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Abstract: Fractional derivative models are widely used to easily characterise more complex damping
behaviour than the viscous one, although the underlying properties are not trivial. Several studies
about the mathematical properties can be found, but are usually far from the most daily applications.
Thus, this paper studies the properties of structural systems whose damping is represented by a
fractional model from the point of view of a mechanical engineer. First, a single-degree-of-freedom
system with fractional damping is analysed. Specifically, the distribution of the poles and the
dynamic response to several excitations is studied for different model parameter values highlighting
dissimilarities from systems with conventional viscous damping. In fact, thanks to fractional models,
particular behaviours are observed that cannot be reproduced by classical ones. Finally, the dynamics
of a machine shaft supported by two bearings presenting fractional damping is analysed. The study is
carried out by the Finite Element method, deriving in a system with symmetric matrices. Eigenvalues
and eigenvectors are obtained by means of an iterative method, and the effect of damping is visualised
on the mode shapes. In addition, the response to a perturbation is computed, revealing the influence
of the model parameters on the resulting vibration.

Keywords: fractional damping; vibration; dynamic behaviour

1. Introduction

In the context of dynamics, fractional models allow us to easily represent the vibratory behaviour
of elements that would otherwise require complex formulations, such as multielement or hereditary
models, because they are able to reproduce correctly the damping mechanisms that come into
play using a low number of variables [1,2]. Fractional models are specially advantageous for
polymeric materials that show some level of dependence to frequency and arise naturally, for example,
from certain motions of Newtonian fluids [3] or the molecular theories that predict the behaviour of
certain type of polymeric materials [4]. In fact, fractional models are used to capture with more ease
the viscoelastic nature of materials such as rubber or concrete [5] whose behaviour was previously
modelled with a power law [6,7]; fractional operators appear in the non-linear stress-strain relation of
metals [8]; and viscoelastic constitutive models based on fractional derivatives have been proposed to
reproduce the time dependent behaviour of real materials [9–14].

Several works treating the behaviour of dynamic systems following fractional models from a
mathematical perspective can be found in the literature. For instance, in [15], a fractionally damped
single-degree-of-freedom (1 DOF) oscillator was analysed using the Laplace transform. It was found
that a system of this kind exhibits nine distinct behaviour cases in opposition to the three shown
by a traditional oscillator. Also, in the [16–18] series, the behaviour of a fractional oscillator whose
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derivative order was between one and two was studied, first when subjected to initial conditions
and, after, when applying a sinusoidal force to the system. The main conclusion of the series was that
a fractional oscillator like the one analysed presented damping even if not explicitly stated.

Computing methods have been widely proposed as well, mostly numerical [19] due to the
difficulty to obtain closed-form solutions. Apart from the Laplace transform, which has been
already mentioned, the Fourier transform [4], an eigenvector expansion in the state space [20], modal
synthesis [21] or finite elements [22,23] have been used to obtain the response of systems presenting
fractional damping.

In general, these types of systems are not analysed from the engineering point of view, even
if fractional models have been used in the actual engineering practice, for instance, to linearise
equations or to reduce the number of parameters needed to represent elastoplastic [24] or viscoelastic
behaviours [11]. For this reason, the objective of this work is to shed light on the dynamic behaviour
of a system whose damping is modelled using a fractional model. To this aim, first the theoretical
background is presented with the aid of a 1 DOF system, for which the distribution of poles is studied
and whose dynamic response to different excitations is computed. Instead of focusing on obtaining
the analytical response for certain values, the behaviour of the system is analysed numerically in a
range of values in order to identify trends. The goal is to identify the differences between a system
whose damping is modelled as fractional and one following a traditional viscous damping formulation.
This understanding is used afterwards to represent the dynamics of a machine shaft supported by two
bearings with fractional damping.

2. Theoretical Background: A 1 DOF System with Fractional Damping

A single-degree-of-freedom mechanical system that presents fractional damping follows the
equation of motion

mẍ + cDαx + kx = F(t) / α ∈ [0, 1], (1)

where m, c and k are respectively the mass, damping and stiffness of the system, F(t) is an external
force and α is the order of the fractional derivative that, in order to describe a viscoelastic damper, is
considered to be between zero and one—if the order of the derivative were zero, the damper would
behave as a spring and would be considered “elastic”; if one, the damping would be viscous.

