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Abstract: Let G1 and G2 be disjoint copies of a graph G and g : V(G1) → V(G2) be a function.
A functigraph FG consists of the vertex set V(G1) ∪ V(G2) and the edge set E(G1) ∪ E(G2) ∪ {uv :
g(u) = v}. In this paper, we extend the study of distinguishing numbers of a graph to its functigraph.
We discuss the behavior of distinguishing number in passing from G to FG and find its sharp lower
and upper bounds. We also discuss the distinguishing number of functigraphs of complete graphs
and join graphs.
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1. Introduction

Given a key ring of apparently identical keys to open different doors, how many colors are needed
to identify them? This puzzle was given by Rubin [1] for the first time. In this puzzle, there is no need
for coloring to be a proper one. Indeed, one cannot find a reason why adjacent keys must be assigned
different colors, whereas in other problems, like storing chemicals and scheduling meetings, a proper
coloring is needed with a small number of colors required.

Inspired by this puzzle, Albertson and Collins [2] introduced the concept of the distinguishing
number of a graph as follows: a labeling f : V(G) → {1, 2, 3, ..., t} is called t-distinguishing if no
non-trivial automorphism of a graph G preserves the vertex labels. The least integer t such that a
graph G has a labeling which is t-distinguishing for the graph G, is called the distinguishing number of
G and it is denoted by Dist(G). For example, the distinguishing number of a complete graph Kn is n,
the distinguishing number of a path graph Pn is 2 and the distinguishing number of a cyclic graph
Cn, n ≥ 6 is 2. For a graph G of order n, 1 ≤ Dist(G) ≤ n [2].

Harary [3] gave different methods (orienting some of the edges, coloring some of the vertices
with one or more colors and same for the edges, labeling vertices or edges, adding or deleting vertices
or edges) of destroying the symmetries of a graph. Collins and Trenk [4] defined the distinguishing
chromatic number where the authors used proper t-distinguishing for vertex labeling. The authors
have given a comparison between the distinguishing number, the distinguishing chromatic number
and the chromatic number of families like complete graphs, path graphs, cyclic graphs, Petersen graph
and trees, etc. Kalinowski and Pilsniak [5] defined similar graph parameters, the distinguishing
index and the distinguishing chromatic index where the authors labeled edges instead of vertices.
The authors also gave a comparison between the distinguishing number and the distinguishing
index of a connected graph G of order n ≥ 3. Boutin [6] introduced the concept of determining sets.
Albertson and Boutin [7] proved that a graph has a (t− 1)-distinguishable determining set if and only
if the graph is t-distinguishable. The authors also proved that every Kneser graph Kn:k with n ≥ 6 and
k ≥ 2 is 2-distinguishable. A considerable amount of literature has been developed in this area—for
example, see [8–12].
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Unless otherwise specified, all graphs considered in this paper are simple, non-trivial and
connected. The set of all vertices that are adjacent to a vertex u ∈ V(G) is called the open neighborhood
of u and it is denoted by N(u). The set of vertices {u} ∪ N(u) is called the closed neighborhood of u
and it is denoted by N[u]. If two distinct vertices u, v of a graph G have the same open neighborhood,
then these are called non-adjacent twins. If the two vertices have the same closed neighborhood, then
these are called adjacent twins. In the both cases, u and v are called twins. A vertex v of a graph
G is called saturated, if it is adjacent to all other vertices of G. A graph H whose vertex set V(H)

and edge set E(H) are subsets of V(G) and E(G), respectively, then H is called a subgraph of graph
G. Let S ⊂ V(G) be any subset of vertices of G. The induced subgraph, denoted by < S >, is the
graph whose vertex set is S and whose edge set is the set of all those edges in E(G) which have
both end vertices in S. A spanning subgraph H of a graph G is a subgraph such that V(H) = V(G)

and E(H) ⊆ E(G). An automorphism α of G, α : V(G) → V(G), is a bijective mapping such that
α(u)α(v) ∈ E(G) if and only if uv ∈ E(G). Thus, each automorphism α of G is a permutation of the
vertex set V(G) which preserves adjacencies and non-adjacencies. The automorphism group of a graph
G, denoted by Γ(G), is the set of all automorphisms of a graph G. A graph with a trivial automorphism
group is called a rigid (or asymmetric) graph. The minimum number of vertices in a rigid graph is 6 [13].
The distinguishing number of a rigid graph is 1.

