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Abstract: This paper describes a complementary tool for fitting probabilistic distributions in data
analysis. First, we examine the well known bivariate index of skewness and the aggregate skewness
function, and then introduce orderings of the skewness of probability distributions. Using an example,
we highlight the advantages of this approach and then present results for these orderings in common
uniparametric families of continuous distributions, showing that the orderings are well suited to
the intuitive conception of skewness and, moreover, that the skewness can be controlled via the
parameter values.
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1. Introduction

Detailed knowledge of the characteristics of probability models is desirable (if not essential) if
data are to be modeled properly. In studying these properties, many authors have considered orderings
within probability distribution families, according to diverse measuring criteria. The usual approach
taken by researchers in this field is to evaluate or measure one or more theoretical characteristics of a
given distribution and to study the effect produced by the value of its parameters on this measurement.
In actuarial science, stochastic orders are widely used in order to make risk comparisons [1].

Some parametric distributions can be ordered according to the evaluation made of a given
property, merely by comparing some of its parameters. Although most related orders are actually
preorders, each one presents interesting applications. Many studies have been conducted in this area,
and the following are particularly significant: Lehmann (1955) [2], which is of seminal importance;
Arnold (1987) [3], who compared random variables according to stochastic ordering in a particular
Lorenz order; Shaked and Shanthikumar (2006) [1], on stochastic orders; Nanda and Shaked (2001) [4],
on reversed hazard rate orders; Ramos-Romero and Sordo-Díaz (2001) [5], on the likelihood ratio order;
and Gupta and Aziz (2010) [6], on convex orders.

In this paper, we study the relationship between the skewness of some parametric distributions
and the value of one of their parameters. The first question to be addressed is that of measuring the
skewness. In this respect, Oja (1981) [7] introduced a set of axioms to be verified by any measurement
of skewness considered. These axioms were established for indexes of skewness with one main
constraint: that the skewness of a distribution should be evaluated by a single real number. This point
is discussed below.
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Many authors have proposed and obtained different descriptive elements to measure skewness
(see, for instance, [8–13]). Ref [10] suggested a measurement of skewness corresponding to the (unique)
mode, M, given by the following index:

γM (F) = 1− 2F (M) . (1)

Ref [10] applied this index to ordering the gamma, log-logistic, lognormal and Weibull families of
distributions by their skewness, taking into account the feasible values of their respective parameters.
Index (1), which is proven to satisfy those axioms derived from Oja (1981) [7], is also recommended
in [14] as a (very) good index of skewness. However, notice that (1) only compares the probability
weight on the left side of a central point (the mode) with the value 1/2, but it does not account for how
the weights are distributed to each side of the centre.

García et al. (2015) [15] introduced some further elements to be incorporated into the list of
skewness measurements of a probability distribution. According to these authors, given a unimodal
probability distribution F (x), its skewness is considered to be a local function of a given distance, z,
from the mode, M. For such a distance, and given the interval [M− z, M + z], the aggregate skewness
function, νF (z), compares the probability weight of F at either side of the interval:

νF (z) = Pr (X > M + z)− Pr (X < M− z) , (2)

where z ≥ 0. Thus, the (maximum) right skewness of the distribution F and its (minimum) left
skewness are respectively given by

S+ (F) = max
z≥0

νF (z) , S− (F) = min
z≥0

νF (z) . (3)

The distances, zp and zn, where these extreme values are achieved, are termed the critical distances
to the mode. As the skewness function is bounded inside the interval [−1, 1] and νF (∞) = 0,
the bivariate index

(
S− (F) , S+ (F)

)
belongs to [−1, 0]× [0, 1]. A given distribution function F such

that νF (z) ≥ 0 for all z ≥ 0 is said to be only skewed to the right; and if νF (z) ≤ 0 for all z ≥ 0, it is
said to be only skewed to the left.

The relationship F <c G (F c−precedes G) means that G−1 [F (x)] is a convex function. For a
continuous distribution F, the bivariate measurement of skewness

(
S− (F) , S+ (F)

)
verifies the

following properties, where aF + b and−F mean the distributions of the corresponding transformation
of a random variable that is F−distributed:

1.
(
S− (F) , S+ (F)

)
= 0, for any symmetric distribution F.