The fractional derivative of a function f (t) is computed following the Caputo definition using
the gamma function Γ as

Dα f (t) =
dα f (t)

dtα
=

1
Γ(n− α)

d
dt

∫ t

0

f (n)(u)
(t− u)α+1−n du, (2)

where n − 1 ≤ α < n. In this work, the Caputo definition is preferred to the Riemman-Liouville
because the constant terms produced by the Laplace transform of the former have direct physical
meaning [15] whereas the interpretation of such terms in the latter is more complex [12].

In the case under study, as the order of the derivative α is between zero and one and,
in consequence, n = 1, the fractional derivative in (2) becomes

Dα f (t) =
dα f (t)

dtα
=

1
Γ(1− α)

d
dt

∫ t

0

f (u)
(t− u)α

du. (3)

For more detail about the definition or computation of fractional derivatives, any of the classical
texts on the subject [2,25–27] is recommended.

2.1. Poles of the System

One of the peculiarities of a system with fractional damping is the nature of its poles. In order to
compute them, (1) is expressed in the Laplace domain, where adopts the form
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(
ms2 + csα + k

)
X(s) = sα−1x(0), (4)

if F(t) = 0 is considered, X(s) = L {x(t)} being the Laplace transform of the displacement x(t).
Then, the characteristic equation

ms2 + csα + k = 0 (5)

is solved. Supposing that α is a rational number and can be therefore expressed as the quotient of
two integers α = p/q, (5) becomes the polynomial of order 2q

mr2q + crp + k = 0 / r = s
1
q (6)

from which the poles of the system can be obtained. Resorting to the state space is a more elegant
way to determine the poles of the system [8,20,28,29], but the presented process allows us to focus on
the qualitative properties of the fractionally damped oscillator keeping the mathematical complexity
to a minimum.

From (6), one could think that a fractionally damped system has 2q poles but, in reality, only two
of them—a complex conjugate pair [15], actually—are solutions to the original system (5), the rest are
extraneous solutions due to the solving process.

The fact that (5) has only two complex conjugate poles can be explained from the physics of the
real system it models: a 1 DOF system can only vibrate at a single frequency. Also, the fact that the
poles of the system are complex conjugates implies that the response is always oscillatory and that
there are no overdamped or critically damped cases as defined for a traditional 1 DOF system [20].
From a mathematical perspective, this phenomenon is related to the fact that the solutions of fractional
order differential equations are Mittag-Leffler functions, whose properties explain the oscillatory
dynamics of fractionally damped systems [16,29]. This feature will be further discussed when studying
its dynamic response in Section 2.2.

In order to better understand the behaviour of the system, the variation in the position of the poles
with the order of the derivative α is studied. Without loss of generality, for the numerical computations
the mass m, damping c and stiffness k parameters are considered unitary (in any coherent system of
units) while the value of the order of the derivative α ranges between zero and one, the completely
elastic and the completely viscoelastic behaviours respectively.

If the poles of the system for different values of α are plotted in the complex plane, the shape
shown in Figure 1 is obtained. In it, the solutions obtained from the variable change in (6) are shown
in black while the ones that satisfy (5) are highlighted in red.

For every value of α, the centroid of each of the two distributions shown in Figure 1 computed as

C =
1
q

q

∑
j=1

sj, (7)

sj being the jth pole of the system and q the amount of solutions of (6) for each distribution, the
extraneous ones included, fall in ±ω0 = ±

√
k/m.

Another conclusion that can be drawn from the variation of the position of the poles with the
value α is that, contrary to what could be expected, the number of decimal positions used to express α

and, thus, the p and q values used to approximate it as a rational number, do not affect the position of
the poles. This means that considering α or a slightly perturbed value α + δ provides the same results
both in terms of poles and, in consequence, of time response.
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Figure 1. Distribution of poles for different values of α. The solutions that comply with (5) are
highlighted in red.

