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Abstract: We consider the constrained ordered weighted averaging (OWA) aggregation problem
with a single constraint and lower bounded variables. For the three-dimensional constrained OWA
aggregation problem with lower bounded variables, we present four types of solution depending
on the number of zero elements. According to the computerized experiment we perform, the lower
bounds can affect the solution types, thereby affecting the optimal solution of the three-dimensional
constrained OWA aggregation problem with lower bounded variables.

Keywords: ordered weighted averaging (OWA) operators; constrained OWA aggregation problem;
lower bounded variables

1. Introduction

An ordered weighted averaging (OWA) operator, proposed by Yager [1], is a general class
of parametric aggregation operators that appears in many applications such as control, decision
making, expert systems, fuzzy system, neural networks, regression analysis and risk analysis [2–6].
A citation-based survey of the literature in all types of optimization problems associated to OWA
operators can be found in [7]. In 1996, Yager [8] investigated the constrained OWA aggregation
problem [8–15] which is concerned with an optimization problem with an OWA operator. In particular,
for the constrained OWA aggregation problem with a single constraint on the sum of all variables,
Yager [8] presented the optimal solutions for the three-dimensional case. Furthermore, Carlsson,
Fullér and Majlender [9] proposed a simple algorithm for obtaining the optimal solutions for any
dimensions. Recently, Coroianu and Fullér [10] presented the optimal solution for the constrained
OWA aggregation problem with a single constraint and any coefficients. However, in most practical
problems the variables are usually bounded. This paper considers the three-dimensional constrained
OWA aggregation problem with lower bounded variables.

The organization of this paper is as follows. Section 2 briefly reviews the constrained OWA
aggregation problem. Section 3 discusses the constrained OWA aggregation problem with the same
lower bounds. Section 4 presents the solution behaviors of three-dimensional constrained OWA
aggregation problems with lower bounded variables. Section 5 outlines the design of the experiment
and evaluates the optimal solution behaviors of the three-dimensional constrained OWA aggregation
problems with the lower bounded variables. Finally, some concluding remarks are presented.
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2. Constrained Ordered Weighted Averaging (OWA) Aggregation Problem

An OWA operator of dimension n is a mapping F : Rn → R that associates a weighting vector
W = (w1, w2, . . . , wn) satisfying:

w1 + w2 + . . . + wn = 1, 0 ≤ wi ≤ 1, i = 1, 2, . . . , n

and such that:
F(x1, x2, . . . , xn) = ∑n

i=1 wiyi, (1)

with yi being the ith largest of {x1, x2, . . . , xn}.
Consider the following constrained OWA aggregation problem:

Max WTY
s.t.AX ≤ b

X ≥ 0
(2)

where the column vectors X, Y, W and b, and the m× n matrix A are:

X =


x1

x2
...

xn

,Y =


y1

y2
...

yn

,W =


w1

w2
...

wn

,b =


b1

b2
...

bm

,A =


a11 a12

a21 a22
· · · a1n

a2n
...

. . .
...

am1 am2 · · · amn

.

By introducing the (n− 1)× n matrix:

G =


−1 1 0 0
0 −1 1 0

· · · 0 0
0 0

...
. . .

...
0 0 0 0 · · · −1 1


and the column binary vectors Zi ∈ {0, 1}n, i = 1, 2, . . . , n, Yager [8] transformed the above non-linear
programing problem to the following mixed integer linear programming (MIP) problem:

Max WTY
s.t.AX ≤ b

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≥ 0

(3)

where M is a huge positive number and I is the column vector with all elements equal 1.
For the MIP (3), the number of constraints is:

m + n− 1 + n2 + n− 1 = m + n2 + 2n− 2,

and the number of variables is:
n + n + (n− 1)n = n2 + n.
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In the literature, the constrained OWA aggregation problem with a single constraint on the sum
of all variables is as follows:

Max WTY
s.t.ITX ≤ 1

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≥ 0.

(4)

If:

X∗ =


x∗1
x∗2
...

x∗n


is an optimal solution of (4), then, 

x∗σ1
x∗σ2

...
x∗σn


is also the optimal solution, for some σ ∈ Sn, where Sn is the set of all permutations of the set
{1, 2, . . . , n}. To reduce the multiple solutions of the MIP (4), we introduce the following constraints:

Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2.

by inspecting the jth element of the constraint yiI − X−MZi ≤ 0,

yi − xj −MZij ≤ 0,

if Zij = 0, then:
yi ≤ xj.

From the optimal solution:

ITZi = n− i and ITZi+1 = n− i− 1

it follows that:
Zi+1,j = 0

so,
yi+1 ≤ xj.

If Zij = 1, then no restriction is imposed on yi, it implies that:

yi+1 ≤ xj and yi+1 > xj

so Zi+1,j = 0 or 1.
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Therefore, the more efficient MIP is as follows:

Max WTY
s.t.ITX ≤ 1

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≥ 0.