2.
(
S− (aF + b) , S+ (aF + b)

)
=
(
S− (F) , S+ (F)

)
, for all a > 0, −∞ < b < ∞.

3.
(
S− (−F) , S+ (−F)

)
=
(
−S+ (F) ,−S− (−F)

)
.

4. If F <c G, then
(
S− (F) , S+ (F)

)
≤
(
S− (G) , S+ (G)

)
, understood as vector dominance.

These properties can be considered as a vectorial interpretation of the axioms given by Oja
(1981) [7].

As it is easily proven that νF (0) = γM (F), we can establish that (2) and (3) give considerably
clearer and more complete information than (1) about the skewness of any distribution function.

Most families of continuous distributions are only skewed to the right (or only to the left), while
doubles-sign skewness is abundant within the discrete families, as shown in [15]. Nevertheless,
the joint use of the function (2) and the bivariate index (3) makes it possible to improve the ordering of
the skewness-based distribution discussed in [10], as can be seen in the following example.
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Example 1. Assume the following random variable X ∈ [−2, ∞) with PDF given by:

f (x) =


1
4

x +
1
2

, −2 ≤ x < 0;

1
2

exp (−x) , x ≥ 0.

Assume also the PDF, g (y) of Y = −X. Then, γM (F) = 0 = γM (G) . That is, according to coefficient
γM (·), both distributions have the same null skewness, although they do not even have a symmetric support set.

However, using expression (2), we find that

νF (z) =


1
2

exp (−z)− 1
8
(z− 2)2 , 0 ≤ z < 2;

1
2

exp (−z) , z ≥ 2,

and νG (z) = −νF (z) , for all z ≥ 0. These functions are plotted in Figure 1, where it can be seen that
νF (z) ≥ νG (z) for all z ≥ 0, S+ (F) = −S− (G) 6= 0 and S− (F) = 0 = S+ (G). Clearly, the information
about skewness obtained from the aggregate skewness function ν (z) and the indices S+ (·) and S− (·) is
considerably more comprehensive than that obtained from γM (·).

νF(z)

νG(�)

1 2 3 4

-0.05

0.05

Figure 1. Skewness functions νF(z) and νG(z) in Example 1.

Outline

In applied statistical analysis, it is useful to have a large catalogue of plausible distributions with
which to fit the data. According to García et al. (2015) [15], common measures of skewness can be
complemented with a bivariate index of positive–negative skewness, and the authors show that the
mode is the relevant central value to study both right and left skewness. In this paper, we extend
the tool-box approach to fit data from probability distributions, introducing two orderings that are
deduced from the skewness measures given in [15]. The first of those orderings is based on the positive
part of the bivariate index of skewness, which in many instances coincides with the well known γM (F).
Nevertheless, the differences can be highly significant, as in the previous example. The second, more
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noteworthy, order is based on the skewness function νF (z) and meets the first of the conditions, but
not the reciprocal.

There are two reasons for ordering a family of distributions according to a given measurement of
skewness. Firstly, as a property of the distribution, this ordering allows us to control its skewness by the
appropriate selection of the parameter. When this is done (and the parameter is readily determined),
the theoretical results have immediate applications in the data-fitting process. Secondly, when a given
family of distributions is conceived as being more or less skewed according to the value of a parameter,
and a measurement of skewness ratifies the ordering, it may be concluded that the functioning of this
measurement provides a reasonably good fit with an intuitive conception of skewness.

The rest of this paper is organized as follows. In Section 2, we study the aggregate skewness
function and the resultant skewness-based ordering of the gamma, log-logistic, lognormal, Weibull
and asymmetric Laplace families of continuous probability distributions. In Section 3, we study the
ordering of two of the most well-known distributions commonly used in PERT methods: the beta and
the asymmetric triangular distributions. Finally, conclusions are presented in Section 4.

2. Families of Uniparametric Distributions Ordered by Skewness

Let F and G be unimodal distribution functions, with no centre or scale parameters, and modes
MF and MG, respectively. We compare their respective skewness by two different criteria.

Definition 1. If
νF (z)− νG (z) ≥ 0, ∀z ≥ 0, (4)

then we say that F has equal or more aggregate skewness to the right at any point than G. We denote this by
F ≥ν G.

Definition 2. If F and G are both skewed only to the right, we say that F has equal or more maximum aggregate
skewness to the right than G when

S+ (F)− S+ (G) ≥ 0, (5)

and we denote this by F ≥+ G.