The idea of a permutation graph was introduced by Chartrand and Harary [14] for the first time.
The authors defined a permutation graph as follows: a permutation graph consists of two identical
disjoint copies of a graph G, say G1 and G2, along with |V(G)| additional edges joining V(G1) and
V(G2) according to a given permutation on {1, 2, ..., |V(G)|}. Dorfler [15] defined a mapping graph as
follows: a mapping graph of a graph G on n vertices consists of two disjoint identical copies of graph G
with n additional edges between the vertices of two copies, where the additional edges are defined by
a function. The mapping graph was rediscovered and studied by Chen et al. [16], where it was called
the functigraph. A functigraph is an extension of a permutation graph. Formally, the functigraph is
defined as follows: let G1 and G2 be disjoint copies of a connected graph G and let g : V(G1)→ V(G2)

be a function. A functigraph FG of a graph G consists of the vertex set V(G1) ∪V(G2) and the edge set
E(G1) ∪ E(G2) ∪ {uv : g(u) = v}. Linda et al. [17,18] and Kang et al. [19] studied the functigraphs for
some graph invariants like metric dimension, domination and zero forcing number. In [20], we have
studied the fixing number of some functigraphs. The aim of this paper is to study the distinguishing
number of functigraphs.

Network science and graph theory are two interconnected research fields that have synonymous
structures, problems and their solutions. The notions ‘network’ and ‘graph’ are identical and these
can be used interchangeably subject to the nature of application. The roads network, railway network,
social networks, scholarly networks, etc are among the examples of networks. In the recent past, the
network science has imparted to a functional understanding and the analysis of the complex real
world networks. The basic premise in these fields is to relate metabolic networks, proteomic and
genomic with disease networks [21] and information cascades in complex networks [22]. Real systems
of quite a different nature can have the same network representation. Even though these real systems
have different nature, appearance or scope, they can be represented as the same network. Since a
functigraph consists of two copies of the same graph (network) with the additional edges described by
a function, a mathematical model involving two systems with the same network representation and
additional links (edges) between nodes (vertices) of two systems can be represented by a functigraph.
The present study is useful in distinguishing the nodes of such pair of the same networks (systems)
that can be represented by a functigraph.

Throughout the paper, we denote the functigraph of G by FG, V(G1) = A, V(G2) = B, g denotes
a function g : A→ B, f denotes the distinguishing labeling, and g(V(G1)) = I, |g(V(G1))| = |I| = s.

In order to understand the concept of functigraphs, we consider an example of a functigraph
of G = K9. Take V(G1) = A = {u1, ..., un} and V(G2) = B = {v1, ..., vn} and function g is defined
as follows:
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g(ui) =


v1 i f 1 ≤ i ≤ 3,
v2 i f 4 ≤ i ≤ 5,
vi−3 i f 6 ≤ i ≤ 9.

(1)

The corresponding functigraph is shown in Figure 1.
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Figure 1. The functigraph FG when G = K9 and function g is as defined below.

This paper is organized as follows: in Section 2, we give sharp lower and upper bounds for
the distinguishing number of functigraphs. This section also establishes connections between the
distinguishing number of graphs and their corresponding functigraphs in the form of realizable results.
In Section 3, we compute the distinguishing number of functigraphs of complete graphs and joining of
path graphs. Some useful results related to these families have also been presented in this section.

2. Bounds and Realizable Results

The sharp lower and upper bounds on the distinguishing number of functigraphs are given in the
following result.

Proposition 1. Let G be a connected graph of order n ≥ 2; then,

1 ≤ Dist(FG) ≤ Dist(G) + 1.

