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Abstract: The paper focuses on the vibration analysis of a vehicle equipped with two identical
engines. Such solutions are encountered in practice when less power is needed for a vehicle for a
certain period of time and then greater power the rest of the time. An example of this would be a
mobile drilling rig. During transport (a relatively short period of time) only one engine operates
and then, in service (most of the operating time), both engines operate. A characteristic of such an
aggregate is the existence, within the transmission, of two identical engines. The existence of identical
parts in mechanical systems leads to properties that allow the computations to be simplified in order
to obtain suggestive and rapid results, with reduced computation effort. These properties refer to
the eigenvalues and eigenmodes of vibration for these types of systems and have been stated and
demonstrated in the paper. It also allows for a qualitative analysis of the behavior of the system in
case of vibrations. The existence of these properties allows for easier calculation and shortening of
the design time. The mechanical consequences of the existence of symmetries or identical parts have
begun to be studied in more detail in the last decade (see references), and the work is part of these
trends. The vibration properties of a transmission of a truck with two identical engines have been
stated and proven and a real example is analyzed. Two 215 hp engines were used in the application.
In order to establish a useful solution in practice, two constructive variants with a different clutch
position in the transmission are analyzed in parallel.
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1. Introduction

The structural symmetries and the properties that they give to the structures have been observed
by the researchers and used especially in the static case; they are presented in the classical courses of
strength of materials or structural analysis. An analysis of the different types of symmetries in applied
mechanics is made in [1]. Symmetries are encountered in all aspects of human life, and engineering
applications are no exception in using the properties and benefits that these symmetries bring.

Symmetries in mechanics have been studied mainly from the point of view of mathematicians [2–4]
as they have effects in writing equations of motion, but with fewer applications in practice.
A presentation of the application of symmetries in continuous mechanics is made in [5,6]. In January
2018, a special issue of the Symmetry magazine dedicated to applications in structural mechanics was
launched (Civil Engineering and Symmetry—2018, a special issue of Symmetry—ISSN 2073-8994, see
ref. [7]). A European project was also funded to study this type of problem (mechanics and symmetry
in Europe: The geometry and dynamics of deformable systems. Project. HPRN-CT-2000-00113,
funded under: FP5-HUMAN POTENTIAL, see ref. [8]) and courses were held at the Center for Solid
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Mechanics—CISM from Udine (similarity, symmetry and group theoretical methods in mechanics,
September 7, 2015–September 11, 2015. Lectures at the International Center for Mechanical Sciences,
see ref. [9]).

Lately, numerous works have been published that aim to use symmetries in order to obtain
properties that allow for a simplified analysis of the models used, in different fields [10–13].
Different mechanical systems with symmetries and properties induced by these symmetries are
also analyzed [14,15]. In the vibrations research field, the effect of symmetries was less used but there
are works that have begun to study this type of problem, sometimes with implications in other works,
which focus on different other aspects [16–23].

However, there are many situations that can be studied and, therefore, the paper aims to complete
some of the studied cases by offering some ideas for the application of these properties that could help
a design engineer.

In the spirit of these works, some vibration properties of the considered symmetrical mechanical
system (in our case the transmission of a truck) are stated in the paper, then they are proved and are
applied in a real, concrete example of a truck equipped with two 215 HP identical engines. Numerical
results are obtained, with real values of the parameters, which confirm the theoretical results obtained
and, thus, shorten the time to calculate eigenfrequencies and eigenmodes of vibrations for these kinds
of systems.

2. Materials and Methods

If we have already verified and found convenient engines, a solution used in practice in order to
obtain greater power is to use two identical engines within a machine. It is possible that, for a period of
time, only the power of one engine is required and, after a while, the power of both engines is needed.
For example, in the case of the above mentioned mobile drilling plant, only the power of an engine is
required for the movement of the vehicle, while for the actual drilling operations, the power of both
engines to be required [1] (Figure 1).
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Figure 1. Mobile oil drilling plant type TW125 CAA6 mounted on a chassis ROMAN 75,540 MFEG
(12 × 8) [24].

