
> < lv2.5,

{
9
50 , 13

50 , 9
20

}
> < lv3.6,

{
1
6 , 41

159 , 67
159

}
>

vs2 < lv−2.2,
{

1
4 , 25

88 , 7
11

}
> < lv0, {1} > < lv−1.4,

{
3

14 , 9
56 , 29

56

}
> < lv1.8,

{
1
36 , 2

9 , 11
72

}
>

vs3 < lv−2.5,
{

9
50 , 13

50 , 9
20

}
> < lv1.4,

{
3
14 , 9

56 , 29
56

}
> < lv0, {1} > < lv3.2,

{
3
64 , 15

128 , 11
64

}
>

vs4 < lv−3.6,
{

1
6 , 41

159 , 67
159

}
> < lv−1.8,

{
1
36 , 2

9 , 11
72

}
> < lv−3.2,

{
3
64 , 15

128 , 11
64

}
> < lv0, {1} >

Table 3. Likelihood matrix L(0).

L(0) vs1 vs2 vs3 vs4

vs1 0.5000 0.5076 0.6078 0.5693
vs2 0.3656 0.5000 0.5642 0.7844
vs3 0.8069 0.6378 0.5000 0.6862
vs4 0.9287 0.6195 1.0000 0.5000
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Table 4. Modified HLPR VS(1).

VS(1) vs1 vs2 vs3 vs4

vs1 < lv0, {1} > < lv3, {0.2, 0.3, 0.6} > < lv1, {0.4, 0.6, 0.8} > < lv2, {0.3, 0.4, 0.8} >
vs2 < lv−3, {0.2, 0.3, 0.6} > < lv0, {1} > < lv−2, {0.3, 0.4, 0.7} > < lv3, {0.2, 0.5, 0.6} >
vs3 < lv−1, {0.4, 0.6, 0.8} > < lv2, {0.3, 0.4, 0.7} > < lv0, {1} > < lv−1, {0.1, 0.2, 0.3} >
vs4 < lv−2, {0.3, 0.4, 0.8} > < lv−3, {0.2, 0.5, 0.6} > < lv1, {0.1, 0.2, 0.3} > < lv0, {1} >

Step 2: Utilize the HFLA operator based on Equation (8) to aggregate each row of the HLPR VSa,
then the overall preference degree pi of each alternative is acquired as follows:

p1 = (lv1.5, 0.4182, 0.4455, 0.4500, 0.4636, 0.4773, 0.4909, 0.4955, 0.5091, , 0.5227,
0.5364, 0.5409, 0.5455, 0.5545, 0.5682, 0.5727, 0.5864, 0.5909, 0.6000,
0.6182, 0.6318, 0.6364, 0.6455, 0.6636, 0.6773, 0.6818, 0.7273, 0.7727)

,

p2 = (lv−0.5, 0.4429, 0.4500, 0.4571, 0.4643, 0.4714, 0.4857, 0.5000, 0.5071, 0.5286,
0.5929, 0.6000, 0.6071, 0.6143, 0.6214, 0.6357, 0.6429, 0.6500, 0.6500,
0.6571, 0.6571, 0.6643, 0.6714, 0.6786, 0.6857, 0.7000, 0.7071, 0.7286)

,

p3 = (lv0, 0.4563, 0.4750, 0.4938, 0.4938, 0.4938, 0.5125, 0.5125, 0.5313, 0.5313,
0.5313, 0.5313, 0.5500, 0.5500, 0.5688, 0.5688, 0.5688, 0.5875, 0.6063,
0.6063, 0.6250, 0.6438, 0.6438, 0.6625, 0.6813, 0.6813, 0.7000, 0.7188)

,

and
p4 = (lv−1, 0.4417, 0.4583, 0.4667, 0.4750, 0.4833, 0.4833, 0.4917, 0.5000, 0.5083,

0.5167, 0.5250, 0.5250, 0.5250, 0.5333, 0.5417, 0.5500, 0.5500, 0.5583,
0.5583, 0.5667, 0.5667, 0.5750, 0.5917, 0.6000, 0.6083, 0.6333, 0.6417)

.

Step 3: According to Equation (10), calculate the likelihood between pi and pj (i = 1, 2, 3, 4,
j = 1, 2, 3, 4), then the likelihood matrix L = (lij)4×4 is constructed in Table 5.

Table 5. Likelihood matrix L.

L p1 p2 p3 p4

p1 0.5000 0.6001 0.5756 0.6586
p2 0.3999 0.5000 0.4745 0.5620
p3 0.4244 0.5255 0.5000 0.5872
p4 0.3414 0.4380 0.4128 0.5000

Step 4: Calculate the dominance degree of each alternative with ϕ(vsi) =
1
4 ∑4

j=1 lij(i = 1, 2, 3, 4)
as: ϕ(vs1) ≈ 0.5836, ϕ(vs2) ≈ 0.4841, ϕ(vs3) ≈ 0.5093, ϕ(vs4) ≈ 0.4231.

Step 5: Since ϕ(vs1) > ϕ(vs3) > ϕ(vs2) > ϕ(vs4), then the ranking is vs1 � vs3 � vs2 � vs4 and
the optimal system is vs∗ = vs1.