Both bounds are sharp.

Proof. Obviously, 1 ≤ Dist(FG) by definition. Let Dist(G) = t and f be a t-distinguishing labeling for
the graph G. In addition, let ui ∈ A and vi ∈ B, 1 ≤ i ≤ n. We extend labeling f to FG as: f (ui) = f (vi)

for all 1 ≤ i ≤ n. We have the following two cases for g:

1. If g is not bijective, then f as defined earlier is a t-distinguishing labeling for FG.
Hence, Dist(FG) ≤ t.

2. If g is bijective, then f as defined earlier destroys all non-trivial automorphisms of FG except
possible flipping of G1 and G2 in FG. Let F′G and FG be the functigraph of G when g is an identity
function, i.e., g(ui) = vi for all i, 1 ≤ i ≤ n and when g is not identity function, respectively.
The flipping of G1 and G2 is possible in the cases when either g is an identity function or when g
is not the identity function but the corresponding functigraph F′G is isomorphic to FG. In order to
break this automorphism (flipping), only one vertex of either G1 or G2 must be labeled with an
extra color, and hence Dist(FG) ≤ t + 1.
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For the sharpness of bounds, we consider a rigid graph G on n ≥ 6 vertices. For the sharpness
of the lower bound, take a functigraph FG in which g is a constant function. For the sharpness of the
upper bound, take functigraph FG in which g is an identity function.

We discuss an example for Proposition 1, where we consider a rigid graph G with the smallest
number of vertices i.e., |V(G)| = 6 as shown in Figure 2a. Since Dist(G) = 1, we label its vertices
with a red color. Figure 2b shows FG, when g is a constant function. In this case, FG is a rigid graph
and hence Dist(FG) = 1. Figure 2c shows FG, when g is the identity function. In this case, FG has a
non-trivial automorphism i.e., horizontal flipping of FG. We label vertex v6 of copy G2 with blue color
to break the non-trivial automorphism. Hence, Dist(FG) = 2 = Dist(G) + 1.
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Figure 2. (a) a rigid graph G with six vertices; (b) a functigraph FG when g is a constant function; (c) a
functigraph FG when g is the identity function i.e., g(ui) = vi for all i (1 ≤ i ≤ 6).

Since at least m colors are required to break all automorphisms of a twin-set of cardinality m,
we have the following proposition.

Proposition 2. Let U1, U2, ..., Ut be disjoint twin-sets in a connected graph G of order n ≥ 3 and
m = max{|Ui| : 1 ≤ i ≤ t},

(i) Dist(G) ≥ m,

(ii) If Dist(G) = m, then Dist(FG) ≤ m.

Two vertices in a graph G are said to be similar vertices, if both can be mapped on each other under
some automorphism of graph G.

Lemma 1. Let G be a connected graph of order n ≥ 2 and g be a constant function, then Dist(FG) = Dist(G).

Proof. Let I = {v} ⊂ B. In the functigraph FG, we label the vertices in copy G1 of G with Dist(G)

colors. Now, v is the only vertex of FG with the largest degree (as we can see in Figure 2b I = {v3}
and v3 is the vertex of FG with the largest degree); therefore, it is not similar to any other vertex of
FG and hence it can also be labeled with one of Dist(G) colors. Thus, vertices in A ∪ {v} are labeled
by Dist(G) colors. Since g is a constant function, all vertices in V(FG) \ {A ∪ {v}} are not similar to
any vertex in A ∪ {v} in functigraph FG. If two disjoint subsets of vertices of a graph are such that
every vertex of one set is not similar to any vertex of the other set, then the vertices of both sets can
be labeled by the same set of colors; therefore, the vertices in V(FG) \ {A ∪ {v}} and A ∪ {v} can be
labeled by Dist(G) colors. Hence, Dist(FG) = Dist(G).
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Remark 1. Let G be a connected graph and Dist(FG) = m1, if g is constant and Dist(FG) = m2, if g is not
constant; then, m1 ≥ m2.

