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Abstract: Mathematical physics looks for ways to apply mathematical ideas to problems in physics.
In differential forms, the tensor form is first defined, and the definitions of exterior and symmetric
differential forms are made accordingly. For instance, M is an R-module, M⊗R M the tensor product
of M with itself and H a submodule of M⊗R M generated by x⊗ y− y⊗ x, where x, y in M. Then,
∨2(M) = M⊗R M/H is called the second symmetric power of M. A role of the exterior differential
forms in field theory is related to the conservation laws for physical fields, etc. In this study, I present
a new approach to emphasize the properties of second exterior and symmetric derivations on Kahler
modules, and I find a connection between them. I constitute exact sequences of ∨2(Ω1(S)) and
Λ2(Ω1(S)), and I describe and prove a new isomorphism in the following: Let S be an affine algebra
presented by R/I, where R = k[x1, ...xs] is a polynomial algebra and I = ( f1, ... fm) an ideal of R.
Then, I have J1Ω1(S) ' Ω1(S)⊕∨2(Ω1(S))⊕Λ2(Ω1(S).

Keywords: universal module; differential operators; Kähler module; symmetric derivation;
exterior derivation

1. Introduction

Mathematical physics seeks any approaches to carry out mathematical ideas in problems in
physics. These two disciplines are very close, especially with differential forms. Indeed, in the past,
it was difficult to classify Newton and Gauss as purely physicists or mathematicians. Mathematical
physics has been quite closely related to ideas in calculus, especially those of differential equations.
An easy, acute definition of differential forms, due to H. Flanders [1], is that differential forms are
those found under the integral signs, which give the current state of the differential forms. We draw
up tensor field, related to components a basis formed of tensor products of basis tangent vectors
ei and one-forms wi, as displayed: T = Tik...

...mn...ei ⊗ ek ⊗ ...wm ⊗ wn ⊗ ... The components could be
functions of the position. One may work in the natural bases for these spaces written, for coordinates
xi, ei =

∂
∂xi , wi = dxi. Differential forms are presented as antisymmetric covariant tensor fields, namely

fields that only the wi perform and the components are the antisymmetric basis written as wi ∧ wj ∧
wk = ∑π(−1)ππ[wi ⊗ wj ⊗ wk] composed of the antisymmetric tensor product of wi. π represents a
permutation of the wi. The symbol ∧ is the called wedge product. The exterior derivative d is a map
from p-forms to (p+ 1)-forms. If γ = f dxi ∧ dxj ∧ ..., then d is defined by dγ = ( ∂ f

∂xk )dxk ∧ dxi ∧ dxj ∧ ...,
and the exterior derivative satisfies the Leibniz rule: d(α ∧ β) = dα ∧ β + (−1)pα ∧ dβ. (p = rankα)

in [2]. I now work with the set of differential forms on a commutative algebra. I give lemmas about
second order exterior derivations and give definitions and lemmas about symmetric derivations of
Kähler differentials, and I improve new approaches regarding second order exterior and symmetric
derivatives of Kähler differentials.
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2. Mathematical Background

One of the methods used to prove algebraic sets and their coordinate results is to study
the universal modules of differential operators. Thus, problems related to algebraic sets are transferred
to the module theory. For example, if p is a point in the algebraic set V, then under suitable conditions,
it can be shown that p is a simple point of V if and only if Ω1(R) is a free module including a local ring
R corresponding to the point p of V, and Ω1(R) is the universal module of derivations of R. Universal
modules of differential operators propose an alternative solution to the available criteria that helps
to understand whether a coordinate ring corresponding to an irreducible finitely-generated algebra is
regular or not. Universal modules were first defined by Y. Nakai in 1960 [3]. He gave the necessary
and sufficient condition for an affine domain to be regular and gave an alternative idea of the Jacobian
criterion for regularity. Universal modules of high-order differential operators were first described by
H. Osborn in 1967 [4]. Y. Nakai [5] extended the fundamental theorems for higher derivations and
some properties of the module of high order differentials. R.G. Heynemann and M.E. Sweedler also
studied the same notations in [6]. They mentioned differential operators on a commutative algebra,
which extends the notion of derivations. J. Johnson presented Kähler differentials and differential
algebra in [7]. Then, Erdogan studied universal modules of higher differential operators in 1993 [8].
The exterior and symmetric derivations of universal modules were also studied by Osborn [4], Hart [9,10],
Erdogan [8], Olgun [11], Merkepçi and Olgun [12], Merkepçi and et al. [13], M.E. Sweedler [14] and
Karakuş and et al [15]. Erdogan mentioned the second order exterior derivations of universal modules.
Olgun gave the definition of generalized symmetric derivations on Kähler modules and gave some
homological properties. Merkepçi and Olgun defined some split exact sequences and isomorphisms
about second order symmetric and exterior derivations on Kähler modules, and they calculated the
projective dimension of second order symmetric derivations on Kähler modules.