With these definitions, it immediately follows that:

Proposition 1. If F ≥ν G, then F ≥+ G.
The reverse implication is not true in general.

Proof. The proof follows immediately from the definitions given in (4) and (5).

In the next section, we consider some well known uniparametric families of continuous
distributions, with no centre or scale parameters but depending on a skewness parameter, and examine
whether they are ordered by aggregate skewness, or by maximum aggregate skewness. The gamma
family is a very broad one, which includes many other well known distributions as particular cases.
A study of the log-logistic, lognormal, Weibull and asymmetric Laplace families, one by one and in
turn, when not included inside the previous one, will produce widely varying results.

2.1. Uniparametric Gamma Distributions

Let X be a uniparametric gamma distributed random variable, G(α). That is, its CDF G (x; α) is
given by

G (x; α) =
1

Γ (1 + α)

∫ x

0
tαe−tdt, (6)
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for x > 0, where −1 < α < ∞, and the mode is given by M = max {α, 0}. Then, for −1 < α ≤ 0,
the density function decreases on x along the positive real line and we obtain that

νG (z; α) = 1− G (z; α) =
1

Γ (1 + α)

∫ ∞

z
tαe−tdt.

In these cases, νG (z; α) is a decreasing function on z, and S+ (G (α1)) = νG (0; α1) = 1.

Proposition 2. Let G (α1) and G (α2) be gamma distributions with CDF as in (6). Then:

1. If −1 < α1 < α2 < 0, then G (α2) ≥ν G (α1) .
2. If 0 < α1 < α2, then G (α1) ≥+ G (α2) .

Proof. Part 1. We can write

νG (z; α1)− νG (z; α2) = G (z; α2)− G (z; α1) .

By denoting α2 = α1 + ε, ε > 0, and then considering u (z) =
d
dz

[νG (z; α1)− νG (z; α2)] , we obtain

u (z) =
zα2 e−z

Γ (1 + α2)
− zα1 e−z

Γ (1 + α1)
= zα1 e−z

[
zεΓ (1 + α1)− Γ (1 + α2)

Γ (1 + α2) Γ (1 + α1)

]
.

Therefore, u (z) = 0 when

z = z0 =

[
Γ (1 + α2)

Γ (1 + α1)

]1/ε

,

u (z) is negative for 0 < z < z0, and positive for z > z0. Also, νG (0+; α1) − νG (0+; α2) = 0,
νG (∞; α1)− νG (∞; α2) = 0. Then,

νG (z0; α1)− νG (z0; α2) =
1

Γ (1 + α1) Γ (1 + α2)

∫ x0

0
tα1 e−t [Γ (1 + α1) tε − Γ (1 + α2)] dt,

is the integral of a negative function, so it is negative, and the proof is complete.

Part 2. For 0 < α < ∞, we have that

νG (z; α) =


1

Γ(1+α)

(∫ ∞
z+α tαe−tdt−

∫ α−z
0 tαe−tdt

)
, 0 ≤ z < α,

1
Γ(1+α)

∫ ∞
z+α tαe−tdt, z ≥ α.

and,

dνG
dz

=


1

Γ(1+α)

[
(α− z)α e−(α−z) − (α + z)α e−(α+z)

]
, 0 ≤ z < α,

−1
Γ(1+α)

zαe−z, z ≥ α.

Then, clearly we have that dνG/dz < 0 for all z ≥ α. For 0 ≤ z < α, if we denote

w (z) = (α− z)α ez − (α + z)α e−x,

then the sign of dνG/dz is the sign of w (x). As w (0) = 0, w (α) = − (2α)α e−α < 0, and

dw
dz

= z (z + α)α−1 e−z − z (α− z)α−1 ez ≤ 0,
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we conclude that νG is a decreasing function on z ≥ 0 and S+ (G (α)) = νG (0; α) .

S+ (G (α)) =
Γ (1 + α, α)

Γ (1 + α)
,

where Γ (1 + α, α) is the incomplete Gamma function, and then S+ (G (α)) is a decreasing function
on α, when α → ∞. Nevertheless, a simple plotting of the functionals νG (z; αi) for any 0 < α1 < α2

shows that both functionals cross each other and that they are not ordered by ”≥ν”. Thus, the proof
is completed.