Now, we discuss a special type of connected subgraph H of a connected graph G such that
Dist(H) ≤ Dist(G). We define a set S(H) = {u ∈ V(H) : u is similar to v( 6= u) for some v ∈ V(H)}.
If the graph G has a connected subgraph H in which all vertices in S(H) are either adjacent to all
vertices in V(G)−V(H) or non-adjacent to all vertices in V(G)−V(H), then we discuss in Remark 2
that Dist(G) ≥ Dist(H).

Lemma 2. Let H be a connected subgraph of a connected graph G such that all vertices in S(H) are
either adjacent to all vertices in V(G)− V(H) or non-adjacent to all vertices in V(G)− V(H), then every
automorphism of H can be extended to an automorphism of G.

Proof. Let α ∈ Γ(H) be an arbitrary automorphism. We define an extension α′ of α on V(G) as:

α′(w) =

{
α(w) i f w ∈ V(H),
w i f w ∈ V(G)−V(H).

Since α′(w) = w for all w ∈ V(H)− S(H), α′ being an identity function preserves the relation
of adjacency among the vertices in V(G) − S(H). In addition, α′ = α being an automorphism of
the subgraph H preserves the relation of adjacency among the vertices in V(H). Next, we will
prove that α′ also preserves the relation of adjacency among the vertices in {V(G)−V(H)} ∪ S(H).
Suppose u ∈ S(H) and y ∈ V(G)−V(H), where both y and u are arbitrary vertices of their sets. Since
α ∈ Γ(H), α(u) ∈ V(H). We discuss two cases for the subgraph H in graph G:

1. All vertices in S(H) are adjacent to all vertices in V(G) − V(H); then, u is adjacent to y in G.
In addition, α′(u) = α(u) being a vertex of H is adjacent to α′(y) = y. Hence, α′ preserves the
relation of adjacency among the vertices in {V(G)−V(H)} ∪ S(H).

2. All vertices in S(H) are non-adjacent to all vertices in V(G)−V(H); then, u is non-adjacent to
y in G. In addition, α′(u) = α(u) being a vertex of H is non-adjacent to α′(y) = y. Hence, α′

preserves the relation of adjacency among the vertices in {V(G)−V(H)} ∪ S(H).

Thus, α′ preserves the relation of adjacency among the vertices of V(G).

Let H be a connected subgraph of a graph G such that H satisfies the hypothesis of Lemma 2,
then every distinguishing labeling of G requires at least Dist(H) colors to break the extended
automorphism g′ of G, therefore Dist(G) ≥ Dist(H) for the subgraph H. It can be seen in Figure 3
that subgraph H of graph G satisfies the hypothesis of Lemma 2 and Dist(G) = 2 = Dist(H). We label
the vertices of the graph with red and white colors.

Remark 2. Let H be a connected subgraph of a connected graph G such that all vertices in S(H)

are either adjacent to all vertices in V(G) − V(H) or non-adjacent to all vertices in V(G) − V(H),
then Dist(G) ≥ Dist(H).

A vertex v of degree at least three in a connected graph G is called a major vertex. Two paths
rooted from the same major vertex and having the same length are called the twin stems.

We define a function ψ : N \ {1} → N \ {1} as ψ(m) = k, where k is the least number such that
m ≤ 2(k

2) + k. For example, ψ(19) = 5. Note that ψ is well-defined.
In the following lemma, we find a lower bound of the distinguishing number of a graph having twin
stems of length 2 rooted at the same major vertex, in terms of the function ψ.

Lemma 3. If a graph G has t ≥ 2 twin stems of length 2 rooted at the same major vertex, then Dist(G) ≥ ψ(t).