3. Preliminaries

Let k be a field with characteristic zero and R be a commutative algebra over k. J1(R) is
the universal module of first order differentials of R over k. Ω1(R) is the module of first order
Kähler differentials of R over k. d1 is the first order k-derivation R −→ Ω1(R) of R.

Λ2(Ω1(R)) is the second order exterior derivation of Kähler modules on Ω1(R), and ∨2(Ω1(R))
is the second order symmetric derivation of Kähler modules on Ω1(R).

Definition 1. Let R be any k-algebra (commutative with unit), R→ Ωn(R) be the n-th order Kähler derivation
of R and ∨(Ωn(R)) be the symmetric algebra

⊕
p≥0 ∨p(Ωn(R)) generated over R by Ωn(R) [2].

A generalized symmetric derivation is any k-linear map D of ∨(Ωn(R)) into itself such that:

(i) D(∨p(Ωn(R))) ⊂ ∨p+1(Ωn(R))
(ii) D is an n-th order derivation over k and

(iii) the restriction of D to R (R ' ∨0(Ωn(R))) is the Kähler derivation dn : R→ Ωn(R).

Lemma 1. Let R be a commutative k-algebra. Suppose that Ω1(R) is the universal module of derivations of R
with universal derivation d:R→ Ω1(R) [6]. Then, the map:

D:Ω1(R)→ Λ2(Ω1(R))

D(Σiaid(bi)) = Σid(ai) ∧ d(bi)

is a differential operator of order 1 on Ω1(R) where ai, bi in R.

Proof of Lemma 1. (Osborn, H. Lemma (9.2). p. 155)

Proposition 1. Let S be an affine algebra presented by R/I. Then, the map g : Λ2(F/N) −→ Λ2F/LN
defined by g(d1(xi)∧ d1(xj)) = d1(xi) ∧ d1(xj) is an isomorphism of S-modules, where Λ2F is a free S-module
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with basis {d1(xi) ∧ d1(xj) : 1 ≤ i < j ≤ s}. LN is a submodule of Λ2F generated by the set {d( fk) ∧ d(xj) :
k = 1, ..., m; j = 1, ..., s}.

Proof of Proposition 1. This follows by Proposition 4.1.5 in [6].

4. Main Results

Lemma 2. Let S be an affine algebra presented by R/I. Then,

Ω1(S)
∆̂1−→ J1(Ω1(S))

β̂1−→ Λ2(Ω1(S)) −→ 0

is an exact sequence of S-modules.

Proof of Lemma 2. The following map:

D̂1 : Ω1(S)→ Λ2(Ω1(S))

D̂1(∑
i,j

xid1(xj)) = ∑
i,j

d1(xi) ∧ d1(xj)

is a differential operator of order one on Ω1(S) where xi, xj ∈ R and 1 ≤ i, j ≤ s.
By the universal property of J1(Ω1(S)), there is a unique R-module homomorphism:

β̂1 : J1(Ω1(S))→ Λ2(Ω1(S))

such that β̂1∆̂1 = D̂1 and the following diagram commutes.

Ω1(S)
D̂1−→ Λ2((Ω1(S)))

∆̂1 ↘ ↗ ∃!β̂1

J1(Ω1(S))

Since,

β̂1∆̂1(xid1(xj)) = D̂1(xid1(xj))

= d1(xi) ∧ d1(xj)

β̂1 is surjective. Therefore, we have:

Ω1(S)
∆̂1−→ J1(Ω1(S))

β̂1−→ Λ2(Ω1(S)) −→ 0

an exact sequence of S-modules. It is sufficient to show that the sequence is exact at J1(Ω1(S)).
Note that Im∆̂1 is generated by ∆̂1(d1(xi)) for i = 1,..., s.
Therefore, we have:

β̂1∆̂1(d1(xi)) = D̂1(d1(xi)) = d1(1) ∧ d1(xi) = 0

Hence, Im∆̂1 is in kerβ̂1. Therefore, we get p̂ : J1(Ω1(S))/Im∆̂1 → Λ2(Ω1(S)) defined by:

p̂(∆̂1(xid1(xj)) = d1(xi) ∧ d1(xj)