(5)

3. Constrained OWA Aggregation Problem with the Same Lower Bounds

In most practical problems the variables are usually bounded. A typical variable xi is bounded
from below by li and from above by ui, where li < ui and i = 1, 2, . . . , n. If we let ui = ∞, we get the
following constrained OWA aggregation problem with lower bounded variables:

Max WTY
s.t.ITX ≤ 1

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≥ L

(6)

where the column vector:

L =


l1
l2
...

ln

.

By using the change of variable:
X′ = X− L

the lower bound vector can be transformed into the zero vector. The constrained OWA aggregation
problem with lower bounded variables is:

Max WTY
s.t.ITX′ ≤ 1− ITL

GY ≤ 0
yiI − X′ −MZi ≤ L, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X′ ≥ 0

(7)
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If 1−ITL < 0, the constrained OWA aggregation problem has no feasible solution. If 1−ITL = 0,
the unique optimal solution is X′∗ = 0, so:

X∗ = L.

It remains to discuss the case that 1− ITL > 0. More precisely, the three dimensional constrained
OWA aggregation problem with lower bounded variables is as follows:

Max F = w1y1 + w2y2 + w3y3

s.t. x′1 + x′2 + x′3 ≤ 1− l1 − l2 − l3
y2 − y1 ≤ 0
y3 − y2 ≤ 0
y3 − x′1 ≤ l1
y3 − x′2 ≤ l2
y3 − x′3 ≤ l3
y2 − x′1 −MZ21 ≤ l1
y2 − x′2 −MZ22 ≤ l2
y2 − x′3 −MZ23 ≤ l3
Z21 + Z22 + Z23 ≤ 1
y1 − x′1 −MZ11 ≤ l1
y1 − x′2 −MZ12 ≤ l2
y1 − x′3 −MZ13 ≤ l3
Z11 + Z12 + Z13 ≤ 2
Z21 ≤ Z11

Z22 ≤ Z12

Z23 ≤ Z13

x′1, x′2, x′3 ≥ 0, Z21, Z22, Z23, Z11, Z12, Z13 ∈ {0, 1}.

(8)

For the special case that the same lower bounds li = l, i = 1, 2, . . . , n, by the observing that the
ith largest (xσi) of {x1, x2, . . . , xn} is the same variable of the ith largest (x′σi) of

{
x′1, x′2, . . . , x′n

}
, let:

x′′i =
x′i

1− nl

it follows that the optimal solution is the same as that of the constrained OWA aggregation problem [8].
We establish the main results described as follows:

Theorem 1. Consider the three-dimensional constrained OWA aggregation problem (8).

(a) If w1 = max
i=1,2,3

wi, then the optimal solutions are X
′′∗ =

 1
0
0

,

 0
1
0

 or

 0
0
1

, X∗ =

 1− 2l
l
l

,

 l
1− 2l

l

 or

 l
l

1− 2l

, Y∗ =

 1− 2l
l
l

 and F = w1 + l − 3w1l.

(b) If w2 = max
i=1,2,3

wi, then the optimal solutions are X
′′∗ =

 1/2
1/2

0

,

 1/2
0

1/2

 or

 0
1/2
1/2

,

X∗ =

 (1− l)/2
(1− l)/2

l

,

 (1− l)/2
l

(1− l)/2

 or

 l
(1− l)/2
(1− l)/2

, Y∗ =

 (1− l)/2
(1− l)/2

l

 and F =
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(1− w3 − l + 3w3l)/2 for w1 + w2 ≥ 2w3, and X
′′∗ =

 1/3
1/3
1/3

, X∗ =

 1/3
1/3
1/3

, Y∗ =

 1/3
1/3
1/3

,

and F = 1/3 for w1 + w2 ≤ 2w3.

(c) If w3 = max
i=1,2,3

wi, then the optimal solutions are X
′′∗ =

 1
0
0

,

 0
1
0

 or

 0
0
1

, X∗ =

 1− 2l
l
l

,

 l
1− 2l

l

 or

 l
l

1− 2l

, Y∗ =

 1− 2l
l
l

 and F = w1 + l − 3w1l for w2 + w3 ≤ 2w1, and

X
′′∗ =

 1/3
1/3
1/3

, X∗ =

 1/3
1/3
1/3

, Y∗ =

 1/3
1/3
1/3

 and F = 1/3 for w2 + w3 ≥ 2w1.

Proof. For the three-dimensional constrained OWA aggregation problem, three cases are considered.
Firstly, if:

w1 = max
i=1,2,3

wi

the optimal solutions are:

X
′′∗ =

 1
0
0

,

 0
1
0

 or

 0
0
1


So

X∗ =

 1− 2l
l
l

,

 l
1− 2l

l

 or

 l
l

1− 2l

, Y∗ =

 1− 2l
l
l


and the most favorable value is:

F = w1 + l − 3w1l.