5.2. Comparative Analysis

Since the HLPR presented in this paper is a new type of preference relation, no related researches
have been conducted so far. To testify the validity and advantages of the proposed method,
several methods for HFLPRs [23–28] can be made for comparisons.

Note: The definitions of HLPRs and HFLPRs are not the same. The basic elements in HLPRs
are HFLNs, whereas those in HFLPRs are HFLTS. As a result, each HFLN in the HLPR should be
transformed into the corresponding HFLTS by using the linguistic term multiplies the corresponding
membership degrees successively. For example, < lv2, {0.3, 0.5} > can be converted into {lv0.6, lv1}.
Then, a same illustration is applied in these methods and detailed comparisons are provided in Table 6.
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Table 6. Comparisons with different methods.

Methods Consistency Checking Consistency Improving Ranking Approaches Ranking Results

Zhang and Wu [23] Distance measure Iterative algorithm Score functions vs1 � vs3 � vs4 � vs2

Wang and Xu [24] Graph theory Not given Not given Unavailable

Wu and Xu [25] Distance measure Feedback mechanism Score functions Uncertain

Gou et al. [26] Compatibility measure Not given Complementary matrix vs1 � vs2 � vs3 � vs4

Li et al. [27] Linear programing model Not given Not given Unavailable

Xu et al. [28] Distance measure Iterative algorithm Score functions vs1 � vs3 � vs2 � vs4

The proposed method likelihood Feedback mechanism Likelihood matrix vs1 � vs3 � vs2 � vs4

(1) Comparison with literature [24,25,27]
In literature [24], Wang and Xu provided a visible interpretation of additive consistency and

weak consistency of extended HFLPRs based on graph theory. In literature [27], Li et al. defined an
interval consistency index of HFLPRs based on the linear programming model. However, the methods
of improving consistency degrees and getting ranking orders are not mentioned in literature [24,27].
Thus, the rankings are unavailable in these cases. In literature [25], Wu and Xu discussed some issues
of HFLPRs on consistency and consensus, and defined a consistency index based on distance measure.
Nevertheless, dissimilar ranking results may occur with different adjust preference when the feedback
mechanism was adopted to improve the consistency level in this literature [25]. Note: Feedback
mechanisms are presented to improve the consistency level of preference relations in both literature [25]
and this paper. Different from existing feedback approaches [25], people can directly adjust their
preference with our method according to the values of elements in the likelihood matrix.
(2) Comparison with literature [23,26,28]

From Table 6, it is clear that the best alternative in different methods is always vs1, which reveals
the effectiveness of the proposed method. In literature [26], Gou et al. defined the consistency index
on the basis of compatibility measure and then got the ranking result based on a complementary
matrix; however, the approach of improving consistency level of HFLPRs was not given. Even though
the rankings obtained in literature [28] and this paper are the same, there are still some differences
between these two methods. First, in literature [23,28], a consistency index based on distance measure
was defined to check consistency level of HFLPRs, while a likelihood-based index is suggested in this
paper. Compared with compatibility or distance measure, the largest advantage of the likelihood is
that not only the deviation degree, but also that the order relationship of two elements can be directly
indicated. Second, compared with automatic iterative algorithms [23,28], the feedback mechanism
proposed in this paper reduces the loss of original information, and DMs can understand their current
status in each round. Besides, an approach of using aggregation operators and then calculating score
functions was adopted to get the ranking order in both literature [23,28]. By contrast, a likelihood
matrix is constructed in this paper to avoid the second calculations and information distortions.

The advantages of the proposed approach are summarized as follows:

(1) The HFLNs can closely depict the experts’ preferences as the membership degrees of a certain
linguistic value are given. And they can reserve the completeness of initial information in some
extents, which is the guarantee for obtaining ideal results.

(2) Only one element which greatly affects the consistency needs to be adjusted by professionals.
The revised alternatives may be diverse according to the reality. Specialists make a decision in
the light of a recommended direction as they are acquainted with their current positions.

(3) The experts may change the linguistic scale function under different semantics on the basis of
their preferences and reality. Then different ranking results may be achieved if another linguistic
scale function is applied. The flexibility and practicability of the method can be reflected.

Overall, the proposed method brings up a new and useful way to resolve complex fuzzy
decision making issues under a hesitant linguistic environment, especially when experts or decision
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makers (DMs) readily make comparisons among each pair of alternatives but hardly provide direct
evaluation information.

6. Conclusions

Ventilation systems selection is an essential decision for a mining project. However, the influence
characteristics of a ventilation system are complex and of strong fuzziness or uncertainty. Since preference
relations play a significant role in the decision making process, HLPRs were proposed to deal with mine
ventilation systems selection problems. HLPRs can be regarded as extensions of LPRs. They provide
not only the priority intensity of alternatives, but also the possible membership degrees of this priority
intensity. The likelihood-based index was defined to test the consistency of experts and the improving
model was constructed to modify consistency level of HLPRs. Preference information in HFPRs
is in the form of HFLNs. For the accuracy of HFLNs’ computation, new operational laws and the
comparison method were presented after reviewing the relevant literature. Furthermore, the decision
making framework based on HLPRs was built to select a proper ventilation system for mines. Finally,
an illustration and some comparisons with other methods were drawn to highlight the applicability
and advantages of the developed approach. In the future, more engineering applications with this
proposed method could be researched or more decision making methods can be developed to address
complex decision making problems in mines.
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