Now, assume that λ2F and LN are as in Proposition 1. {∆̂1(xid1(xj)) : 1 ≤ i < j ≤ s} generates
J1(Ω1(S))/Im∆̂1. Since Λ2F is a free S-module with basis d1(xi) ∧ d1(xj), we can write a map q̂ :
Λ2F −→ J1(Ω1(S))/Im∆̂1 by:
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q̂(d1(xi) ∧ d1(xj)) = ∆̂1(xid1(xj))

Thus, if { fk} is a generating set for I, we have:

q̂(d1( fk) ∧ d1(xi)) = q̂(∑
i

∂ fk
∂xi

d1(xi) ∧ d1(xi)) = ∑
i

∂ fk
∂xi

∆̂1(xid1(xi) = ∆̂1( fkd1(xi)) = o

where ∂
∂xi

: R −→ R, ∂i(xj) = δi, j for i, j = 1,..., s and δi, j is the Kronecker delta. Hence, q̂(LN) = 0.

Therefore, q̂ induces an S-module homomorphism: q̂ : Λ2F/LN −→ J1(Ω1(S))/Im∆̂1

q̂(d1(xi) ∧ d1(xj)) = ∆̂1(xid1(xj))

It is clear that q̂ p̂ and p̂q̂ are identities, and so, kerp̂ = kerβ̂1/Im∆̂1 = 0 and then kerβ̂1 = Im∆̂1.
Therefore, the sequence is exact. Similarly, the following lemma is given.

Lemma 3. Let S be an affine algebra presented by R/I. Then:

Ω1(S)
∆̌1−→ J1(Ω1(S))

β̌1−→ ∨2(Ω1(S)) −→ 0

is an exact sequence of S-modules.

Proof of Lemma 3. The following map:

Ď1 : Ω1(S)→ ∨2(Ω1(S))

Ď1(∑
i,j

xid1(xj)) = ∑
i,j

d1(xi) ∨ d1(xj)

is a differential operator of order one on Ω1(S) where xi, xj in R and 1 ≤ i, j ≤ s. By the universal
mapping property of J1(Ω1(S)), there is a unique S-module homomorphism β̌1 : J1(Ω1(S)) −→
∨2(Ω1(S)) such that β̌1∆̌1 = Ď1 and the following diagram commutes.

Ω1(S)
Ď1−→ ∨2(Ω1(S))

∆̌1 ↘ ↗ ∃!β̌1

J1(Ω1(S))

Since,
β̌1(∆̌1(xid1(xj))) = Ď1(xid1(xj)) = d1(xi) ∨ d1(xj)

β̌1 is surjective. Therefore, we have:

Ω1(S)
∆̌1−→ J1(Ω1(S))

β̌1−→ ∨2(Ω1(S)) −→ 0

an exact sequence of S-modules. It is sufficient to prove that the sequence is exact at J1(Ω1(S)).
Note that, Im∆̌1 is generated by ∆̌1(d1(xi)), for i = 1,..., s. Therefore, we have:

β̌1∆̌1(d1(xi)) = Ď1(d1(xi)) = d1(1) ∨ d1(xi) = 0

It shows that Im∆̌1 is in kerβ̌1. Therefore, we get p̌ : J1(Ω1(S))/Im∆̌1 → ∨2(Ω1(S)) defined by:

p̌(∆̌1(xid1(xj)) = d1(xi) ∨ d1(xj)
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Now, assume that ∨2F and LN are as in Proposition 1. {∆̌1(xid1(xj)) | 1 ≤ i < j ≤ s} generates
J1(Ω1(S))/Im∆̌1. Since ∨2F is a free S-module with basis d1(xi) ∨ d1(xj), we can write a map q̌ :
∨2F −→ J1(Ω1(S))/Im∆̌1 by:

q̌(d1(xi) ∨ d1(xj)) = ∆̌1(xid1(xj))

Thus, if { fk} is a generating set for I, we have:

q̌(d1( fk) ∨ d1(xi)) = q̌(∑
i

∂ fk
∂xi

d1(xi) ∨ d1(xi)) = ∑
i

∂ fk
∂xi

∆̌1(xid1(xi) = ∆̌1( fkd1(xi)) = o

where ∂
∂xi

: R −→ R, ∂i(xj) = δi, j for i, j = 1,..., s and δi, j is the Kronecker delta. Hence, q̌(LN) = 0.

Therefore, q̌ induces an S-module homomorphism q̌ : ∨2F/LN −→ J1(Ω1(S))/Im∆̌1:

q̌(d1(xi) ∨ d1(xj)) = ∆̌1(xid1(xj))

It is clear that q̌ p̌ and p̌q̌ are identities, and so, kerp̌ = kerβ̌1/Im∆̌1 = 0 and then kerβ̌1 = Im∆̌1.
Therefore, the sequence is exact.