Then, the relationship of the damped frequency of the system, represented by the imaginary part
of the poles, with the order of the derivative is studied. As shown in Figure 2, the damped frequency
of the system ranges from

ωd =

√
k + c

m
(8)

when α = 0 (it should be noted that in this case, as the damper behaves like a spring, the system will be
undamped) to the well known formula for the viscous case when α = 1

ωd = ω0

√
1− ξ2, (9)

where ξ = c/(2
√

km) and ω0 =
√

k/m. The damped frequency decays with the order of the derivative
α because, due to the viscoelastic nature of the model, the lower this order, a bigger part of the damping
behaves as stiffness [30].

Figure 2. Evolution of damped frequency ωd with the order of the derivative α. The mass, stiffness

and damping parameters are unitary. The damped frequency ranges from ωd =
√

k+c
m =

√
2 to

ωd = ω0
√

1− ξ2 = 0.866.
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Then, the value of the damping parameter c is changed keeping the order of the fractional
derivative constant, in order to study the evolution of the damped frequency (Figure 3). In contrast to
what happens in systems with viscous damping, increasing the damping parameter c in a fractionally
damped system increases the vibration frequency. This can be explained again by the viscoelastic
nature of fractional damping: while in a system with viscous damping a change in the value of the
damping parameter c does not affect the stiffness; if the damping is fractional, both magnitudes are
interrelated and an increase in the damping parameter c also stiffens the system. It is worth noting
that, even if the tendency is the same for different values of the order of the derivative α—increasing
the damping parameter c produces an increase in the damped frequency—the relationship between
the two magnitudes is not linear and varies depending on the value of the order of the derivative.

Figure 3. Evolution of the damped frequency ωd with the damping parameter c for different values of
the order of the derivative α.

2.2. Dynamic Response

Another aspect in which a system with fractional damping differs from one showing viscous
damping is the dynamic response. These differences are analysed in the 1 DOF system, first, when it is
subjected to initial conditions and, after, when a impulse or step force is applied.

In order to make the analysis extensible to systems with several degrees of freedom or subjected
to any type of excitation for which analytical solutions are not available, the process to solve the
differential equation (1) numerically is presented. The analytical response of a 1 DOF system to the cited
excitations—initial conditions or impulse and step forces—can be found, for instance, in [2,20,29,31].

That said, the Grünwald-Letnikov method is used to compute the values of the fractional
derivative for a given time t. Its objective is to take advantage of the definition of the derivative
and approximate the gamma functions with some recursively computed coefficients. The derivative of
order α is, thus, expressed as

Dα f (t) = lim
∆t→0

(
1

(∆t)α

S−1

∑
j=0

Γ(j− α)

Γ(−α)Γ(j + 1)
f (t− j∆t)

)
(10)

where S = t/∆t is the number of samples. Considering

Aj+1 =
Γ(j− α)

Γ(−α)Γ(j + 1)
, (11)

the Aj coefficients can be computed recursively by
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A1 = 1, (12)

Aj+1 =
j− α− 1

j
Aj (13)

and the derivative of order α takes the simplified form

Dα f (t) ≈ 1
(∆t)α

S−1

∑
j=0

Aj+1 f (t− j∆t), (14)

which can be easily introduced in a numerical method, a forward Euler in this case.
It should be noted that fractional operators are convolution integrals and, as such, they have

memory, making it is necessary to store the previous history so as to be able to compute the response
in a certain step [1]. If needed, techniques as the one described in [30] could be used to reduce the
storing requirements.

The presented methodology is followed in the next sections to compute the response of the
fractionally damped 1 DOF system under study to initial conditions and to a impulse and step force,
two of the most typical excitations.

2.2.1. Response to Initial Conditions

The response of a fractionally damping system whose m, c and k parameters are unitary and
subjected to the initial conditions {x0, v0} = {1, 0} is shown in Figure 4. As predicted from the poles
of the system, the response is oscillatory and decays in time.

Figure 4. Time response of a fractionally damped system for different values of the order of the
derivative.