A mobile drilling plant is a special commercial vehicle, designed and manufactured so as to
ensure the dynamics and durability/reliability imposed by the conditions under which the drilling is
performed, conditions that involve both the operation and moving in harsh conditions (unpaved roads).
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Another practical application is the use of two engines in certain special vehicles just to obtain higher
power. Such a vehicle can be equipped with a power outlet that could be connected to a machine and
can only be operated by a single engine. Such a system has been studied in our work, but the results
obtained are valid and can be applied to any vehicle equipped with two identical engines from which
the power is collected and summed using a combiner transmission box. The demands of the active and
passive components of these types of vehicles are large and complex, including high static demands
and dynamic demands through vibrations and shocks. The dynamics that such vehicles must provide
and the mechanical strength (stresses and deformations) that must exist make these vehicles interesting
for research, especially considering the demands and environmental conditions of exploitation [1].

The main components of the powertrain are the drive system, consisting of two diesel engines
supercharged with electronic injection and the add-on box/add-on and distribution box, with the
role of summing the torques transmitted by the two engines. If there is no need for both engines to
produce power, only the power transmitted by an engine can be used. The gearboxes in the add-on
gearbox bring the advantages of high transmission efficiency, the possibility of transmitting extremely
high-value torque, the stable operation and high durability/reliability indices.

The kinematic transmission diagram of the truck and the combiner transmission box connected to
the two engines arepresented in Figures 1–3.
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Let us consider a vehicle equipped with two identical engines. Two constructive solutions have
been proposed by the designer: one solution with the clutch located behind the engines and the other
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solution with the clutch located in front of the engines. The constructive schemes of the two solutions
are presented in Figures 4 and 5.
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The model for the study of vibrations of the system in the two situations is shown in Figure 6.
(the clutch is considered coupled). The model with wheels (for one single engine) is presented in
Figure 7. The fact that the two engines are identical leads to the highlighting of some properties of
the equations of motion that describe the free vibration of the system that can allow for the necessary
calculations to be made easier and to obtain qualitative conclusions regarding the vibrating system.
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The values considered in the calculus for this paper can be found in Tables 1–3.

Table 1. The moments of inertia.

No. Moment of Inertia Details

1 J1 Cylinder 1
2 J2 Cylinder 2
3 J3 Cylinder 3
4 J4 Cylinder 4
5 J5 Cylinder 5
6 J6 Cylinder 6
7 J7, J12 Gears
8 J8 Central Gear
9 J9 Flywheel

10 J10 Ventilator
11 J11 Exit steering wheel

Table 2. The moment of inertia of the wheels in the two studied cases.

No.
Rear Clutch Model Front Clutch Model

Moment of Inertia Values (kg*m2) Moment of Inertia Values (kg*m2)

1 J1 0.1048 J1 0.1048
2 J2 0.0638 J2 0.0638
3 J3 0.1048 J3 0.1048
4 J4 0.1048 J4 0.1048
5 J5 0.0638 J5 0.0638
6 J6 0.1048 J6 0.1048
7 J7+J8+J12 1.81182 J7+J8+J12 1.4157
8 J9 3.41895 J9 2.9841
9 J11 3.70752 J11 1.3382

Table 3. Stiffness of the shafts between two neighboring steering wheels.

Between
Rear Clutch Model Front Clutch Model

Stiffness Values (Nm/rad) Stiffness Values (Nm/rad)

1–2 k1 2.56 × 106 k1 2.56 × 106

2–3 k2 2.56 × 106 k2 2.56 × 106

3–4 k3 2.53 × 106 k3 2.53 × 106

4–5 k4 2.56 × 106 k4 2.56 × 106

5–6 k5 2.56 × 106 k5 2.56 × 106

6–7 k6 20.87 × 106 k6 20.87 × 106

7–8 k7 12.67 × 106 k7 4.683 × 106

7–9 k8 0.045961 × 106 k8 0.030158 × 106
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3. Results

If we consider:

[Je] =




J1

J2 0
J3

J4

0 J5

J6




; [Jr] =




J7 + J8 + J12 0 0
0 J9 + J10 0
0 0 J11




[Ke] =




k1 −k1

−k1 k1 + k2 −k2 0
−k2 k2 + k3 −k3

−k3 k3 + k4 −k4

0 −k4 k4 + k5 −k5

−k5 k5 + k6




[Kc] =




0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
−k6 0 0




; [Kr] =




2k6 + k7 + k8 −k7 −k8

−k7 k7 0
−k8 0 k8




[J] =




[Je] O6x6 O6x3

O6x6 [Je] O6x3

O3x6 O3x6 [Jr]



; [K] =




[Ke] O6x6 [Kc]

O6x6 [Ke] [Kc]

[Kc]
T [Kc]

T [Kr]



{θ} =



{θs}
{θd}
{θr}


;
{ ..
θ
}
=



{ ..
θs

}
{ ..
θd

}
{ ..
θr

}


.

(1)

In (1) {θs} represents the vector of the rotations of the flywheels of the first engine, {θd} represents
the vector of the rotations of the flywheels of the second engine and {θr} the vector of the other rotations
of the system.

The motion equations for the free non-damped vibrations for the whole structure can be obtained:




[Je] O6x6 O6x3

O6x6 [Je] O6x3

O3x6 O3x6 [Jr]






{ ..
θs

}
{ ..
θd

}
{ ..
θr

}


+




[Ke] O6x6 [Kc]

O6x6 [Ke] [Kc]

[Kc]
T [Kc]

T [Kr]






{θs}
{θd}
{θr}


= 0. (2)

For one single engine, the equations are:

[Je]
{ ..
θe

}
+ [Ke]{θe} = 0. (3)

Using the results presented in [9–11] the following property has been established:

3.1. Theorem T1. The Eigenvalues for the System (3) are Eigenvalues for the System (2) As Well

That means that the solutions of algebraic equations:

det
(
[Ke] −ω2[Je]

)
= 0

(
or

∣∣∣Ke −ω2 je
∣∣∣ = 0

)
, (4)

are also solutions of the algebraic equation:

det







Ke 0 Kc

0 Ke Kc

KT
c KT

c Kr



−ω2




Je 0 0
0 Je 0
0 0 Jr






= 0, (5)
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or: ∣∣∣∣∣∣∣∣∣

Ke −ω2 Je 0 Kc

0 Ke −ω2 Je Kc

KT
c KT

c Kr −ω2 Jr

∣∣∣∣∣∣∣∣∣
= 0. (6)

We could write:

∣∣∣Ke −ω2 Je
∣∣∣ = 0 ⇒

∣∣∣∣∣∣∣∣∣

Ke −ω2 Je 0 Kc

0 Ke −ω2 Je Kc

KT
c KT

c Kr −ω2 Jr

∣∣∣∣∣∣∣∣∣
= 0, (7)

which implies that the polynomial in ω2 from Equation (6) is divided by the polynomial in ω2 from
Equation (4).

We consider:

[P(ω2)] = [K] −ω2[J] , [Pe(ω
2)] = [Ke] −ω2[Je] , [Pr(ω

2)] = [Kr] −ω2[Jr] , ∆ = det[P(ω2)] ,∆e = det[Pe(ω
2)],∆r = [Pr(ω

2)] .

For the vibrating system (as a whole) the free undamped torsional vibrations will be the system of
equations (2), which can be written in compact form:

[J]
{ ..
ϕ
}
+ [K]

{
ϕ
}
= 0, (8)

where
{
ϕ
}

represents the vector of the rotations of the flywheels, [J] being the matrix of inertia and [K]

being the stiffness matrix. The characteristic equation for the presented system (7) can be written:

∆ = P(ω2) = det([K] −ω2[J]). (9)

Theorem T1 will be now proven.

Proof. The characteristic polynomial for the single-engine system is:

∆e = Pe(ω
2) = det([Ke] −ω2[Je]).