Secondly, if:
w2 = max

i=1,2,3
wi

two subcases are considered. If:
w1 + w2 ≥ 2w3,

then the optimal solutions are:

X
′′∗ =

 1/2
1/2

0

,

 1/2
0

1/2

 or

 0
1/2
1/2


so:

X∗ =

 (1− l)/2
(1− l)/2

l

,

 (1− l)/2
l

(1− l)/2

 or

 l
(1− l)/2
(1− l)/2

, Y∗ =

 (1− l)/2
(1− l)/2

l


and the largest objective function value is:

F = (1− w3 − l + 3w3l)/2.
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If:
w1 + w2 ≤ 2w3,

then the optimal solutions are:

X
′′∗ =

 1/3
1/3
1/3


so:

X∗ =

 1/3
1/3
1/3

, Y∗ =

 1/3
1/3
1/3

 and F = 1/3

Finally, if:
w3 = max

i=1,2,3
wi

two subcases are considered. If:
w2 + w3 ≤ 2w1,

then the optimal solutions are:

X
′′∗ =

 1
0
0

 ,

 0
1
0

 or

 0
0
1


so:

X∗ =

 1− 2l
l
l

 ,

 l
1− 2l

l

 or

 l
l

1− 2l

 , Y∗ =

 1− 2l
l
l

,

and:
F = w1 + l − 3w1l.

If:
w2 + w3 ≥ 2w1,

then the optimal solutions are:

X
′′∗ =

 1/3
1/3
1/3


so:

X∗ =

 1/3
1/3
1/3

, Y∗ =

 1/3
1/3
1/3

 and F = 1/3. �

4. Constrained OWA Aggregation Problem with Lower Bounded Variables

For simplicity, we consider the three-dimensional constrained OWA aggregation problem with
lower bounded variables. From the optimal solution of the first constraint of the model (8):

x′1 + x′2 + x′3 = 1− l1 − l2 − l3 (9)

there are four types (I, II, III and IV) of
(

x′1, x′2, x′3
)

depending on the number of zero elements.
The number of zero elements is two for type I, one for types II and III, and zero for type III. The solutions
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of X′ =
(

x′1, x′2, x′3
)

and Y = (y1, y2, y3) for the three-dimensional constrained OWA aggregation
problem with lower bounded variables (8) are described as follows:

Theorem 2. Consider the three-dimensional constrained OWA aggregation problem with lower bounded
variables (8). For type I solution, there are three forms (1− l1 − l2 − l3, 0, 0), (0, 1− l1 − l2 − l3, 0),
(0, 0, 1− l1 − l2 − l3) for X′ and six forms (1− l2 − l3, l2, l3), (1− l2 − l3, l3, l2), (1− l1 − l3, l1, l3),
(1− l1 − l3, l3, l1), (1− l1 − l2, l1, l2), (1− l1 − l2, l2, l1) for Y. For type II, there are three forms(

1−2l1−l3
2 , 1−2l2−l3

2 , 0
)

,
(

1−2l1−l2
2 , 0, 1−l2−2l3

2

)
,
(

0, 1−l1−2l2
2 , 1−l1−2l3

2

)
for X′ and six forms

(
1−l3

2 , 1−l3
2 , l3

)
,(

l3, 1−l3
2 , 1−l3

2

)
,
(

1−l2
2 , 1−l2

2 , l2
)

,
(

l2, 1−l2
2 , 1−l2

2

)
,
(

1−l1
2 , 1−l1

2 , l1
)

,
(

l1, 1−l1
2 , 1−l1

2

)
for Y. For type

III, there are six forms (l3 − l1, 1− l2 − 2l3, 0), (1− l1 − 2l3, l3 − l2, 0), (l2 − l1, 0, 1− 2l2 − l3),
(1− l1 − 2l2, 0, l2 − l3), (0, l1 − l2, 1− 2l1 − l3), (0, 1− 2l1 − l2, l1 − l3) for X′ and six forms
(l3, l3, 1− 2l3), (1− 2l3, l3, l3), (l2, l2, 1− 2l2), (1− 2l2, l2, l2), (l1, l1, 1− 2l1), (1− 2l1, l1, l1) for Y.
For type IV, there are only one form (1/3− l1, 1/3− l2, 1/3− l3) for X′ and one form (1/3, 1/3, 1/3) for Y.

Proof. For type I, the possible values of
(
x′1, x′2, x′3

)
are:

(1− l1 − l2 − l3, 0, 0), (0, 1− l1 − l2 − l3, 0) and (0, 0, 1− l1 − l2 − l3)

For the case of
(

x′1, x′2, x′3
)
= (1− l1 − l2 − l3, 0, 0), we have:(

x′1, x′2, x′3
)
= (1− l2 − l3, l2, l3)(y1, y2, y3) = (1− l2 − l3, l2, l3) or (1− l2 − l3, l3, l2).