2.2. Log–Logistic Distributions

The CDF of a uniparametric log–logistic distributed random variable X is given by

FLL (x; θ) =
(

1 + x−θ
)−1

, (7)

for x > 0, with θ > 0. The mode of these distributions depends on θ. If 0 < θ ≤ 1, then M = 0, and

νLL (z; θ) =
1

1 + zθ
,

and S+ (FLL (θ)) = 1. The functionals νLL (z; θ) for different values of θ inside the rank cross each other
at z = 1, and these distributions are ordered neither by skewness function nor by skewness indexes.
Nevertheless, for θ > 1, the mode is

0 < M =

(
θ − 1
θ + 1

)1/θ

< 1. (8)

Notice that M is an increasing function of θ when θ > 1, because

dM
dθ

= M ·
[

2
(θ2 − 1) θ

− 1
θ2 ln

θ − 1
θ + 1

]
> 0. (9)

When θ > 1, it is also known from Arnold and Groeneveld (1995) that

νLL (0; θ) =
1
θ

.

As νLŁ (z; θ) is a decreasing function, it is then stated that 1 < θ1 < θ2 implies FLL (θ1) ≥+ FLL (θ2).
Furthermore, the skewness functions are ordered, as we prove below.

Proposition 3. Let be FLL (θ1) and FLL (θ2) log-logistic distributions with CDF as in (7), where 1 < θ1 < θ2.
Then,

FLL (θ1) ≥ν FLL (θ2) . (10)

Proof. Let θ > 1. Then,

νLL (z; θ) =



1−
(

M2 − z2)θ

1 + (M + z)θ + (M− z)θ + (M2 − z2)
θ

, 0 ≤ z ≤ M,

1

1 + (M + z)θ
, z > M,
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If we consider 1 < θ1 < θ2, such that the respective modes verify 0 < M1 < M2 < 1, we can
then denote

a = (M1 − z)θ1 < b = (M1 + z)θ1 ,

c = (M2 − z)θ2 < d = (M2 + z)θ2 .

and consider the function h given by

h (θ) = (M± z)θ , 0 ≤ z ≤ M,

with M as in (8). Then,

dh
dθ

=
(M± z)θ−1

θ (θ + 1)2

(
2θ

Mθ−1 + θ (1 + θ)2 (M± z) ln (M± z) + (1 + θ)2 M ln
θ + 1
θ − 1

)
,

For z < M, this implies that a < c, b < d. With this notation, we can write νLL (z; θ1)− νLL (z; θ2)

as follows.
Firstly, for 0 ≤ z ≤ M1,

νLL (z; θ1)− νLL (z; θ2) =
1− ab

(1 + a) (1 + b)
− 1− cd

(1 + c) (1 + d)

=
(c− a) + (d− b) + ac (d− b) + bd (c− a) + 2 (cd− ab)

(a + 1) (b + 1) (c + 1) (d + 1)
> 0.

Secondly, for M1 < z ≤ M2, we only need to compare d− b, because

νLL (z; θ1)− νLL (z; θ2) =
1

1 + b
− 1− cd

(1 + c) (1 + d)

=
c + (d− b) + 2cd + bcd
(1 + b) (1 + c) (1 + d)

> 0.

Finally, when z > M2,

νLL (z; θ1)− νLL (z; θ2) =
1

1 + b
− 1

1 + d
=

d− b
(1 + b) (1 + d)

> 0.

Hence, the proof is completed.

2.3. Lognormal Variance Distributions

LN (x; σ) = Φ
(

ln x
σ

)
, (11)

for x, σ > 0, where Φ (·) is the standard normal distribution function. The mode is given by
Mσ = exp

(
−σ2) and

νLN (z; σ) = 1−Φ

(
ln
[
z + exp

(
−σ2)]

σ

)
−Φ

(
ln
[
exp

(
−σ2)− z

]
σ

)
.

Proposition 4. Let LN (σ1) and LN (σ2) be lognormal distributions with CDF as in (11), where 0 < σ1 < σ2.
Then,

LN (σ2) ≥ν LN (σ1) .
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Proof. For 0 < σ1 < σ2, the corresponding modes are M1 > M2, and

Φ
(

ln (z + M1)

σ1

)
> Φ

(
ln (z + M2)

σ2

)
,

Φ
(

ln (−z + M1)

σ1

)
> Φ

(
ln (−z + M2)

σ2

)
,

because Φ is a strictly increasing function. Thus, we obtain that νLN (z; σ1) > νLN (z; σ2) for all z > 0
and the proof is completed.