The main difference that a system with fractional damping presents in comparison to one that
shows viscous damping regarding its response to initial conditions is the appearance of a non oscillatory
term that decays in time [19]. This effect can be seen in Figure 5, where the response in the frequency
domain, obtained by the Fast Fourier Transform of the time response, is represented for different
values of the order of derivative α. During the initial part of the response (Figure 5a), only a peak at
the vibration frequency can be noticed; in the final part of the decay (Figure 5b), however, it is possible
to identify also a peak in the spectrum at zero frequency, that is related to the non oscillatory term,
together with the peak at the vibration frequency.
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(a) (b)
Figure 5. Response of a fractionally damped system in the frequency domain: (a) from t = 0 to t = 20,
(b) for t > 20.

From a physical point of view, the appearance of a non oscillatory term has two implications. First,
it means that the equilibrium position of the system is not constant but it varies with time. Taking into
account that the equilibrium position is defined by the mass and the stiffness of the system and, in this
case, the mass is constant, the single explanation to this phenomenon is that the stiffness of the system
varies with time. Secondly, it implies that the system does not oscillate with decreasing amplitude
until it finally stops, but that it reaches a point in which it approaches the original equilibrium position
without oscillating.

Another aspect in which a system with fractional damping differs from one with viscous damping
is in the fact that a critical damping ratio in which the system does not oscillate around the equilibrium
position cannot be defined [20,30]. The response always crosses the origin of coordinates at least once
due to the nature of the poles of the system, that are always complex conjugates. For this reason,
fractional damping allows us to model dampers whose response only crosses the equilibrium position
a single time, a case that cannot be represented with accuracy using a traditional model. For example,
the 1 DOF system under study presents this behaviour when the damping parameter c = 2 and the
order of the derivative α = 0.9 (Figure 6).

Figure 6. Response of a single-degree-of-freedom (1 DOF) fractionally damped system with unitary
mass and stiffness parameters, the order of the derivative being α = 0.9 and the damping parameter
c =2 when subjected to initial conditions {x0, v0} = {1, 0}.
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2.2.2. Response to Impulse

The response to an impulse is of interest because it provides a way to define critical damping.
According to [20], critical damping can be defined for systems with fractional damping as the value
for which the response is tangent to the axis of zero displacement when an impulse force

F(t) =

{
1/∆t , 0 < t < ∆t

0 , otherwise
(15)

is applied to the system. This means that for values of damping greater than this the response does not
change sign, even if it still oscillates, around a position that varies with time in this case (Figure 7).

Figure 7. Difference between an overdamped systems with viscous or fractional damping.

Following this reasoning, the value of critical damping can be estimated for different values of
the order of the derivative α. For example, in Figure 8, the response of the 1 DOF system with unitary
mass and stiffness parameters and critical damping when subjected to a impulse is presented. For low
values of α the response always changes sign no matter how high the added damping: increasing the
damping parameter makes the system stiffer and the effect of the increase in the natural frequency is
greater than that of the dissipation.

Figure 8. Response to impulse of a system with critical damping for different values of the order of the
derivative α.

2.2.3. Response to Step

The response of the system with fractional damping to a step force
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F(t) =

{
0 , t < 0

1 , 0 ≤ t
(16)

has the peculiarity that it stays under the response of a system with viscous damping. As an example,
the response of the 1 DOF of freedom system with unitary mass, damping and stiffness constants
under study is presented in Figure 9 depending of the order of the derivative α for a unit step excitation.
It can be noted that for systems with fractional damping the overshoot decreases but the settling time
is much longer, specially when decreasing the value of the order of the derivative.

Figure 9. Response to step for different values of α.

3. Application: Bearing Support

In order to illustrate the properties of the fractional models presented in the previous sections in a
real life application, a shaft supported by one bearing in each end is considered. The shaft is modelled
by means of beam finite elements; both supports, following the typical model of a bearing [32], as a
combination of a spring and fractional damper (Figure 10).

k c    ,N-1k c  ,
1 1 N-1

α
1

αN-1

Figure 10. Shaft supported by a bearing in each end, where N stands for the number of degrees of
freedom of the finite element model of the shaft. The bearing support affects the (N − 1)th degree of
freedom, as the Nth is related to the rotation of the end.

