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Abstract: In this paper, we present two kinds of Hermite-type collocation methods for linear Volterra
integral equations of the second kind with highly oscillatory Bessel kernels. One method is direct
Hermite collocation method, which used direct two-points Hermite interpolation in the whole
interval. The other one is piecewise Hermite collocation method, which used a two-points Hermite
interpolation in each subinterval. These two methods can calculate the approximate value of function
value and derivative value simultaneously. Both methods are constructed easily and implemented
well by the fast computation of highly oscillatory integrals involving Bessel functions. Under some
conditions, the asymptotic convergence order with respect to oscillatory factor of these two methods
are established, which are higher than the existing results. Some numerical experiments are included
to show efficiency of these two methods.

Keywords: Volterra integral equations; highly oscillatory Bessel kernel; Hermite interpolation;
direct Hermite collocation method; piecewise Hermite collocation method

1. Introduction

Volterra integral equations arise from many mathematical problems in engineering and
physics [1–3]. For example, the numerical solution of a scalar retarded potential integral equation
posted on an infinite flat surface,

∫
R2

u(x′, t− |x′ − x|)
|x′ − x| dx′ = a(x, t) on R2 × (0, T),

where u and a satisfy the causality condition u ≡ 0, a ≡ 0 for all t ≤ 0. The continuous Fourier
transform (CFT) of a function g ∈ L2(R2) is g̃ ∈ L2(R2) defined by g̃(~ω) =

∫
R2 g(x)e−ix~ωdx. When

a(·, t), u(·, t) ∈ L2(R2) for t ∈ (0, T), by taking CFT, Davies and Duncan [2] reformulated it as the
following Volterra integral equation of the first kind with highly oscillatory Bessel kernel,

2π
∫ t

0
ũ(~ω, t− R)J0(ωR)dR = ã(~ω, t), f or ~ω ∈ R2, t ∈ (0, T), (1)

where Jm(x) is the first-kind Bessel function of order m, which is the solution of the Bessel equation
d2y
dx2 + 1

x
dy
dx + (1− m2

x2 )y = 0. In 2005, for the study of the problem of the electromagnetic scattering
from a large cavity, G. Bao and W. W. Sun [1] reformulated (1) as a Volterra integral equation with
Cauchy singular and highly oscillatory Hankel kernel.

Symmetry 2019, 11, 168; doi:10.3390/sym11020168 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0003-3662-538X
http://dx.doi.org/10.3390/sym11020168
http://www.mdpi.com/journal/symmetry
http://www.mdpi.com/2073-8994/11/2/168?type=check_update&version=2


Symmetry 2019, 11, 168 2 of 17

The Bessel kernel of the above Equation (1) has a parameter ω. Obviously, when ω � 1, the Bessel
kernel function becomes highly oscillatory. When resort to numerical solutions of Equation (1),
the computation of integrals involved Bessel kernel functions is inevitable. However, the classical
quadrature rules, such as Newton-Cotes rule, Clenshaw-Curtis rule or Gauss rule, are failed to calculate
this kind of integral. Hence, adopting suitable quadrature rules for the corresponding highly oscillatory
integrals plays an important role in obtaining the numerical solution.

The function J0(ω(x− t)) satisfies the condition of Theorem 2.1.8 ([4], p. 64). Upon differentiation
with respect to x, the first-kind Volterra integral Equation (1) can be rewritten as the second-kind
Volterra integral equations. In this paper, we treat the following Volterra integral equation of the
second kind with highly oscillatory Bessel kernel

u(x)−
∫ x

0
Jm(ω(x− t))u(t)dt = f (x), x ∈ [0, 1], t ∈ I := [0, x], (2)

where u(x) is an unknown function, f (x) is a given smooth function, Jm is the Bessel function of the
first kind of order m ≥ 0 and the frequency ω is a parameter. When ω � 1, the Bessel kernel function
is highly oscillatory, and this makes solving Equation (2) a challenging problem.

In recent years, there has been tremendous interest in developing methods for solving
highly oscillatory Volterra integral equation, such as discontinuous Galerkin method [5], Filon-type
method [6,7], collocation method [4,8,9], collocation boundary value method [10,11], collocation
method on uniform mesh [12], collocation method on graded mesh [13].

Xiang and Brunner [14] presented three methods: direct Filon method, piecewise constant
collocation method and piecewise linear collocation method for the equation,

u(x)−
∫ x

0
Jm(ω(x− t))

u(t)
(x− t)α

dt = f (x), x ∈ [0, 1], t ∈ I := [0, x], 0 ≤ α < 1, f (x) ∈ C1[0, 1].

Based on the asymptotic analysis of the solution, they gave corresponding convergence rates
in terms of the frequency for these methods. For the case of the α = 0, f ∈ C2[0, 1], Fang et al. [15]
showed that the optimal convergence with respect to the ω are O(ω−2), O(ω−3/2), O(ω−2) respectively.
These three methods, same as other existing methods, are constructed by original integral equation or
its equivalent equation. Since only the function value in start point is used, which leads to low error
precision. In this paper, we present two kinds of Hermite-type collocation methods by combining
original integral equation and its differential equation. The new methods will use the values of
function and derivative function in start point, which gets higher error precision than that of the above
three methods.

The rest of the paper is organized as follows. In Section 2, we present two efficient methods for
Equation (2): direct Hermite collocation method and piecewise Hermite collocation method. We show
the error bound with respect to the frequency ω In Section 3. In Section 4, several numerical examples
are included to verify the results of theoretical analysis. It is observed from numerical experiments
that these methods have higher accuracy as compared with the Direct Filon method in [14].