2.4. Uniparametric Weibull Distributions

Consider the uniparametric Weibull distributions family given by the CDF

W (x; c) = 1− exp (−xc) , x > 0, c > 0. (12)

The mode is known to be at 0, for c ≤ 1 (as a limit, when c < 1) and at

0 < Mc =

(
c− 1

c

)1/c
< 1,

for c > 1. The expression for νW is given by

νW (z; c) =


exp

[
− (Mc + z)c]+ exp

[
− (Mc − z)c]− 1, 0 < z < Mc

exp
[
− (Mc + z)c] , z ≥ Mc

On the one hand, when c < 1, note that νW(c) (1) = e−1, so all these functions intersect at this
point. Graphically, it can be seen that there is no ordering by “≥ν”, and also that S+ (W (c)) = 1, when
c < 1. On the other hand, for 1 ≤ c1 < c2, the following result is obtained.

Proposition 5. Let W (c1) and W (c2) be Weibull distributions with 1 ≤ c1 < c2 and CDF as in (12). Then,

W (c1) ≥ν W (c2) .

Proof. For 1 ≤ c1 < c2, the corresponding modes are M1 < M2. Then, for 0 < z < M1,

νW (z; c1)− νW (z; c2) =
{

exp
[
− (M1 + z)c1

]
− exp

[
− (M2 + z)c2

] }
+
{

exp
[
− (M1 − z)c1

]
− exp

[
− (M2 − z)c2

] }
> 0,

because each part of the expression inside brackets {·} is positive. If we take M1 ≤ z < M2, then

νW (z; c1)− νW (z; c2) =
{

exp
[
− (M1 + z)c1

]
− exp

[
− (M2 + z)c2

] }
+
{

1− exp
[
− (M2 − z)c2

] }
> 0,

for a similar reason. Finally, if we take z > M2, then

νW (z; c1)− νW (z; c2) = exp
[
− (M1 + z)c1

]
− exp

[
− (M2 + z)c2

]
> 0,

and the proof is completed.
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2.5. Asymmetric Laplace Distributions

The asymmetric Laplace distribution has been introduced in the literature by different ways ([16,17]).
In this paper we will use Kozubowski and Podgórski (2002) [18] (later refined in [19]) to refer it.
This distribution is obtained by using the scheme introduced by Fernández and Steel (1998) [20] to
produce skewness on a symmetric distribution. In this way, the pdf of a skewed or asymmetric Laplace
distribution can be written in the form

f (x; µ, σ, κ) =


√

2
σ

κ
1+κ2 exp

[
−
√

2
κσ (µ− x)

]
, x < µ,

√
2

σ
κ

1+κ2 exp
[
− κ
√

2
σ (x− µ)

]
, x ≥ µ,

where σ, κ > 0, and −∞ < µ < ∞. Then, we assign values (0, 1) to the centre and scale parameters
(µ and σ, respectively) in order to study the aggregate skewness function, and the extreme right and
left skewness indices then depend only on the skewness parameter κ > 0. Thus, it is easily proven that:

1. The aggregate skewness function of an AL (κ) distribution can be written as

νAL (z; κ) =
1

1 + κ2

[
exp

(
−
√

2κz
)
− κ2 exp

(
−
√

2
κ

z

)]
.

2. νAL (z; κ) is an increasing negative function of z when κ > 1, and it is a decreasing positive
function of z when 0 < κ < 1. νAL,1 (z; 1) = 0, for all z ≥ 0. That is, any AL distribution
is skewed only to the right or to the left, depending on κ. In any case, the function verifies
limz→∞ νAL (z; κ) = 0 but, when κ 6= 1, the function never reaches that limit value. To prove
these results, it is sufficient to note that

dνAL (z; κ)

dz
=

√
2κ

κ2 + 1

[
exp

(
−
√

2
κ

z

)
− exp

(
−
√

2κz
)]

.

3. At z = 0, the skewness function takes the following value:

νAL (0; κ) =
1− κ2

1 + κ2 .