For the numerical application, a shaft of length L = 1 m and circular section of diameter d = 0.4 m
made of steel with a Young’s modulus of E = 210 GPa and density ρ = 7900 kg/m3 is considered.
The natural frequencies, mode shapes and response of the shaft when changing the parameters
of the bearings are studied, the two bearings being identical (k1 = kN−1 = k, c1 = cN−1 = c
and α1 = αN−1 = α).

3.1. Natural Frequencies and Mode Shapes

The eigenpairs of a the shaft supported by bearings that present fractional damping
satisfy the relationship (

−λ∗r M + Kshaft + K∗supp(ωr)
)
φ∗r = 0, (17)
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where λ∗r and φ∗r are respectively the eigenvalue and the eigenvector of the rth mode, M the mass
matrix of the system, that corresponds to the mass matrix of the shaft as the supports are considered
massless, Kshaft and K∗supp(ω) the stiffness matrices of the shaft and the bearing supports. This last
complex matrix K∗supp(ω) is frequency dependent and is defined as

K∗supp(ω) = ∑
j∈B

(k j + cj(iω)α)eje
ᵀ
j / B = {1, N − 1}, (18)

where B holds the positions of the bearing supports, in this case the first and penultimate (N-1) degrees
of freedoms, the ones that represent the vertical displacement of the first and last nodes, respectively
and ej stands for the unit vector that corresponds to the jth degree of freedom. As the matrix Ksupp is
frequency dependent, an iterative method is needed to obtain the eigenpairs of the system: the reader
can find the details in [33,34].

With the aim of studying the evolution of the vibration frequencies of the system with the order
of the derivative α, the values of the stiffness and damping parameters of the bearing supports are set
to k = 104 N/m and c = 50 N sα/m respectively. When the shaft is discretised with 60 beam elements
in its length the results shown in Figure 11 are obtained. It can be observed that, as deduced for the
1 DOF system, changing the order of the derivative affects the stiffness of the supports and, thus, the
vibration frequencies.

Figure 11. Evolution of the frequency of the first two modes with the order of the derivative α.

Another aspect that should be taken into account regarding the eigenpairs is that the modes are
complex due to the non-proportionality of the damping. When the value of the damping parameter c
is low this effect is barely noticeable so, for the sake of clarity, its value is increased to c = 1000 N sα/m
in the computation of the mode shapes presented in Figure 12. The phase of the mode shape in each
point of the shaft is represented with the aim of bringing to light the complex nature of the modes: if
the mode were normal, the phase would change abruptly from −π to π (or vice versa) in the nodal
points, but it is not what occurs.

It should be noted also that the mode shapes are not affected by the order of the derivative α

but the complex nature of the modes is more acute for high values of α as the effect of the damping
is higher.
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Figure 12. First five mode shapes of the supported shaft: real part and phase. The vibration frequencies
of the mode shapes are the following: ω1 = 116.20 rad/s, ω2 = 320.24 rad/s, ω3 = 1201.0 rad/s, ω4 =

3144.6 rad/s and ω5 = 6194.3 rad/s.

3.2. Dynamic Response

Next, the time response of the shaft to a perturbation from the base is computed following the
procedure in [35] by means of a M-C-K Newmark method. The details of the implementation of such
method can be found in [22], but, in short, it consists of expressing the equation of motion of the system
in the instant n + 1 as

Mün+1 + C (Dαu)n+1 + Kun+1 = Fn+1, (19)

and introducing the notation

Mün+1 + C̄u̇n+1 + Kun+1 = F̄n+1, (20)

where

C̄ = (∆t)1−αC (21)

and

F̄n+1 = Fn+1 −
1

(∆t)α
C

[
un +

n

∑
j=1

Aj+1un+1−j

]
(22)

in order to use the Grünwald-Letnikov definition of the fractional derivative in the computations.
In the case under study the mass matrix M is that of the shaft; the stiffness matrix K is the sum of the
one of the shaft and the one of the supports