For the case of (y1, y2, y3) = (1− l2 − l3, l2, l3), if:

l1 + l2 + l3 ≤ 1, l2 ≥ l3 and 2l2 + l3 ≤ 1,

then:
(x1, x2, x3) = (1− l2 − l3, l2, l3) and (y1, y2, y3) = (1− l2 − l3, l2, l3)

is solution of MIP (8) and the objective value is:

F = w1 + l2(−w1 + w2) + l3(−w1 + w3).

Since w1 + w2 + w3 = 1, we can express the objective value F in only two weights. Then the other
three formats of F are:

F = w1 + l2(−w1 + w2) + l3(1− 2w1 − w2),

F = w1 + l2(1− 2w1 − w3) + l3(−w1 + w3)

and:
F = 1− w2 − w3 + l2(−1 + 2w1 + w3) + l3(−1 + w2 + 2w3).

Among these four formats, the explicit format adopted is F = w1 + l2(−w1 + w2) + l3(−w1 + w3)

which is the most compact one.
If:

l1 + l2 + l3 ≤ 1, l2 ≤ l3 and l2 + 2l3 ≤ 1,

then:
(x1, x2, x3) = (1− l2 − l3, l2, l3) and (y1, y2, y3) = (1− l2 − l3, l3, l2)

is the solution of MIP (8) and the objective value is:

F = w1 + l2(−w1 + w3) + l3(−w1 + w2).
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In Table 1, we display the possible solutions
(
x′1, x′2, x′3

)
, (x1, x2, x3), (y1, y2, y3), F and the

conditions for the different choices of the type I.
We now consider that the number of zero elements is one. The possible values of

(
x′1, x′2, x′3

)
are:(

x′1, x′2, 0
)
,
(
x′1, 0, x′3

)
and

(
0, x′2, x′3

)
For the case of

(
x′1, x′2, 0

)
, we have:

(x1, x2, x3) =
(
x′1 + l1, x′2 + l2, l3

)
.

At optimal, the possible choices of
(
x′1, x′2, x′3

)
are:

x′1 + l1 = x′2 + l2, x′1 + l1 = l3 or x′2 + l2 = l3.

We choose x′1 + l1 = x′2 + l2 for type II, and x′1 + l1 = l3 or x′2 + l2 = l3 for type III. For x′1 + l1 =

x′2 + l2, from (9), it follows that:

(
x′1, x′2, x′3

)
= (

1− 2l1 − l3
2

,
1− 2l2 − l3

2
, 0).

so:

(x1, x2, x3) = (
1− l3

2
,

1− l3
2

, l3) and (y1, y2, y3) = (
1− l3

2
,

1− l3
2

, l3) or (l3,
1− l3

2
,

1− l3
2

)

More precisely, if:
l3 ≤ 1/3, 2l2 + l3 ≤ 1 and 2l1 + l3 ≤ 1,

then:

(x1, x2, x3) = (
1− l3

2
,

1− l3
2

, l3) and (y1, y2, y3) = (
1− l3

2
,

1− l3
2

, l3)

is the solution of MIP (8) and the objective value is:

F =
1− w3 − l3 + 3l3w3

2
.

If:
l3 ≥ 1/3, 2l2 + l3 ≤ 1 and 2l1 + l3 ≤ 1,

then:

(x1, x2, x3) = (
1− l3

2
,

1− l3
2

, l3) and (y1, y2, y3) = (l3,
1− l3

2
,

1− l3
2

)

is the solution of MIP (8) and the objective value is:

F =
1− w1 − l3 + 3l3w1

2
.

For other cases of
(

x′1, 0, x′3
)
, (0, x′2, x′3), the solutions and conditions are displayed in Table 2.

For type III, we have two possible x′1 + l1 = l3 or x′2 + l2 = l3. For x′1 + l1 = l3, from (9), it follows
that if:

l3 ≥ l1, l3 ≥ 1/3 and l2 + 2l3 ≤ 1

then:(
x′1, x′2, x′3

)
= (l3 − l1, 1− l2 − 2l3, 0), (x1, x2, x3) = (l3, 1− 2l3, l3), (y1, y2, y3) = (l3, l3, 1− 2l3) and

F = w3 + l3 − 3l3w3.
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If:
l3 ≥ l1, l3 ≤ 1/3 and l2 + 2l3 ≤ 1

then:(
x′1, x′2, x′3

)
= (l3 − l1, 1− l2 − 2l3, 0), (x1, x2, x3) = (l3, 1− 2l3, l3), (y1, y2, y3) = (1− 2l3, l3, l3) and

F = w1 + l3 − 3l3w1.

For different choices of type III, detailed results are presented in Table 3.
For type IV, from (9), it follows that:(

x′1, x′2, x′3
)
= (1/3− l1, 1/3− l2, 1/3− l3).

So, if:
l1 ≤ 1/3, l2 ≤ 1/3 and l3 ≤ 1/3

then the solution of MIP (8) is:

(x1, x2, x3) = (1/3, 1/3, 1/3) and (y1, y2, y3) = (1/3, 1/3, 1/3) and F = 1/3. �

Table 1. The values of
(

x′1, x′2, x′3
)
, (x1, x2, x3), (y1, y2, y3), F and the conditions for type I.

