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Abstract: Suppose that G is a graph over n vertices. G has n eigenvalues (of adjacency matrix)
represented by λ1, λ2, · · · , λn. The Gaussian Estrada index, denoted by H(G) (Estrada et al.,
Chaos 27(2017) 023109), can be defined as H(G) = ∑n

i=1 e−λ2
i . Gaussian Estrada index underlines the

eigenvalues close to zero, which plays an important role in chemistry reactions, such as molecular
stability and molecular magnetic properties. In a network of particles governed by quantum
mechanics, this graph-theoretic index is known to account for the information encoded in the
eigenvalues of the Hamiltonian near zero by folding the graph spectrum. In this paper, we establish
some new lower bounds for H(G) in terms of the number of vertices, the number of edges, as well as
the first Zagreb index.
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1. Introduction

Suppose that G is an undirected, simple graph containing n vertices and m edges. Throughout
the paper, we will refer to such a graph as an (n, m)-graph. Denote by A = A(G) the adjacency matrix
of G. Clearly, it is a real symmetric matrix. The eigenvalues of A, forming the spectrum of G [1], can be
sorted in a non-increasing order as λ1 ≥ λ2 ≥ · · · ≥ λn.

The Estrada index of the graph G has been defined in [2–7] as

EE = EE(G) =
n

∑
i=1

eλi . (1)

As a revealing graph-spectrum-based invariant, it has found numerous applications in chemistry,
physics, and complex networks. For example, it has been used to measure the degree of folding of
some classes of long-chain molecules, including proteins [2–4]. The folding degree of protein chains
can be described by the sum of cosines of dihedral angles of the protein main chain. Remarkably, EE is
shown to distinguish between protein structures where the above sum is identical. EE also serves as an
insightful measure for investigating robustness of complex networks [8–10], for which EE has an acute
discrimination on connectivity and changes monotonically with respect to the removal or addition of
edges. There has been a vast literature related to Estrada index and its bounds; see e.g., [11–17]. Other
closely related indices include the incidence energy; see e.g., [18].

Please note that EE is dominated by the largest eigenvalue λ1 if the gap λ1 − λ2 is large. The
information of topological properties hidden in the smaller eigenvalues of A has been overlooked
in EE, and more generally, in matrix functions of the form f (A) = ∑∞

k=0 ck Ak. Zero eigenvalue and
eigenvalues close to zero of A play a fundamental role in molecular magnetic/stability properties
when A delineates the tight-binding Hamiltonian in the Hückel molecular orbital theory [19,20]. Many
chemical reactivities are closely related to the lowest unoccupied molecular orbital (namely, the largest
negative eigenvalue of A) and the highest occupied molecular orbital (namely, the smallest positive
eigenvalue of A). For example, electron transfers from the highest occupied molecular orbital of one
molecule to the lowest unoccupied molecular orbital of another molecule play a vital part in several

Symmetry 2018, 10, 325; doi:10.3390/sym10080325 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-2817-3400
http://dx.doi.org/10.3390/sym10080325
http://www.mdpi.com/journal/symmetry


Symmetry 2018, 10, 325 2 of 6

organic chemical reactions; see [20] for a survey. As such, Estrada et al., [21] recently propose to extract
key structural information hidden in the eigenvalues in proximity to zero in the spectra of networks
by using a Gaussian matrix function. This novel method leads to the Gaussian Estrada index, H(G),
characterized as follows:

H = H(G) = Tr(e−A2
) =

n

∑
i=1

e−λ2
i , (2)

where Tr(·) represents the trace of a square matrix. Since the adjacency matrix A of a simple graph
G usually contains both positive and negative eigenvalues, the Gaussian Estrada index ideally
symbolizes the significance of the eigenvalues in proximity to zero (so called the “middle” part)
in the spectrum of graph.