If we consider ∆e = 0, we obtain the natural frequencies for a single engine, taken separately.
The characteristic polynomial for the whole system is:

∆ = det([K] −ω2[J]) = det




[Ke] −ω2[Je] 0 [Kc]

0 [Ke] −ω2[Je] [Kc]

[Kc]
T [Kc]

T [Kr] −ω2[Jr]



=

= det




[Pe(ω2)] 0 [Kc]

0 [Pe(ω2)] [Kc]

([Kc]
T [Kc]

T [Pr(ω2)]




(10)

By direct calculus, applying Laplace’s rule for determinants, we obtain in this case:

∆ = ∆eP ∗ (ω2). (11)

If ∆e = 0, then we immediately have ∆ = 0, so the natural frequencies for the system consisting of
a single engine are also natural frequencies for the whole system. �

We will consider 1ω2
i , i = 1, n1 being the natural frequencies of a single engine and ω2

i , i =
1, 2n1 + n2 being the natural frequencies of the whole system. In our situation, n1 = 6, n2 = 3.

This property is valid in a more general context. This fact will be demonstrated as follows
using [9].
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Preliminary considerations:
Let us consider M = (mi j)i, j∈{1,2,...,n}, U =

(
mi j

)
i∈{i1,i2,...,ik}⊂{1,2,...,n}, j∈{ j1, j2,..., jk}⊂{1,2,...,n} a sub-matrix of

M and α = det(U). For the chosen matrix U we consider the complementary matrix
U = (mi j)i∈{1,2,...,n}\{i1,...,ik}, j∈{1,2,...,n}\{ j1,..., jk}. We call an algebraic complement of the minor α (the

cofactor of α) the determinant with the sign α = (−1)i1+...+ik+ j1+...+ jkdet(U).
Considering the lines i1, . . . , ik being fixed we have:

det(M) =
∑

1≤ j1<...< jk≤n

αα. (12)

This formula generalizes the Laplace expansion formula according to a line of the matrix
M determinant.

U is a matrix (n – k) × (n – k) and considering V its square sub-matrix of indices
{
m1, . . . , mp

}
,{

l1, . . . , lp
}

of determinant β and correspondingly matrix V we may write:

det(U) =
∑

1≤l1;...;lp≤n−k

β · (−1)m1+...+mp+l1+...lpdet(V),

therefrom we have:

det(M) =
∑

1≤ j1<...< jk≤n

∑

1≤l1<...<lp≤n−k

αβ(−1)i1+...+ik+ j1+...+ jk+m1+...+mp+l1+...+lpdet(V) =
∑

j

∑

l

αβγ (13)

3.2. If We Consider the Square Polynomial Matrices with Complex Coefficients, of Size n, Noted A, B, C, L, Z =

On and matrix
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αβ(−1)i1+...+ik+ j1+...+ jk+m1+...+mp+l1+...+lpdet(V) =
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j

∑

l

αβγ (13)

3.2. If We Consider the Square Polynomial Matrices with Complex Coefficients, of Size n, Noted A, B, C, L, Z =

On and matrix M =




A Z B
Z A B
L L C


 , then det(M) is Dividable by det(A)

ccc A Z B Z A B L L C array 10 , then det(M) is Dividable by det(A)#I

Proof. Considering an expansion of type (13) with minors of the nth order having elements on the first
n lines we have [25]:

det(M) =
∑

1≤ j1;...; jn≤3n

∑

1≤l1;...;ln≤2n

αβγ.

We shall prove the sentence demonstrating that for this special type of matrix if a term of
the previous sum is not dividable by det(A), then there is a term α′β′γ′ in the expansion so that
αβγ+ α′β′γ′ = 0.

We shall analyze the possible cases, one by one. We shall highlight for the start the columns of the
blocks which intervene in matrix M namely A = (A1..An), B = (B1..Bn), C = (C1..Cn), L = (L1..Ln) and
Z = (Z1..Zn) = (0..0).

• For j1 = 1, jn = n we have α = det(A).

• For j1 = 2n + 1, jn = 3n we have α = det(B) and α = det
(

Z A
L L

)
= −det(L) · det(A).

• For the rest, we notice that:

• if there is an index jk ∈ {n + 1, . . . , 2n} then the column k from α is null thus αβγ = 0.
• α is non-null if

{
j1, . . . , jk

} ⊂ {1, 2, . . . , n} and
{
jk + 1, . . . , jn

} ⊂ {2n + 1, . . . , 3n} in this case
α = det(Aj1..AjkBik + 1..Bin) where ik + l = jk + l − 2n. For such a fixed α we have three
possibilities for β namely:

• β has a column 0 thus β = 0;
• β = det(A);

, then det(M) is Dividable by det(A)

Proof. Considering an expansion of type (13) with minors of the nth order having elements on the first
n lines we have [25]:

det(M) =
∑

1≤ j1;...; jn≤3n

∑

1≤l1;...;ln≤2n

αβγ.