Proof. Let x ∈ V(G) be a major vertex and xuiu′i where 1 ≤ i ≤ t are the twin stems of length
2 attached with x. Let H =< {x, ui, u′i} > and k = ψ(t). Since xuiu′i where 1 ≤ i ≤ t are twin
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stems in the graph G, the subgraph H satisfies the hypothesis of Lemma 2. We define a labeling
f : V(H)→ {1, 2, ..., k} as:

f (x) = k,

f (ui) =



1 i f 1 ≤ i ≤ k,
2 i f k + 1 ≤ i ≤ 2k,
3 i f 2k + 1 ≤ i ≤ 3k,
...

...
k i f (k− 1)k + 1 ≤ i ≤ k2.

(2)

f (u′i) =

{
i mod(k) i f 1 ≤ i mod(k) ≤ k− 1,
k i f i mod(k) = 0.

(3)

Using this labeling, one can see that f is a t-distinguishing labeling for H. With permutations
with a repetition of k colors, when two of them are taken at a time equal to 2(k

2) + k, at least k colors
are needed to label the vertices in t-stems. Thus, k is the least integer for which subgraph H has
k-distinguishing labeling, and hence Dist(H) = k. Thus, Dist(G) ≥ ψ(t) by Remark 2.

It can be seen that the graph G as shown in Figure 3a has four twin stems of length 2 rooted at
the same major vertex; therefore, by Lemma 3, Dist(G) ≥ ψ(4) = 2. The following result gives the
existence of a graph G and its functigaph FG, such that both have the same distinguishing number.

H

S(H)

H

S(H)

(a) (b)

Figure 3. (a) a graph G and its subgraph H such that all vertices of S(H) are non-adjacent to all vertices
of V(G)− V(H); (b) a graph G and its subgraph H such that all vertices of S(H) are adjacent to all
vertices of V(G)−V(H).

Lemma 4. For any integer t ≥ 2, there exists a connected graph G and a function g such that
Dist(G) = t = Dist(FG).

Proof. Construct a graph G as follows: let P(t−1)2+1 : x1x2x3...x(t−1)2+1 be a path graph.
Join (t− 1)2 + 1 twin stems x1uiu′i where 1 ≤ i ≤ (t − 1)2 + 1 each of length two with vertex
x1 of P(t−1)2+1. This completes construction of G. We first show that Dist(G) = t. For t = 2,
we have two twin stems attached with x1, and hence Dist(G) = 2. For t ≥ 3, we define a labeling
f : V(G)→ {1, 2, 3, ..., t} as follows: f (xi) = t, for all i, where 1 ≤ i ≤ (t− 1)2 + 1 :
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f (ui) =



1 i f 1 ≤ i ≤ t− 1,
2 i f t ≤ i ≤ 2(t− 1),
3 i f 2t− 1 ≤ i ≤ 3(t− 1),
...

...
t− 1 i f (t− 1)(t− 2) + 1 ≤ i ≤ (t− 1)2,
t i f i = (t− 1)2 + 1,

f (u′i) =


i mod(t− 1) i f 1 ≤ i mod(t− 1) ≤ t− 2 and i 6= (t− 1)2 + 1,
t− 1 i f i mod(t− 1) = 0,
t i f i = (t− 1)2 + 1.

Using this labeling, one can see the unique automorphism preserving this labeling is the identity
automorphism. Hence, f is a t-distinguishing. With permutations with a repetition of t− 1 colors,
when two of them are taken at a time, 2(t−1

2 ) + (t− 1), (t− 1)2 + 1 twin stems can be labeled by at least
t colors. Hence, t is the least integer such that G has a t-distinguishing labeling. Now, we denote the
corresponding vertices of G2 as vi, v′i, yi for all i, where 1 ≤ i ≤ (t− 1)2 + 1 and construct a functigraph
FG by defining g : A → B as follows: g(ui) = g(u′i) = yi, for all i, where 1 ≤ i ≤ (t− 1)2 + 1 and
g(xi) = yi, for all i, where 1 ≤ i ≤ (t− 1)2 + 1 as shown in Figure 4. Thus, FG has only symmetries of
(t− 1)2 + 1 twin stems attached with y1. Hence, Dist(FG) = t.

u'1
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Figure 4. Graph with Dist(G) = t = Dist(FG).