It is worth mentioning that in a network G of particles governed by the rules of quantum
mechanics, the Gaussian Estrada index H can be viewed as the partition function of the system
with Hamiltonian A2 based on the folded spectrum method [22]. This quantity associated with the
time-dependent Schrödinger equation with the squared Hamiltonian reveals information encoded
in the eigenvalues near zero. In fact, unlike EE which gives more weight to the large eigenvalues,
H stresses those close to zero. As shown via numerical simulations in [21], H is able to distinguish
between the dynamics of a particle hopping over a bipartite network from the one hopping over a
non-bipartite network. This is impossible for EE as the large eigenvalues are usually not correlated
with the emergence of bipartite structure. Hence, characterization (such as lower and upper bounds)
of H turns out to be highly desirable in quantum information theory.

The Gaussian Estrada index of some simple graphs including complete graphs, paths, cycles,
and Erdős-Rényi random graphs as well as BA random networks has been studied in [21]. Signify
the star graph on n vertices by K1,n−1. Recall that star graphs are the only connected graphs in which
at most one vertex has degree greater than one. The following important mathematical property on
H is established.

Theorem 1 ([21]). Assume that G is an (n, m)-graph. Then

H(G) ≤ n− 2 + 2e1−n. (3)

The equality in (3) is attained if and only if G = K1,n−1.

To better understand the properties for the Gaussian Estrada index H(G), we in this paper aim
to establish some new lower bounds for H in terms of the number of vertices n and the number of
edges m.

2. Results and Discussion

To fix notation, we first introduce some preliminaries. For k ≥ 0, define by Mk = Mk(G) = ∑n
i=1 λk

i
the k-th spectral moment of the graph G. It is well-known that Mk counts the number of self-returning
walks of length k in the graph [1]. A bit of basic algebra leads to the following expression.

H =
∞

∑
k=0

n

∑
i=1

(−λ2
i )

k

k!
=

∞

∑
k=0

(−1)k

k!
M2k. (4)

By convention, Kn represents the complete graph over n vertices and Kn represents its
(edgeless) complement.

Theorem 2. Suppose that G is an (n, m)-graph. If m ≤ n
2 , then we have

H(G) ≥ n− 2m. (5)
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The equality in (5) is attained if and only if G = Kn.

Proof. Following (4) and noting that M0 = n and M2 = 2m, we obtain

H(G) =
n

∑
i=1

∞

∑
k=0

(−λ2
i )

k

k!
= n− 2m +

n

∑
i=1

∞

∑
k=2

(−λ2
i )

k

k!
.

Since e−λ2
i ≥ 1− λ2

i holds for all i, we observe that ∑∞
k=2

(−λ2
i )

k

k! ≥ 0. Hence, for any δ ∈ [0, 1],
we have

H(G) ≥ n− 2m + δ
n

∑
i=1

∞

∑
k=2

(−λ2
i )

k

k!

= n− 2m− δn + 2mδ + δ
n

∑
i=1

∞

∑
k=0

(−λ2
i )

k

k!

= (1− δ)n + 2(δ− 1)m + δH(G).

For δ < 1, it follows that

H(G) ≥ (1− δ)n + 2(δ− 1)m
1− δ

= n− 2m.

It is clear that the equality in (5) will be attained if and only if every eigenvalue is equal to zero,
namely, G = Kn.

Since H(G) > 0 always holds, Theorem 2 is non-trivial when m < n
2 . The next result is also for

sparse graphs.

Theorem 3. Suppose that G is an (n, m)-graph. If m ≤ n
4 + n(n−1)

4 e−
4m
n , then

H(G) ≥
√

n− 4m + n(n− 1)e−
4m
n . (6)

The equality in (6) is attained if and only if G = Kn.