Then, νAL (0; κ) is the value for S+ (FAL (κ)) or S− (FAL (κ)), depending on its sign.
4. νAL (z; κ) is a strictly decreasing function on κ. This is easily shown by means of

dνAL (z; κ)

dκ
= −
√

2zκ2 + 2κ +
√

2z

(κ2 + 1)2

[
exp

(
−
√

2
z
κ

)
+ exp

(
−
√

2κz
)]

< 0,

for all z > 0, and all κ > 0.

As a conclusion, we can enunciate the following Proposition, whose proof is straightforward and
hence omitted.

Proposition 6. Assume 0 < κ1 < κ2 < ∞, and let FAL (κ1) and FAL (κ2) be the respective asymmetric
Laplace distributions. Then:

1. FAL (κ1) ≥ν FAL (κ2) .
2. If 0 < κ1 < 1, then FAL (κ1) is skewed only to the right.
3. If κ1 > 1, then FAL (κ1) is skewed only to the left.

3. The Beta and the AST Distributions

The methods for Project Management and Review Technique (PERT) are well known and widely
applied when the needed activities for a given project must be ordered according to precedence in
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time. Some of these methods require modelling the time length of each activity as a random variable,
following an expert’s opinion. The beta and the asymmetric triangular distributions are commonly
used by engineers to describe these time lengths. In any case, the indications of the experts can be
related to a maximum and a minimum values and a mode, often completed with further considerations
about the shape and skewness of the PDF of the time random variable. Then, a deep study of the
skewness of both families of probability distributions would be welcome to improve the model fit.

On the one hand, the asymmetric standard triangular distribution (ASTD) , free of center and
scale parameters, depends on only one parameter 0 ≤ θ ≤ 1, and has the pdf:

f (x|θ) =


2xθ−1, 0 ≤ x ≤ θ,

2 (1− x) (1− θ)−1 , θ ≤ x ≤ 1,
0, elsewhere.

There is a large body of literature that shows the use of the ASTD in PERT methods (see [21]
and [19] and cites therein). Note that cases θ = 0, 1 are members of the beta family of distributions.

For 0 < θ < 1, the ASTD(θ) CDF can be written as follows:

F (x|θ) =
{

x2θ−1, 0 ≤ x ≤ θ,(
2x− x2 − θ

)
(1− θ)−1 , θ ≤ x ≤ 1.

As the mode is found to be at x = θ, its skewness function is found to be

νASTD (z; θ) = (1− 2θ)− (1− 2θ)

θ (1− θ)
z2,

for 0 ≤ z ≤ min {θ, 1− θ} . In the case θ = 0.5, the skewness function is null. Then, for 0 < θ < 0.5
and θ < z ≤ 1− θ,

νASTD (z; θ) =
(z− 1 + θ)2

1− θ
.

In the case 0.5 < θ < 1, for 1− θ < z ≤ θ,

νASTD (z; θ) = − (θ − z)2

θ
,

and it is easily found that
νASTD (z; θ) = −νASTD (z; 1− θ) , (13)

for 0 ≤ z < ∞.
Some algebra allows to prove that, being 0 < θ1 < θ2 < 1,

1. ASTD (θ1) ≥ν ASTD (θ2) .
2. If 0 < θi < 0.5, then S+

ASTD (θi) = νASTD (0; θi) = 1− 2θi, and S−ASTD (θi) = 0.
3. If 0.5 < θi < 1, then S+

ASTD (θi) = 0 and S−ASTD (θi) = νASTD (0; θi) = 1− 2θi.

Therefore, the skewness of the ASTD distributions is completely controlled by the parameter θ.

On the other hand, the pdf of a beta distribution is given by

fB (x; α, β) =
xα−1 (1− x)β−1

B (α, β)
, 0 ≤ x ≤ 1,

where α, β > 0, and B (·, ·) is the beta function. Given that its CDF F (x; α, β) verifies that
F (x; α, β) = 1 − F (x; β, α) and the sign of its skewness depends only on the condition β ≥ α or
β ≤ α, we can study only the case β > α.
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We are interested on the cases α, β > 1, where there is an unique mode M,

M =
α− 1

α + β− 2
.
= b (α, β) .

Hence, we only consider cases where 1 < α < β, where there exists a right skewness; the cases
1 < β < α, with left skewness, can be immediately deducted by taking the parameters in reverse.