We shall prove the sentence demonstrating that for this special type of matrix if a term of
the previous sum is not dividable by det(A), then there is a term α′β′γ′ in the expansion so that
αβγ+ α′β′γ′ = 0.

We shall analyze the possible cases, one by one. We shall highlight for the start the columns of the
blocks which intervene in matrix M namely A = (A1..An), B = (B1..Bn), C = (C1..Cn), L = (L1..Ln) and
Z = (Z1..Zn) = (0..0).

• For j1 = 1, jn = n we have α = det(A).

• For j1 = 2n + 1, jn = 3n we have α = det(B) and α = det
(

Z A
L L

)
= −det(L) · det(A).

• For the rest, we notice that:

• if there is an index jk ∈ {n + 1, . . . , 2n} then the column k from α is null thus αβγ = 0.
• α is non-null if

{
j1, . . . , jk

} ⊂ {1, 2, . . . , n} and
{
jk + 1, . . . , jn

} ⊂ {2n + 1, . . . , 3n} in this case
α = det(Aj1..AjkBik + 1..Bin) where ik + l = jk + l − 2n. For such a fixed α we have three
possibilities for β namely:

• β has a column 0 thus β = 0;
• β = det(A);
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• β = det(As1..AslBrl + 1..Brn). In this case, we can determine in a unique way the matrix
V for each of the two possible versions:

• If there is t ∈ {1, . . . , n}\{ j1, . . . jk, s1, . . . , sl
}

then V contains twice the column Lt thus
αβγ = 0;

• If {1, . . . , n} = {
j1, . . . jk, s1, . . . , sl

}
then we consider α′ = (det(As1..AslBrl + 1..Brn)

β′ = det(Aj1..AjkBik + 1..Bin) and γ′ will be a determinant having the same C type
columns located in the same position as in γ and the L type columns will be the
same but permutated as far as the position is concerned. A direct calculation of
signs will lead to αβγ+ α′β′γ′ = 0.

Thus the sentence has been proved. �

In our case we have:

M =




A Z B
Z A B
L L C



=




[Pe(ω2)] 0 [Kc]

0 [Pe(ω2)] [Kc]

([Kc]
T [Kc]

T [Pr(ω2)]



, (14)

that is a more particular case.

3.3. The Natural Modes of Vibration

To find the natural modes of vibration for this problem is the same with solving the linear
homogenous system:




[Pe(ω2
i )] 0 [Kc]

0 [Pe(ω2
i )] [Kc]

[Kc]
T [Kc]

T [Pr(ω2
i )]






{Φs}
{Φd}
{Φr}


i

= 0 , i = 1, n, (15)

where the eigenvector was partitioned according to the subsystems composed of the two engines and
the rest of the flywheels.

Theorem T2. The system (15) has, forω2
i =1 ω2

i , solutions such as (skew-symmetrical eigenmodes):



{Φs}
−{Φs}

0


i

, i = 1, n1. (16)

Proof. [
[Pe(1ω2

i )] [Kc]
]{ {Φs}
{Φr}

}

i
= {0}. (17)

[
[Pe(1ω2

i )] [Kc]
]{ {Φd}
{Φr}

}

i
= {0}. (18)

[
[Kc] [Kc]

[
Pr(1ω2

i )
] ]



{Φs}
{Φd}
{Φr}


i

= {0}. (19)

From equations (17) and (18) we have:

[Pe(1ω
2
i )]{Φs}i = [Pe(1ω

2
i )]{Φd}i = −[Kc]{Φr}i, (20)
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whereas, by the statement:
∆e(1ω

2
i ) = det[Pe(1ω

2
i )] = 0, (21)

then (20) can only take place if:
{Φr}i = 0. (22)

From (19) we have:

[Kc]{Φs}i + [Kc]{Φd}i +
[
Pr(1ω

2
i )