Proof. According to the definition of H, we obtain

H2 =
n

∑
i=1

e−2λ2
i + 2 ∑

1≤i<j≤n
e−λ2

i e−λ2
j . (7)

It follows from the Arithmetic-Geometric (A-G) inequality, the symmetry of i and j, and M2 = 2m that

2 ∑
1≤i<j≤n

e−λ2
i e−λ2

j ≥ n(n− 1)

(
∏

1≤i<j≤n
e−λ2

i e−λ2
j

) 2
n(n−1)

= n(n− 1)

(
n

∏
i=1

(e−λ2
i )n−1

) 2
n(n−1)

= n(n− 1)

(
n

∏
i=1

e−λ2
i

) 2
n

= n(n− 1)
(

e−∑n
i=1 λ2

i

) 2
n
= n(n− 1)e−

4m
n . (8)
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Arguing similarly as in Theorem 2, we deduce

n

∑
i=1

e−2λ2
i =

n

∑
i=1

∞

∑
k=0

(−2λ2
i )

k

k!
= n− 4m +

n

∑
i=1

∞

∑
k=2

(−2λ2
i )

k

k!
≥ n− 4m. (9)

By substituting (8) and (9) into (7), we have

H(G) ≥
√

n− 4m + n(n− 1)e−
4m
n .

The equality in (6) will be attained if and only if every eigenvalue is equal to zero, namely, G = Kn.

Remark 1. In general, Theorem 2 and Theorem 3 are incomparable in terms of the range of applicability.
For example, when 2m = n and n ≤ 8, Theorem 2 is applicable but Theorem 3 is not. On the other hand,
when m = n

4 ln ln n, Theorem 3 is applicable but Theorem 2 is not. Furthermore, when both theorems can be
applied, the results of them are still incomparable generally. For instance, when 4m = n, (5) yields H(G) ≥ n

2 .
The inequality (6) gives H(G) ≥

√
n(n− 1)e−1, which is greater than n

2 for n ≥ 3, but smaller than
n
2 for n ≤ 2.

Next, we consider the lower bound of H for denser graphs with m ≥ n
2 . The first Zagreb index [23]

of the graph G is defined as Zg = Zg(G) = ∑n
i=1 d2

i , where di represents the degree of the i-th vertex
in the graph G. The parameter Zg has relationship with numerous other graph invariants and has
found varied applications in chemical graph theory. It is a useful molecular structure descriptor,
characterizing e.g., the degree of branching in the molecular carbon-atom skeleton [24], as well as
nanotubes [25].

Theorem 4. Suppose that G is an (n, m)-graph. If m ≥ n
2 and n ≥ 2, then we obtain

H(G) ≥ e−
Zg
n + (n− 1)e

Zg
n −2m
n−1 . (10)

The equality is attained if and only if G admits λ1 =
√

Zg
n , λ2 = · · · = λk = 1

n−2k+1

√
Zg
n and

λk+1 = · · · = λn = − 1
n−2k+1

√
Zg
n for some 1 ≤ k ≤ b n

2 c.

Proof. In view of the arithmetic-geometric inequality and M2 = 2m, we obtain

H(G) = e−λ2
1 +

n

∑
i=2

e−λ2
i

≥ e−λ2
1 + (n− 1)

(
n

∏
i=2

e−λ2
i

) 1
n−1

= e−λ2
1 + (n− 1)e

−∑n
i=2 λ2

i
n−1

= e−λ2
1 + (n− 1)e

λ2
1−2m
n−1 ,

with equality if and only if λ2
2 = · · · = λ2

n.
Since λ1 ≥ 2m

n ≥ 1 [1], we have λ2
1 ≥

2m
n . It is straightforward to see that the mapping f (x) :=

e−x + (n − 1)e
x−2m
n−1 is increasing for x ≥ 2m

n . Please note that λ1 ≥
√

Zg
n with equality attained if

and only if every component is either a regular graph of degree λ1 or a bipartite semiregular graph
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such that the product of degrees of any two adjacent vertices is equal to λ2
1 based on a symmetry

argument [26]. Therefore, λ2
1 ≥

Zg
n ≥

2m
n by the definition of Zg and we have

H(G) ≥ f
(

Zg
n

)
= e−

Zg
n + (n− 1)e

Zg
n −2m
n−1 . (11)

If the eigenvalues of G are λ1 =
√

Zg
n , λ2 = · · · = λk = 1

n−2k+1

√
Zg
n and λk+1 = · · · = λn =

− 1
n−2k+1

√
Zg
n for some 1 ≤ k ≤ b n

2 c, then the equality holds in (10). Conversely, if the equality is

attained in (10), then λ1 =
√

Zg
n and λ2

2 = · · · = λ2
n. We must have λ1 > λ2. (Otherwise, we have

G = Kn, which contradicts the assumptions m ≥ n
2 and n ≥ 2.) Since Tr(A) = ∑n

i=1 λi = 0, G must
have the required eigenvalues as above.