Consider an integer t ≥ 4. We construct a graph G similarly as in the proof of Lemma 4
by taking a path graph P(t−3)2+1 : x1x2...x(t−3)2+1 and attach (t− 3)2 + 1 twin stems x1uiu′i where
1 ≤ i ≤ (t− 3)2 + 1 with any one of its end vertex, say, x1. Using the similar labeling and arguments
as in the proof of Lemma 4, one can see that f is t− 2 distinguishing and t− 2 is the least integer
such that G has t− 2 distinguishing labeling. Define functigraph FG, where g : A→ B is defined by:
g(ui) = g(u′i) = yi, for all i, where 1 ≤ i ≤ (t− 3)2 + 1, g(xi) = vi, for all i, where 1 ≤ i ≤ (t− 3)2 − 1,
g(xi) = yi, for all i, where (t− 3)2 ≤ i ≤ (t− 3)2 + 1. From this construction, FG has only symmetries
in which two twin stems attached with y1 can be mapped on each other under some automorphism of
FG, and hence Dist(FG) = 2. Thus, we have the following result, which shows that Dist(G) + Dist(FG)

can be arbitrarily large:

Lemma 5. For any integer t ≥ 4, there exists a connected graph G and a function g such that
Dist(G) + Dist(FG) = t.

Consider t ≥ 3. We construct a graph G similarly as in the proof of Lemma 4 by taking a path graph
P4(t−1)2+1: x1x2...x4(t−1)2+1 and attach 4(t− 1)2 + 1 twin stems x1uiu′i, where 1 ≤ i ≤ 4(t− 1)2 + 1 with
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x1. Using the similar labeling and arguments as in the proof of Lemma 4, one can see that f is 2t− 1
distinguishing labeling and 2t− 1 is the least integer such that G has 2t− 1 distinguishing labeling.
Let us now define g as g(ui) = g(u′i) = yi, for all i, where 1 ≤ i ≤ 4(t− 1)2 + 1, g(xi) = vi, for all i,
where 1 ≤ i ≤ 3t2 − 4t and g(xi) = yi, for all i, where 3t2 − 4t + 1 ≤ i ≤ 4(t− 1)2 + 1. Thus, FG has
only symmetries of (t− 2)2 + 1 twin stems attached with y1, and hence Dist(FG) = t− 1. After making
this type of construction, we have the following result which shows that Dist(G)− Dist(FG) can be
arbitrarily large:

Lemma 6. For any integer t ≥ 3, there exists a connected graph G and a function g such that
Dist(G)− Dist(FG) = t.

3. The Distinguishing Number of Functigraphs of Some Families of Graphs

In this section, we discuss a distinguishing number of functigraphs on complete graphs,
edge deletion graphs of complete graph and joining of path graphs.

Let G be the complete graph of order n ≥ 3. We use the following terminology for FG in the
proof of Theorem 1: Let I = {v1, v2, ..., vs} and ni = |{u ∈ A : g(u) = vi}| for all i, where 1 ≤ i ≤ s.
In addition, let l = max{ni : 1 ≤ i ≤ s} and m = |{ni : ni = 1, 1 ≤ i ≤ s}|. From the definitions of l
and m, we note that 2 ≤ l ≤ n− s + 1 and 0 ≤ m ≤ s− 1.

In the next result, we find the distinguishing number of functigraphs of complete graphs, when g
is bijective, in terms of function ψ(m) as defined in the previous section.

Lemma 7. Let G be the complete graph of order n ≥ 3 and g be a bijective function; then, Dist(FG) = ψ(n).

Proof. Let A = {u1, u2, ..., un} and I = {g(u1), g(u2), ..., g(un)} = B. In addition, let k = ψ(n).
Let f : V(FG)→ {1, 2, ..., k} be a labeling in which f (ui) is defined as in Equation (2) and f (g(ui)) as
in Equation (3) in the proof of Lemma 3. Using this labeling, one can see that f is a k-distinguishing
labeling for FG. With permutations with repetitions of k colors, when two of them are taken at a time
equal to 2(k

2) + k, at least k colors are needed to label the vertices in FG. Hence, k is the least integer for
which FG has k-distinguishing labeling.