Notice that Pr (X > M + z) > 0 requires 0 ≤ z ≤ b (β, α), and that Pr (X < M− z) > 0 requires
0 ≤ z ≤ b (α, β). Then,

νB (z; α, β) =


1− IM+z (α, β)− IM−z (α, β) > 0, 0 ≤ z ≤ b (α, β)

1− IM+z (α, β) > 0, b (α, β) < z ≤ b (β, α)

0, z > b (β, α) ,
(14)

where,

Iz (α, β) =
∫ z

0

tα−1 (1− t)β−1 dt
B (α, β)

is the well known Beta Regularized function.
Firstly, observe that

νB (0; α, β) = 1− 2
B (α, β)

∫ M

0
xα−1 (1− x)β−1 dx,

and
1

B (α, β)

∫ M

0
xα−1 (1− x)β−1 dx <

1
B (α, β)

∫ m

0
xα−1 (1− x)β−1 dx ≈ 1

2
,

where

m =
α− 1

3

α + β− 2
3

is the approximate median of the distribution.
Secondly, if 0 ≤ z ≤ b (α, β) < b (β, α) , then

B (α, β) · dνB (z; α, β)

dz
= − [b (α, β) + z]α−1 [b (β, α)− z]β−1 − [b (α, β)− z]α−1 [b (β, α) + z]β−1 ,

which is negative within the rank of z. For b (α, β) < z ≤ b (β, α),

B (α, β) · dνB (z; α, β)

dz
= − [b (α, β) + z]α−1 [b (β, α)− z]β−1 < 0.

Hence, for 0 ≤ z ≤ b (β, α), νB (z; α, β) is a strictly decreasing continuous function with
νB (0; α, β) > 0 and νB (b (β, α) ; α, β) = 0.

Now we focus on the family of Beta distributions with given mode, M. That is, we consider the
subfamily of Beta distributions:

B
(

α + 1, 1 +
1−M

M
α

)
,

with α > 0. Then, with the aid of a proper software (we have used Wolfram Mathematica 10), one can
obtain the derivative

∂

∂α
νB

(
z; α + 1, 1 +

1−M
M

α

)
,

and maximize this function, in two cases:
First case, the constrains are α ≥ 1, 0 < m < 1/2, 0 ≤ z ≤ b (α + 1, 1 + (1−M) α/M) .

The maximum value of the function is 0, and it is achieved when M = 0.5, α ' 3.54147, z ' 0.309936.
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Second case, the constrain are α ≥ 1, 0 < m < 1/2, b (α + 1, 1 + (1−M) α/M) < z ≤
b (1 + (1−M) α/M, α + 1) . The maximum value of the function is−5.07056× 10−6, and it is achieved
when M = 0.123564, α ' 1.62726, z ' 0.632457.

With these results, we can conclude that νB (z; α + 1, 1 + (1−M) α/M) decreases with the feasible
values of α. That way, the subsets of Beta distributions with fixed mode are ordered on skewness
(see Figure 2). As the parameter values increase, these Beta distributions become less skewed.

Figure 2. Beta distributions with common given mode M = 0.2 (left panel) for α = 2, 4 and 9 and their
skewness functions νB (right panel).

4. Conclusions

In this paper two main objectives are achieved: on the one hand, the given examples show that
the skewness function orders the mesh in good accordance with the intuitive conception of skewness.
Moreover, these examples show that the skewness of a distribution obtained from certain parametric
families can be controlled by reference to their parameters.

As we show, the function νF (z) facilitates the description of a random variable by means of
a probability distribution, by making any skewness in the model easily observable and should be
undertaken to examine the use of these properties in data fitting.

In practice, much can be learned from this model, but there remains the risk that it may be wrongly
specified in real applications. Thus, in practice we must be willing to assume that the underlying
distribution has a unique mode and belongs to a uniparametric family of distributions.

In many practical situations, the maximum skewness index coincides with the well known γM (F),
but this second index only takes into account the difference of probability weights at each side of
the mode, while the first takes a value from the point where this difference is maximum. Moreover,
the aggregate skewness function gives more accurate information about how the probability weight is
distributed along both sides of the mode. Accordingly, the condition F ≥ν G provides highly valuable
information.
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