]
{Φr}i = [Kc]{Φs}i + [Kc]{Φd}i = {0}, (23)

so that:
{Φs}i = −{Φd}i. (24)

�

Theorem T3. The system (15) has, for ω2
i ,1 ω2

i (i = n1 + 1, 2n1 + n2) solutions such as
(symmetrical eigenmodes): 

{Φs}
{Φs}
{Φr}


i

. (25)

Proof. In this case det[Pe(ω2
i )] , 0, so (17) and (18) from Theorem T2 can be written as:

[Pe(ω
2
i )]{Φs}i = −[Kc]{Φr}i, (26)

[Pe(ω
2
i )]{Φd}i = −[Kc]{Φr}i, (27)

having the solution:

{Φs} = {Φd} = [Pe(ω
2
i )]
−1
[Kc]{Φr} (28)

�

In Table 4, the eigenvalues for the two constructive solutions of a motor vehicle with two identical
engines are presented and, for the sake of compassion, the eigenvalues of a single engine are also
presented. We observed the six values of the natural frequencies of a single engine that coincide with
six of the natural frequencies of the whole assembly.

Table 4. Eigenvalues for the two models.

No
Rear Clutch Model Front Clutch Model Single Engine Model
Eigenvalues (rpm) Eigenvalues (rpm) Eigenvalues (rpm)

1 0 0
2 1.338 1.596
3 14.062 13.449
4 14.564 14.062 14.062
5 30.417 22.397
6 40.278 40.278 40.278
7 41.483 41.329
8 67.067 67.067 67.067
9 67.561 67.632
10 92.764 92.764 92.764
11 93.394 93.553
12 100.959 100.959 100.959
13 101.039 101.056
14 144.921 144.921 144.921
15 151.079 152.676
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The representation of the vibration modes for the branched system is suggestive for presenting
the results (Figures 8 and 9). If the natural frequencies of the branched system coincide with the natural
frequencies of the single engine, the vibration modes will be skew-symmetric, and for the other natural
frequencies, the natural modes will be symmetrical.
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4. Discussion

For a mechanical transmission presenting symmetry, some properties regarding eigenvalues and
eigenmodes were stated and demonstrated. These properties suggest a method that would facilitate the
calculation of eigenvalues. Thus, in Section 3 we have shown that eigenvalues for a single engine were
among the eigenvalues of the whole mechanical system. From this, a method to simplify the calculus
was presented: First, we calculated the eigenvalues for one single engine; then, these eigenvalues
(which we already determined) were eliminated from the characteristic equation of the whole system.
In this way, the size of the system was reduced and the calculation became easier. We have also shown
that eigenmodes could be classified into symmetric and skew-symmetric modes of vibration and the
skew-symmetric modes could be immediately built if one knows the eigenmodes for a single engine.

In the paper, two variants of mechanical systems that were equipped with two identical engines
were analyzed, from the point of view of vibrations. The results show that the differences, from this
point of view, were insignificant in terms of performance. Considering this, the choice of the optimum
solution will be made according to criteria other than the vibrations of the transmission. In the paper,
it was shown that the constructive symmetries that exist could help ease the calculation. Thus it was
shown that the vibrations of the symmetrical parts could also be found among the natural frequencies
of the whole system. The vibration modes were of two types: some were skew-symmetric, while
others respected the symmetry of the system (symmetrical vibration modes). The problem studied
allowed to highlight the properties of some symmetrical systems, applicable in any type of system
with symmetrical parts, which allowed the calculation to be made in an easier way.

The method could also be applied for other mechanical systems presenting some symmetries.
For small systems, with a reduced number of degrees of freedom, the method had no obvious
advantages. For large systems, with a large number of degrees of freedom (as we could find in the
Finite Element Method), the use of the presented properties for calculating eigenvalues and eigenmodes
of vibration could significantly reduce the computation time by reducing the dimensions of the studied
system. Thus, instead of calculating the eigenvalues and the eigenmodes for the whole system, we first
calculated them for a symmetrical part and then we eliminated the determined values from the written
equations for the whole system, in this way reducing the complexity of the problem, making it easier
to be solved.
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