Let G be a complete graph and let g : A → B be a function such that 2 ≤ m ≤ s.
Without loss of generality, assume u1, u2, ..., um ∈ A are those vertices of A such that g(ui) 6= g(uj),
where 1 ≤ i 6= j ≤ m in B. In addition, (uiuj)(g(ui)g(uj)) ∈ Γ(FG) for all i 6= j, where 1 ≤ i, j ≤ m.
By using the similar labeling f as defined in Lemma 7, at least ψ(m) colors are needed to break these
automorphisms in FG. Thus, we have the following proposition:

Proposition 3. Let G be a complete graph of order n ≥ 3 and g be a function such that 2 ≤ m ≤ s;
then, Dist(FG) ≥ ψ(m).

The following result gives the distinguishing number of functigraphs of complete graphs.

Theorem 1. Let G = Kn be the complete graph of order n ≥ 3, and let 1 < s ≤ n− 1; then,

Dist(FG) ∈ {n− s, n− s + 1, ψ(m)}.

Proof. We discuss the following cases for l:

1. If l = n− s + 1 > 2, then A contains n− s + 1 twin vertices and B contains n− s twin vertices
(except for n = 3, 4 where B contains no twin vertices). In addition, there are m(= s− 1) vertices
in A which have distinct images in B. By Proposition 3, these m vertices and their distinct
images are labeled by at least ψ(m) colors (only 1 color if m = 1). Since n− s + 1 is the largest
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among n− s + 1, n− s and ψ(m), n− s + 1 is the least number such that FG has (n− s + 1)—
distinguishing labeling. Thus, Dist(FG) = n− s + 1.

2. If l = n− s + 1 = 2, then ψ(m) ≥ max{n− s + 1, n− s}, and hence Dist(FG) = ψ(m).
3. If l < n− s, then B contains the largest set of n− s twin vertices in FG. In addition, there are

m(≤ s− 2) vertices in A, each of which have distinct images in B. Since n − s ≥ ψ(m),
Dist(FG) = n− s.

4. If l = n − s > 2, then both A and B contain the largest set of n − s twin vertices in FG.
In addition, there are m(= s− 2) vertices in A that have distinct images in B. Since n− s ≥ ψ(m),
Dist(FG) = n− s.

5. If l = n− s = 2, then we have the following two subcases:

(a) If 1 < s ≤ b n
2 c + 1, then both A and B contain the largest set of n − s twin vertices

in FG. In addition, there are m(= s − 2) vertices in A that have distinct images in B.
Since n− s ≥ ψ(m) (if ψ(m) exists), Dist(FG) = n− s.

(b) If b n
2 c+ 1 < s ≤ n− 1, then ψ(m) ≥ max{n− s + 1, n− s}, and hence Dist(FG) = ψ(m).

We define a function φ : N→ N \ {1} as φ(i) = k, where k is the least number such that i ≤ (k
2).

For instance, φ(32) = 9. Note that φ is well defined.
The following result gives the distinguishing number of functigraphs of a family of spanning

subgraphs of complete graphs.

Theorem 2. For a complete graph G of order n ≥ 5 and Gi, where 1 ≤ i ≤ b n
2 c is the graph deduced from G

by deleting i edges with no common end vertices that join two saturated vertices of G for all i. If g is a constant
function, then

Dist(FGi ) = max{n− 2i, φ(i)}.