Type (x′1, x′2, x′3) (x1, x2, x3) (y1, y2, y3) F Conditions

I1 (1− l1 − l2 − l3, 0, 0) (1− l2 − l3, l2, l3) (1− l2 − l3, l2, l3)
w1 + l2(−w1 + w2) +

l3(−w1 + w3)
l1 + l2 + l3 ≤ 1,

l2 ≥ l3, 2l2 + l3 ≤ 1

I2 (1− l1 − l2 − l3, 0, 0) (1− l2 − l3, l2, l3) (1− l2 − l3, l3, l2)
w1 + l2(−w1 + w3) +

l3(−w1 + w2)
l1 + l2 + l3 ≤ 1,

l2 ≤ l3, l2 + 2l3 ≤ 1

I3 (0, 1− l1 − l2 − l3, 0) (l1, 1− l1 − l3, l3) (1− l1 − l3, l1, l3)
w1 + l1(−w1 + w2) +

l3(−w1 + w3)
l1 + l2 + l3 ≤ 1,

l1 ≥ l3, 2l1 + l3 ≤ 1

I4 (0, 1− l1 − l2 − l3, 0) (l1, 1− l1 − l3, l3) (1− l1 − l3, l3, l1)
w1 + l1(−w1 + w3) +

l3(−w1 + w2)
l1 + l2 + l3 ≤ 1,

l1 ≤ l3, l1 + 2l3 ≤ 1

I5 (0, 0, 1− l1 − l2 − l3) (l1, l2, 1− l1 − l2) (1− l1 − l2, l1, l2)
w1 + l1(−w1 + w2) +

l2(−w1 + w3)
l1 + l2 + l3 ≤ 1,

l1 ≥ l2, 2l1 + l2 ≤ 1

I6 (0, 0, 1− l1 − l2 − l3) (l1, l2, 1− l1 − l2) (1− l1 − l2, l2, l1)
w1 + l1(−w1 + w3) +

l2(−w1 + w2)
l1 + l2 + l3 ≤ 1,

l1 ≤ l2, l1 + 2l2 ≤ 1

Table 2. The values of
(

x′1, x′2, x′3
)
, (x1, x2, x3), (y1, y2, y3), F and the conditions for type II.

Type (x′1, x′2, x′3) (x1, x2, x3) (y1, y2, y3) F Conditions

II1 ( 1−2l1−l3
2 , 1−2l2−l3

2 , 0) ( 1−l3
2 , 1−l3

2 , l3) ( 1−l3
2 , 1−l3

2 , l3)
1− w3 − l3 + 3l3w3

2
l3 ≤ 1/3, 2l2 + l3 ≤ 1,

2l1 + l3 ≤ 1

II2 ( 1−2l1−l3
2 , 1−2l2−l3

2 , 0) ( 1−l3
2 , 1−l3

2 , l3) (l3, 1−l3
2 , 1−l3

2 )
1− w1 − l3 + 3l3w1

2
l3 ≥ 1/3, 2l2 + l3 ≤ 1,

2l1 + l3 ≤ 1

II3 ( 1−2l1−l2
2 , 0, 1−l2−2l3

2 ) ( 1−l2
2 , l2, 1−l2

2 ) ( 1−l2
2 , 1−l2

2 , l2)
1− w3 − l2 + 3l2w3

2
l2 ≤ 1/3, 2l1 + l2 ≤ 1,

l2 + 2l3 ≤ 1

II4 ( 1−2l1−l2
2 , 0, 1−l2−2l3

2 ) ( 1−l2
2 , l2, 1−l2

2 ) (l2, 1−l2
2 , 1−l2

2 )
1− w1 − l2 + 3l2w1

2
l2 ≥ 1/3, 2l1 + l2 ≤ 1,

l2 + 2l3 ≤ 1

II5 (0, 1−l1−2l2
2 , 1−l1−2l3

2 ) (l1, 1−l1
2 , 1−l1

2 ) ( 1−l1
2 , 1−l1

2 , l1)
1− w3 − l1 + 3l1w3

2
l1 ≤ 1/3, l1 + 2l2 ≤ 1,

l1 + 2l3 ≤ 1

II6 (0, 1−l1−2l2
2 , 1−l1−2l3

2 ) (l1, 1−l1
2 , 1−l1

2 ) (l1, 1−l1
2 , 1−l1

2 )
1− w1 − l1 + 3l1w1

2
l1 ≥ 1/3, l1 + 2l2 ≤ 1,

l1 + 2l3 ≤ 1
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Table 3. The values of
(

x′1, x′2, x′3
)
, (x1, x2, x3), (y1, y2, y3), F and the conditions for type III.