K = Kshaft + Ksupp (23)

where
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Ksupp = ∑
j∈B

k jeje
ᵀ
j / B = {1, N − 1}, (24)

and the damping matrix C is given by the damping of the bearing supports as

C = ∑
j∈B

cjeje
ᵀ
j / B = {1, N − 1}. (25)

The time response of the supported shaft to a seismic excitation is computed as follows: first,
the static response to a displacement of the rightmost end is computed; then, it is introduced into the
presented Newmark scheme as an initial deformation u0. Four distinct cases are studied:

• Case 1: a viscous case (α = 1) with low stiffness (kref = 104 N/m) and low damping (cref =

50 N s/m) that is used for reference, in which the rigid body movement prevails.
• Case 2: a viscous case (α = 1) with low stiffness (k = kref) and supercritical damping (c = 10cref),

in which the shaft returns to the equilibrium position without oscillating.
• Case 3: a fractionally damped case (α = 0.6) with low stiffness (k = kref) and high damping

(c = 100cref) so that the system returns to its original position oscillating around a variable
equilibrium position.

• Case 4: a fractionally damped case (α = 0.6) with high stiffness (k = 10kref) and low damping
(c = cref), in which the movement is a combination of the rigid body motion and the first modes
of the system.

The four cases are simulated for a time T = 1 s using 1000 samples and discretising the shaft
with 60 beam elements. In order to analyse the difference between the cases, the displacement of the
right end, to which a vertical displacement of 3 mm is imposed in the first instant, is plotted over time
(Figure 13).

(a) (b)

(c) (d)
Figure 13. Displacement of the right end of the shaft: (a) case 1, (b) case 2, (c) case 3, (d) case 4.

The first case represents the classical vibration damped in time: this behaviour can be modelled
both with a viscous and a fractional damper. The motion of the second case, instead, is characteristic
of a overdamped system and only achievable if the damping is viscous: a fractionally damped system
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will always oscillate, even if the response does not have to necessarily change sign, as the third case
makes clear. Finally, the fourth case represents a more general situation in which the response consists
of a combination of several modes and the rigid body motion. In this case, by tuning the stiffness and
damping parameters and the order of the derivative, different behaviours can be reproduced.

The evolution of the shaft in time can be seen in the four videos provided as Supplementary
Materials with this article.

4. Conclusions

This work discusses the behaviour of a 1 DOF system with fractional damping from the point of
view of dynamics, specially focusing in the divergence of such a model of damping from a classical
viscous one.

The first difference between a system with viscous and a fractional damping is that the poles of
the latter are always complex conjugates, which implies that the response is always oscillatory and
that, therefore, the concept of critical damping as defined for viscous systems is not applicable. Also,
due to the viscoelastic nature of fractional damping, the damped frequency of the system decreases
with the order of the derivative, as the system resembles more a pure viscous system, but increases
with the damping parameter, as the contribution to the stiffness of the system increases too.

Several particularities can be observed regarding the time response as well. First, the response to
initial conditions is characterised by the appearance of a non oscillatory term, which can be understood
as a change in the position of the equilibrium position in time. Secondly, the response to an impulse
allows us to define critical damping for this kind of systems as the amount of damping needed for the
response not to change its sign. Finally, the response to a step function is characterised by its reduced
overshoot but longer settling time is comparison to a system with viscous damping.

Despite their peculiarities, fractional models are useful to ease the modelling process and replicate
behaviours that would otherwise require complex formulations. This is the case, for example, of the
bearing support represented in this work with a spring and fractional damper for which behaviours
that range from a traditional viscous case to an oscillating case with variable equilibrium position can
be represented with a single model.

As a final remark, we would like to warn against using fractional models as mathematical artifacts
that allow us to simplify the modelling process. It is advisable to check if the behaviour of the
mechanical system under study follows the same trends as the assumed model, or at least, that the
effects attributable to the model do not interfere in the computations.

Supplementary Materials: The following are available online at http://www.mdpi.com/2073-8994/11/12/1499/
s1.
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