Proof. On deleting i edges from G, we have n− 2i saturated vertices and i twin-sets each of cardinality
two (as shown in Figure 5 where G is the complete graph on 7 vertices, i = 2 and g is a constant
function). We will now show that exactly φ(i) colors are required to label vertices of all i twin-sets.
We observe that all vertices in twin sets of cardinality 2 are similar to each other in G. Since two vertices
in a twin-set are labeled by a unique pair of colors out of (k

2) pairs of k colors, at least k colors are
required to label vertices of i twin-sets. Now, we discuss the following two cases for φ(i):

1. If φ(i) ≤ n− 2i, then the number of colors required to label n− 2i saturated vertices is greater
than or equal to the number of colors required to label the vertices of i twin-sets. Thus, we label
n− 2i saturated vertices with exactly n− 2i colors and out of these n− 2i colors, φ(i) colors will
be used to label vertices of i twin-sets.

2. If φ(i) > n− 2i, then the number of colors required to label n− 2i saturated vertices is less than
the number of colors required to label vertices of i twin-sets. Thus, we label vertices of i twin-sets
with φ(i) colors and, out of these φ(i) colors, n− 2i colors will be used to label saturated vertices
in Gi.

Since g is constant, by using the same arguments as in the proof of Lemma 1,
Dist(FGi ) = Dist(Gi).

Suppose that G = (V1, E1) and G∗ = (V2, E2) are two graphs with disjoint vertex sets V1

and V2 and disjoint edge sets E1 and E2. The join of G and G∗ is the graph G + G∗, in which
V(G + G∗) = V1 ∪V2 and E(G + G∗) = E1 ∪ E2 ∪ { uv: u ∈ V1, v ∈ V2}.

Proposition 4. Let Pn be a path graph of order n ≥ 2; then, for all m, n ≥ 2 and 1 < s < m + n,
1 ≤ Dist(FPm+Pn) ≤ 3.
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Proof. Let Pm : v1, ..., vm and Pn : u1, ..., un. We discuss the following cases for m, n.

1. If m = 2 and n = 2, then P2 + P2 = K4, and hence 1 ≤ Dist(FK4) ≤ 3 by Theorem 1.
2. If m = 2 and n = 3, then P2 + P3 has three saturated vertices. Thus, 1 ≤ Dist(FP2+P3) ≤ 4 by

Proposition 1. However, for all s where 2 ≤ s ≤ 4 and all possible definitions of g in FP2+P3 ,
one can see 1 ≤ Dist(FP2+P3) ≤ 3.

3. If m = 3 and n = 3, then a labeling f : V(P3 + P3)→ {1, 2, 3} defined as:

f (x) =


1 i f x = v1, v2,
2 i f x = v3, u3,
3 i f x = u1, u2,

is a distinguishing labeling for P3 + P3, and hence Dist(P3 + P3) = 3. Thus, 1 ≤ Dist(FP3+P3) ≤ 4
by Proposition 1. However, for all s where 2 ≤ s ≤ 5 and all possible definitions of g in FP3+P3 ,
one can see 1 ≤ Dist(FP3+P3) ≤ 3.

4. If m ≥ 2 and n ≥ 4, then a labeling f : V(Pm + Pn)→ {1, 2} defined as:

f (x) =

{
1 i f x = v1, u2, ..., un,
2 i f x = u1, v2, ..., vm,

is a distinguishing labeling for Pm + Pn, and hence Dist(Pm + Pn) = 2. Thus, the result follows by
Proposition 1.

Figure 5. Graph G = K7 and FG2 , when g is a constant function. Dist(FG2 ) = φ(2) = n− 2i = 3.

4. Conclusions

In this paper, we have studied the distinguishing number of functigraphs, which is an extension
of the permutation graphs. We have given sharp lower and upper bounds of a distinguishing number
of functigraphs. We have established the connection between the distinguishing number of graphs and
its corresponding functigraph in the form of realizable results. We have computed the distinguishing
number of functigraphs of a complete graph and the joining of path graphs. Furthermore, we have
defined a function φ : N→ N \ {1} as φ(i) = k, where k is the least number such that i ≤ (k

2). By using
this function φ, we have found the distinguishing number of functigraphs of spanning subgraphs
of complete graphs. In the future, it would be interesting to work on the distinguishing number of
functigraphs of some well known families of graphs.
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