Type (x′1, x′2, x′3) (x1, x2, x3) (y1, y2, y3) F Conditions

III1 (l3 − l1, 1− l2 − 2l3, 0) (l3, 1− 2l3, l3) (l3, l3, 1− 2l3) w3 + l3 − 3l3w3 l3 ≥ l1, l3 ≥ 1/3, l2 + 2l3 ≤ 1
III2 (l3 − l1, 1− l2 − 2l3, 0) (l3, 1− 2l3, l3) (1− 2l3, l3, l3) w1 + l3 − 3l3w1 l3 ≥ l1, l3 ≤ 1/3, l2 + 2l3 ≤ 1
III3 (1− l1 − 2l3, l3 − l2, 0) (1− 2l3, l3, l3) (l3, l3, 1− 2l3) w3 + l3 − 3l3w3 l3 ≥ l2, l3 ≥ 1/3, l1 + 2l3 ≤ 1
III4 (1− l1 − 2l3, l3 − l2, 0) (1− 2l3, l3, l3) (1− 2l3, l3, l3) w1 + l3 − 3l3w1 l3 ≥ l2, l3 ≤ 1/3, l1 + 2l3 ≤ 1
III5 (l2 − l1, 0, 1− 2l2 − l3) (l2, l2, 1− 2l2) (l2, l2, 1− 2l2) w3 + l2 − 3l2w3 l2 ≥ l1, l2 ≥ 1/3, 2l2 + l3 ≤ 1
III6 (l2 − l1, 0, 1− 2l2 − l3) (l2, l2, 1− 2l2) (1− 2l2, l2, l2) w1 + l2 − 3l2w1 l2 ≥ l1, l2 ≤ 1/3, 2l2 + l3 ≤ 1
III7 (1− l1 − 2l2, 0, l2 − l3) (1− 2l2, l2, l2) (l2, l2, 1− 2l2) w3 + l2 − 3l2w3 l2 ≥ l3, l2 ≥ 1/3, l1 + 2l2 ≤ 1
III8 (1− l1 − 2l2, 0, l2 − l3) (1− 2l2, l2, l2) (1− 2l2, l2, l2) w1 + l2 − 3l2w1 l2 ≥ l3, l2 ≤ 1/3, l1 + 2l2 ≤ 1
III9 (0, l1 − l2, 1− 2l1 − l3) (l1, l1, 1− 2l1) (l1, l1, 1− 2l1) w3 + l1 − 3l1w3 l2 ≤ l1, l1 ≥ 1/3, 2l1 + l3 ≤ 1

III10 (0, l1 − l2, 1− 2l1 − l3) (l1, l1, 1− 2l1) (1− 2l1, l1, l1) w1 + l1 − 3l1w1 l2 ≤ l1, l1 ≤ 1/3, 2l1 + l3 ≤ 1
III11 (0, 1− 2l1 − l2, l1 − l3) (l1, 1− 2l1, l1) (l1, l1, 1− 2l1) w3 + l1 − 3l1w3 l3 ≤ l1, l1 ≥ 1/3, 2l1 + l2 ≤ 1
III12 (0, 1− 2l1 − l2, l1 − l3) (l1, 1− 2l1, l1) (1− 2l1, l1, l1) w1 + l1 − 3l1w1 l3 ≤ l1, l1 ≤ 1/3, 2l1 + l2 ≤ 1

For the three-dimensional constrained OWA aggregation problem with lower bounded variables
(8), there are three forms for X′ and six forms for Y for Type I solution. For type II, there are three
forms for X′ and six forms for Y. For type III, there are six forms for X′ and six forms for Y. Type IV is
that the number of zero elements of solution is zero, there are only one form for X′ and one form for Y.

We illustrate some concrete examples with various (l1, l2, l3) and (w1, w2, w3).

Example 1. For the case of w1 > max
i=2,3

wi, we perform an exhaustive search for li ∈ {−1,−0.9,−0.8, . . . , 1}

and wi ∈ {0, 0.1, 0.2, . . . , 1}, i = 1, 2, 3. The first type I is (l1, l2, l3) = (−1,−1,−1) and (w1, w2, w3) =

(0.9, 0, 0.1). The optimal solution is (y1, y2, y3) = (3,−1,−1),
(
x′1, x′2, x′3

)
= (4, 0, 0), (x1, x2, x3) =

(3,−1,−1) and F = 2.6.

Example 2. Consider the case of w2 > max
i=1,3

wi. Applying an exhaustive search for li ∈

{−1,−0.9,−0.8, . . . , 1} and wi ∈ {0, 0.1, 0.2, . . . , 1}, i = 1, 2, 3, the value of (l1, l2, l3) = (−1,−1, 1)
and (w1, w2, w3) = (0, 0.9, 0.1) is the first one satisfies type I. The optimal solution is (y1, y2, y3) = (1, 1,−1),(

x′1, x′2, x′3
)

= (0, 2, 0), (x1, x2, x3) = (−1, 1, 1) and F = 0.8. For (l1, l2, l3) = (−1,−1,−1) and
(w1, w2, w3) = (0, 0.9, 0.1), the type II solution is (y1, y2, y3) = (1, 1,−1),