Theorem 1. S is an affine algebra presented by R/I. Then, there exists a split short exact sequence of S-modules:

0 −→ kerβ −→ J1(Ω1(S))
β−→ Ω1(S) −→ 0

and
kerβ ' Λ2(Ω1(S))⊕∨2(Ω1(S))

so, we have:
J1(Ω1(S)) ' Ω1(S)⊕Λ2(Ω1(S))⊕∨2(Ω1(S))

Proof of Theorem 1. The following diagram commutes such that β∆1 = 1S.

Ω1(S)
1S−→ Ω1(S)

∆1 ↘ ↗ ∃!β
J1Ω1(S)

Since,
β(∆1(∑

i,j
xid1(xj))) = ∑

i,j
(xi)d1(xj)

in Ω1(S) for i, j = 1,..., s.
β is surjective. Therefore, we have:

0 −→ kerβ −→ J1(Ω1(S))
β−→ Ω1(S)→ 0

a short exact sequence of S-modules.
Now, the map:

î : Λ2(Ω1(S)) −→ J1(Ω1(S))

defined by:
î(d1(xi) ∧ d1(xj)) = 1/2[∆1(xid1(xj)) + ∆1(xjd1(xi)

+xi∆1(d1(xj))− xj∆1d1(xi)]

Similarly, the map:
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ǐ : ∨2(Ω1(S)) −→ J1(Ω1(S))

defined by:
ǐ(d1(xi) ∨ d1(xj)) = 1/2[∆1(xid1(xj))− ∆1(xjd1(xi))

−xi∆1(d1(xj)) + xj∆1d1(xi)]

Then, we define the following map:

g : Λ2(Ω1(S))⊕∨2(Ω1(S)) −→ J1(Ω1(S))

g(x, y) = βî(x) + βǐ(y)

x ∈ Λ2(Ω1(S)) and y ∈ ∨2(Ω1(S)).
Therefore,

kerβ ∼= Λ2(Ω1(S))⊕∨2(Ω1(S))

Shortly, I prove the splitting. Let:

D̂1 : Ω1(S) −→ Λ2(Ω1(S))

by:

D̂1(∑
i,j

xid1(xj)) = d1(xi) ∧ d1(xj)

and:

Ď1 : Ω1(S) −→ ∨2(Ω1(S))

defined by:

Ď1(∑
i,j

xid1(xj)) = d1(xi) ∨ d1(xj)

D̂1 and Ď1 are first order derivations.
Therefore, by the universal property of J1(Ω1(S)), there exists S-module homomorphisms:

β̂1 : J1(Ω1(S)) −→ Λ2(Ω1(S))

β̌1 : J1(Ω1(S)) −→ ∨2(Ω1(S))

such that diagrams:

Ω1(S)
D̂1−→ Λ2(Ω1(S))

↓ ∆1 ↓ 1Ω1(S)

J1(Ω1(S))
β̂1−→ Λ2(Ω1(S))

and:

Ω1(S)
Ď1−→ ∨2(Ω1(S))

↓ ∆1 ↓ 1Ω1(S)

J1(Ω1(S))
β̌1−→ ∨2(Ω1(S))

commutes.
Therefore, I can write:
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β̂1∆1(∑
i,j

xid1(xj)) = D̂1(∑
i,j

xid1(xj)) = ∑
i,j

d1(xi) ∧ d1(xj)

and:

β̌1∆1(∑
i,j

xid1(xj)) = Ď1(∑
i,j

xid1(xj)) = ∑
i,j

d1(xi) ∨ d1(xj)

From here, I obtain:
β̂1 î = 1Λ2(Ω1(S))

β̌1 ǐ = 1∨2(Ω1(S))

β̂1 ǐ = 0

β̌1 î = 0

Hence, the sequence splits.

Example 1. Let R = k[x1, x2, x3] be a polynomial algebra of dimension three. Then, Ω1(R) is a free R-module
of rank (4

1)− 1 = 3 with basis {d1(x1), d1(x2), d1(x3)}, and ∨2(Ω1(R)) is a free R-module of rank (4
2) = 6

with basis {d1(x1) ∨ d1(x1), d1(x1) ∨ d1(x2), d1(x1) ∨ d1(x3), d1(x2) ∨ d1(x2), d1(x2) ∨ d1(x3), d1(x3) ∨
d1(x3)}. Λ2(Ω1(R)) is a free R-module of rank (3

2) = 3 with basis {d1(x1) ∧ d1(x2), d1(x1) ∧
d1(x3), d1(x2) ∧ d1(x3)}, and J1(Ω1(R)) is generated by:

{∆1(d1(x1)), ∆1(d1(x2)), ∆1(d1(x3)), ∆1(x1d1(x1)), ∆1(x1d1(x2)), ∆1(x1d1(x3)), ∆1(x2d1(x1)), ∆1(x2d1(x2)),

∆1(x2d1(x3)), ∆1(x3d1(x1)), ∆1(x3d1(x2)), ∆1(x3d1(x3))}

so, I identify isomorphism from ranks of Ω1(R),∨2Ω1(R)), Λ2Ω1(R). Therefore,

J1(Ω1(R)) ∼= Ω1(R)⊕∨2(Ω1(R))⊕Λ2(Ω1(R))

Example 2. Let S be the coordinate ring of the cups x2x3 = x3
1. Then, S = k[x1, x2, x3]/( f ) where

f = x2x3 − x3
1. Ω1(S) ∼= F/N whereF is a free S-module on {d1(x1), d1(x2), d1(x3)} and N is a submodule

of F generated by d1( f ) = x2d1(x3) + x3d1(x2)− 3x2
1d1(x1). Since rank (Ω1(S)) = (1+2

2 )− 1 = 2,
I have rank N = rankF − rankΩ1(S) = 3 − 2 = 1. Therefore, N is free S-module.

Similarly,∨2(Ω1(S)) ∼= ∨2F/LN where ∨2F is a free module with basis {d1(x1) ∨ d1(x1), d1(x1) ∨
d1(x2), d1(x1) ∨ d1(x3), d1(x2) ∨ d1(x2), d1(x2) ∨ d1(x3), d1(x3) ∨ d1(x3)}, and LN is a submodule of ∨2F
generated by:

d1( f ) ∨ d1(x1) = x2d1(x3) ∨ d1(x1) + x3d1(x2) ∨ d1(x1)− 3x2d1(x1) ∨ d1(x1)

d1( f ) ∨ d1(x2) = x2d1(x3) ∨ d1(x2) + x3d1(x2) ∨ d1(x2)− 3x2d1(x1) ∨ d1(x2)

d1( f ) ∨ d1(x3) = x2d1(x3) ∨ d1(x3) + x3d1(x2) ∨ d1(x3)− 3x2d1(x1) ∨ d1(x3)

rank ∨2(Ω1(S)) = (2+1
2−1) = (3

1) = 3.
By the same argument, Λ2(Ω1(S)) ∼= Λ2F/lN where Λ2F is a free module with basis {d1(x1) ∧

d1(x2), d1(x1) ∧ d1(x3), d1(x2) ∧ d1(x3)}, and lN is a submodule of Λ2F generated by:

d1( f ) ∧ d1(x1) = x2d1(x3) ∧ d1(x1) + x3d1(x2) ∧ d1(x1)

d1( f ) ∧ d1(x2) = x2d1(x3) ∧ d1(x2)− 3x2
1d1(x1) ∧ d1(x2)

d1( f ) ∧ d1(x3) = x3d1(x2) ∧ d1(x3)− 3x2
1d1(x1) ∧ d1(x3)
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rank Λ2(Ω1(S)) = (2
2) = 1.

We derive the rank of J1(Ω1(S)) from the ranks of Ω1(S),∨2(Ω1(S)), Λ2(Ω1(S)),
so J1(Ω1(S)) ∼= Ω1(S)⊕Λ2(Ω1(S))⊕ ∨2(Ω1(S)).

5. Discussion

There are many studies about symmetric and exterior derivations of Kähler modules. Moreover,
exterior derivations have been studied more extensively. Especially, there are articles about first order
symmetric and exterior derivations of Kähler modules. Then, the question comes to mind: Is there a
connection between these two subjects that are working in the same field? In this study, I examined
the relationship between the symmetric and exterior derivations of Kähler modules. I am sure that the
results that I have found are useful, especially in the next studies. Furthermore, I think the following
questions are necessary for the future research:

(1) Can I define a new approach related to high order symmetric and exterior derivations of Kähler
modules?

(2) Under which conditions can I write a connection about high order symmetric and exterior
derivations on Kähler modules.

6. Conclusions

I know that symmetric and exterior derivations on Kähler modules play an important role both
in mathematical physics and in commutative algebra. Studies on the structure of the symmetric
and exterior derivations of Kähler modules present interesting aspects for not only mathematical
physics, but also commutative algebra. Therefore, in this paper, I searched for new approaches for the
connection of first order symmetric and exterior derivations. Finally, I defined some isomorphisms,
proved them and gave special examples.
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