Remark 2. Since Kn has the eigenvalues λ1 = n− 1 and λ2 = · · · = λn = −1, it is direct to check that
G = Kn attains the equality in (10). When G is connected, the equality in (10) implies that G has diameter less
than or equal to two [1]. Also, when G is regular, the equality in (10) implies that G is strongly regular [1].

Remark 3. If we use H(G) ≥ f
( 2m

n
)

instead in (11), we are led to the following simpler estimation

H(G) ≥ ne−
2m
n , (12)

where the equality is attained if and only if G = K2.
In fact, to see the equality condition, we have, on one hand, H(K2) = 2e−1 by direct calculation employing

λ1 = 1 and λ2 = −1. On the other hand, if the equality is attained in (12), then using the same argument
as in Theorem 4 we know Zg = 2m and hence di = 0 or 1 in G. Suppose that G is the union of `1 edges
and `2 isolated nodes, namely, G = `1K2 ∪ `2K1 with 2`1 + `2 = n. Please note that ne−

2m
n ≤ ne−1 ≤

(n− `2)e−1 + `2 = H(`1K2 ∪ `2K1), with both equalities hold if and only if `2 = 0, n = 2 and m = 1. Thus,
G = K2.

Remark 4. It is noteworthy that the gap between upper and lower bounds for the Gaussian Estrada index
H is typically much smaller than that for the Estrada index EE, especially for sparse graphs when m scales
linearly with n. For example, when m = cn for some constant c > 1/2, it follows from (3) and (12) that
ne−c ≤ H(G) ≤ n− 2 + 2e1−n. The gap is only represented by a constant multiplier ec. Recall that common
bounds of EE (see, e.g., [14],Theorem 1) give n ≤ EE(G) ≤ n + e

√
2cn.

3. Conclusions

In this paper, we present some novel (n, m)-type estimates for the recently introduced Gaussian
Estrada index H(G). Lower bounds for sparse (m ≤ n

2 ) and dense (m ≥ n
2 ) graphs are established.

The gap between upper and lower bounds of H(G) is found to be much smaller than that of EE(G).
A unique feature of Gaussian Estrada index, as compared to the extensively studied Estrada index,

lies in its ability to uncover information encoded in the eigenvalues in proximity to zero. H(G) can be
viewed as the partition function of the system governed by the time-dependent Schrödinger equation
based on A2(G). Our results shed light on the understanding of H(G) and contribute to establishing
new inequalities (such as lower and upper bounds) connecting varied interesting network invariants.
Notice that the current work only focuses on deterministic graphs without randomness. It would be
interesting to derive appropriate estimates for dynamic or random graphs [27,28].
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1. Cvetković, D.M.; Doob, M.; Gutman, I.; Torgašev, A. Recent Results in the Theory of Graph Spectra;
North-Holland: Amsterdam, The Netherlands, 1988.

2. Estrada, E. Characterization of 3D molecular structure. Chem. Phys. Lett. 2000, 319, 713–718. [CrossRef]
3. Estrada, E. Characterization of the folding degree of proteins. Bioinformatics 2002, 18, 697–704. [CrossRef]

[PubMed]
4. Estrada, E. Characterization of the amino acid contribution to the folding degree of proteins. Proteins

2004, 54, 727–737. [CrossRef] [PubMed]
5. Estrada, E.; Rodríguez-Velázquez, J.A. Subgraph centrality in complex networks. Phys. Rev. E

2005, 71, 056103. [CrossRef] [PubMed]
6. Estrada, E.; Rodríguez-Velázquez, J.A. Spectral measures of bipartivity in complex networks. Phys. Rev. E

2005, 72, 046105. [CrossRef] [PubMed]
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