(
x′1, x′2, x′3

)
= (0, 2, 2),

(x1, x2, x3) = (−1, 1, 1) and F = 0.8. For (l1, l2, l3) = (−1,−1, 0.4) and (w1, w2, w3) = (0, 0.6, 0.4),
the type III solution is (y1, y2, y3) = (0.4, 0.4, 0.2),

(
x′1, x′2, x′3

)
= (1.2, 1.4, 0), (x1, x2, x3) = (0.2, 0.4, 0.4)

and F = 0.32. For (l1, l2, l3) = (−1,−1,−1) and (w1, w2, w3) = (0, 0.6, 0.4), the type IV solution is
(y1, y2, y3) =

(
1
3 , 1

3 , 1
3

)
,
(

x′1, x′2, x′3
)
= (4/3, 4/3, 4/3), (x1, x2, x3) =

(
1
3 , 1

3 , 1
3

)
and F = 1/3.

Example 3. Consider the case of w3 > max
i=2,3

wi. For li ∈ {−1,−0.9,−0.8, . . . , 1} and wi ∈

{0, 0.1, 0.2, . . . , 1}, i = 1, 2, 3, the value of (l1, l2, l3) = (−1,−1,−1) and (w1, w2, w3) = (0.4, 0, 0.6)
is the first one satisfies type I. The optimal solution is (y1, y2, y3) = (3,−1,−1),

(
x′1, x′2, x′3

)
= (4, 0, 0),

(x1, x2, x3) = (3,−1,−1) and F = 0.6. For (l1, l2, l3) = (−1,−1, 0.4) and (w1, w2, w3) = (0, 0.1, 0.9),
the type II solution is (y1, y2, y3) = (0.4, 0.3, 0.3),

(
x′1, x′2, x′3

)
= (1.3, 1.3, 0), (x1, x2, x3) = (0.3, 0.3, 0.4)

and F = 0.3. For (l1, l2, l3) = (−1,−0.9,−0.8) and (w1, w2, w3) = (0.4, 0, 0.6), the type III solution
is (y1, y2, y3) = (2.8,−0.9,−0.9),

(
x′1, x′2, x′3

)
= (0.1, 0, 3.6), (x1, x2, x3) = (−0.9,−0.9,−2.8) and

F = 0.58. For (l1, l2, l3) = (−1,−1,−1) and (w1, w2, w3) = (0, 0.1, 0.9), the type IV solution is
(y1, y2, y3) =

(
1
3 , 1

3 , 1
3

)
,
(

x′1, x′2, x′3
)
= (4/3, 4/3, 4/3), (x1, x2, x3) =

(
1
3 , 1

3 , 1
3

)
and F = 1/3.
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Minimizing the objective function of the constrained OWA aggregation problem with bounded
variables is also important. One interesting model is the constrained OWA aggregation problem with
upper bounded variables described as follows:

Min WTY
s.t.ITX ≤ 1

GY ≤ 0
yiI − X−MZi ≤ 0, i = 1, 2, . . . , n− 1
ynI − X ≤ 0
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X ≤ U

(10)

where the column vector:

U =


u1

u2
...

un

.

By using the change of variable:

X′ = U −X, yi = −y′n+1−i and Y′ =


y′n

y′n−1
...

y′1


minimizing the objective function of the constrained OWA aggregation problem with upper bounded
variables is:

Max WTY′

s.t.IT ≥ ITU− 1
GY′ ≤ 0
y′1I − X′ ≥ −U
y′iI − X′ + MZi ≥ −U, i = 2, 3, . . . , n
ITZi ≤ n− i, i = 1, 2, . . . , n− 1
Zi+1 ≤ Zi, i = 1, 2, . . . , n− 2
Zi ∈ {0, 1}n, i = 1, 2, . . . , n− 1
X′ ≥ 0

(11)

If ITU − 1 < 0, the constrained OWA aggregation problem has unbounded solution.
If ITU − 1 = 0, the unique optimal solution is X′∗ = 0, so:

X∗ = U.

For the case of 1− ITL > 0, the similar results as Theorem 2 can be derived.

5. Numerical Results

To evaluate the optimal solution behaviors of the three-dimensional constrained OWA aggregation
problem with lower bounded variables, we present some numerical experiments.
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In Table 4, we display the number of solution type I, II, III and IV for different choices of the
weights and the lower bounds. To this end, we consider four types of solution forms I, II, III and IV
and six types of weights:

w1 = max
i=1,2,3

wi, w2 = max
i=1,2,3

wi, w3 = max
i=1,2,3

wi, w1 > max
i=2,3

wi, w2 > max
i=1,3

wi, w3 > max
i=2,3

wi.

Each cell is associated to a pair (W, S) and gives the number of different instances of
(l1, l2, l3, w1, w2, w3) satisfying weight (W) and solution (S) conditions. We restrict our attention
to:

W ∈
{

w1 = max
i=1,2,3

wi, w2 = max
i=1,2,3

wi, w3 = max
i=1,2,3

wi, w1 > max
i=2,3

wi, w2 > max
i=1,3

wi, w3 > max
i=2,3

wi

}
,

S ∈ {I, II, III, IV }, li ∈ {−1,−0.9,−0.8, . . . , 1}, wi ∈ {0, 0.1, 0.2, . . . , 1}, i = 1, 2, 3.

For each cell, the instances (l1, l2, l3, w1, w2, w3) of the test problem are 179,760 for w1 = max
i=1,2,3

wi,

w2 = max
i=1,2,3

wi, w3 = max
i=1,2,3

wi and 119,840 for w1 > max
i=2,3

wi, w2 > max
i=1,3

wi, w3 > max
i=2,3

wi. The total

instances of the test problem are 898,800. An examination of the table reveals that the type IV is not
optimal solution for w1 = max

i=1,2,3
wi. In particular, for w1 > max

i=2,3
wi, the optimal solution type is always

type I solution. If the lower bounds (l1, l2, l3) = (0, 0, 0), then the optimal solution is types II, III
and IV for w2 = max

i=1,2,3
wi and w2 > max

i=1,3
wi, and types I and IV for w3 = max

i=1,2,3
wi and w3 > max

i=2,3
wi.

However, from Table 4, the possible optimal solutions are all the types I, II, III and IV for w2 = max
i=1,2,3

wi,

w3 = max
i=1,2,3

wi, w2 > max
i=1,3

wi and w3 > max
i=2,3

wi. Among a set of four optimal solution types, the largest

number of instances of the test problem is the solution type II. Therefore, the optimal solution type
is I for w1 = max

i=1,2,3
wi and w1 > max

i=2,3
wi, and types I, II, III and IV for w2 = max

i=1,2,3
wi, w3 = max

i=1,2,3
wi,

w2 > max
i=1,3

wi and w3 > max
i=2,3

wi.

Table 4. The number of different instances satisfying weight (W) and solution type (S).

W I II III IV

w1 ≥ w2, w1 ≥ w3 168,101 6826 4833 0
w2 ≥ w1, w2 ≥ w3 47,133 114,240 7411 10,976
w3 ≥ w1, w3 ≥ w2 51,302 56,618 16,960 54,880

w1 > w2, w1 > w3, w2 6= w3 119,840 0 0 0
w2 > w1, w2 > w3, w1 6= w3 28,856 80,164 5332 5488
w3 > w1, w3 > w2, w1 6= w2 30,720 40,656 10,048 38,416

For the three-dimensional constrained OWA aggregation problem with lower bounded variables,
from the numerical experiments the solution type I is the same as that of the constrained OWA
aggregation problem without lower bounded variables for w1 > max

i=2,3
wi. However, for w2 > max

i=1,3
wi

and w3 > max
i=2,3

wi, there are all solution types. For the constrained OWA aggregation problem without

lower bounded variables, the solution are types II, III, IV and types I, IV, for w2 > max
i=1,3

wi and

w3 > max
i=2,3

wi, respectively. The four solution types may be too simple for the three-dimensional

constrained OWA aggregation problem with lower bounded variables. From this result, we anticipate
more complication in the higher dimensions of the constrained OWA aggregation problem with lower
bounded variables.
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6. Conclusions

For the constrained OWA aggregation problem with one constraint on the sum of all variables, this
paper introduces some constraints to reduce the multiple solution problem. For the three-dimensional
constrained OWA aggregation problem with the same lower bounds, by using the change of variables,
the optimal solution is the same as that of the constrained OWA aggregation problem without lower
bounded variables. For the three-dimensional constrained OWA aggregation problem with lower
bounded variables, this paper presents four types (I, II, III and IV) of solutions depending on the
number of zero elements. When the number of zero elements of solution is two (type I), there are three
closed-form expressions of X′ and six closed-form expressions of Y. When the number of zero elements
of the solution is one (types II and III), there are three closed-form expressions of X′ and six closed-form
expressions of Y for type II, and six closed-form expressions of X′ and six closed-form expressions of
Y for type III. When the number of zero elements of the solution is zero (type IV), there is only one
closed-form expression of X′ and one closed-form expression of Y. According to the computerized
experiment we perform for the three-dimensional constrained OWA aggregation problem with lower
bounded variables, the optimal solution type is I for w1 = max

i=1,2,3
wi and w1 > max

i=2,3
wi, and types I, II,

III and IV for w2 = max
i=1,2,3

wi, w3 = max
i=1,2,3

wi, w2 > max
i=1,3

wi and w3 > max
i=2,3

wi.

Worthy of future research is that the analysis is extended to the lower and upper bounded variables
for the constrained OWA aggregation problem, especially for the three-dimensional constrained OWA
aggregation problem with upper bounded variables. Thus, the analysis of the constrained OWA
aggregation problem with bounded variables is a subject of considerable ongoing research.
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