2. Hermite-Type Collocation Methods

2.1. Direct Hermite Collocation Method (Algorithm 1)

Differentiate both sides of Equation (2),

u′(x)− Jm(0)u(x)−
∫ x

0
(Jm(ω(x− t))′u(t)dt = f ′(x). (3)
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Since

(Jm(ω(x− t))′ =

{ ω
2 (−Jm+1(ω(x− t)) + Jm−1(ω(x− t))), m > 0,

−ω J1(ω(x− t)), m = 0,
(4)

it follows that for the case m = 0,

u′(x)− J0(0)u(x) + ω
∫ x

0
(J1(ω(x− t))u(t)dt = f ′(x), (5)

and for m > 0,

u′(x)− Jm(0)u(x) +
ω

2

∫ x

0
(Jm+1(ω(x− t))− Jm−1(ω(x− t)))u(t)dt = f ′(x). (6)

Let us denote the Hermite interpolant polynomial between u(0) and u(xj) by

uh(x) = H0ju(0) + H1ju(xj) + H2ju′(0) + H3ju′(xj),

where the polynomials

H0j =

(
1 +

2x
xj

)(
x− xj

xj

)2

, H1j =

(
1 + 2

x− xj

−xj

)(
x
xj

)2

,

H2j =x

(
x− xj

−xj

)2

, H3j = (x− xj)

(
x
xj

)2

,

mean the fundamental polynomials with respect to the nodes 0 and xj. Then the collocation
systems follow

ud
j −

∫ xj

0
Jm(ω(xj − t))(H0ju0 + H1jud

j + H2ju′0 + H3ju′dj )dt = f j, (7)

u′dj − Jm(0)ud
j +

ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t))(H0ju0 + H1jud

j + H2ju′0 + H3ju′dj )dt = f ′j , (8)

where ud
j denotes an approximation of u(xj), u′dj denotes an approximation of u′(xj). That is

(1− I(1, j, m))ud
j − I(3, j, m)u′dj = f j + I(0, j, m)u0 + I(2, j, m)u′0, (9)

(
−Jm(0) +

ω

2
(

I(1, j, m + 1)− I(1, j, m− 1)
))

ud
j +

(
1 +

ω

2
(

I(3, j, m + 1)− I(3, j, m− 1)
))

u′dj

= f ′j −
ω

2
(I(0, j, m + 1)− I(0, j, m− 1))u0 −

ω

2
(I(2, j, m + 1)− I(2, j, m− 1))u′0.

(10)

Solving these systems, we get direct Hermite appromximate schemes for m = 0,

ud
j =

( f j + I(0, j, 0)u0 + I(2, j, 0)u′0)(1 + ωI(3, j, 1)) + ( f ′j −ωI(0, j, 1)u0 −ωI(2, j, 1)u′0)I(3, j, 0)

(1− I(1, j, 0))(1 + ωI(3, j, 1)) + I(3, j, 0)(−1 + ωI(1, j, 1))
, (11)

u
′d
j =

( f j + I(0, j, 0)u0 + I(2, j, 0)u′0)(1−ωI(1, j, 1)) + ( f ′j −ωI(0, j, 1)u0 −ωI(2, j, 1)u′0)(1− I(1, j, 0))

−I(3, j, 0)(1−ωI(1, j, 1)) + (1 + ωI(3, j, 0))(1− I(1, j, 0))
, (12)

for m > 0,

ud
j =

b1a22 − b2a12

a11a22 − a21a12
, u

′d
j =

a11b2 − a21b1

a11a22 − a21a12
, (13)
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where

a11 = 1− I(1, j, m), a12 = −I(3, j, m), a21 = −Jm(0) +
ω

2
(I(1, j, m + 1)− I(1, j, m− 1)),

a22 = 1 +
ω

2
(I(3, j, m + 1)− I(3, j, m− 1)), b1 = f j + I(0, j, m)u0 + I(2, j, m)u′0,

b2 = f ′j −
ω

2
(I(0, j, m + 1)− I(0, j, m− 1))u0 −

ω

2
(I(2, j, m + 1)− I(2, j, m− 1))u′0.

I(k, j, m) denotes the moment

I(k, j, m) =
∫ xj

0
Hkj Jm(ω(xj − t))dt k = 0, 1, 2, 3.

The specific calculation formula follows

I(0, j, m) =
3
x2

j
L(2, m, ω, xj)−

2
x3

j
L(3, m, ω, xj), (14)

I(1, j, m) =L(0, m, ω, xj)−
3
x2

j
L(2, m, ω, xj) +

2
x3

j
L(3, m, ω, xj), (15)

I(2, j, m) =
1
xj

L(2, m, ω, xj)−
1
x2

j
L(3, m, ω, xj), (16)

I(3, j, m) =− L(1, m, ω, xj) +
2
xj

L(2, m, ω, xj)−
1
x2

j
L(3, m, ω, xj). (17)

The moments L[µ, m, ω, a] =
∫ a

0
tµ Jm(ωt)dt can be efficiently calculated by

L[µ, m, ω, a] =
2µΓ

(
m+µ+1

2

)
a2ωµ+1Γ

(
m−µ+1

2

) +
(m + µ− 1)Jm(ωa)s(2)µ−1,m−1(ωa)− Jm−1(ωa)s(2)µ,m(ωa)

aωµ , (18)

where Γ(x) =
∫ ∞

0 e−ttx−1dt denotes the Gamma function and s(2)µ,ν(z) denotes the Lommel function of
the second kind [16,17]. Once ω is large, the Lommel function can be efficiently approximated
by truncating

s(2)µ,ν(z) = zµ−1[1− (µ−1)2−ν2

z2 + . . . + (−1)p [(µ−1)2−ν2]...[(µ−2p+1)2−ν2]
z2p ] + O(zµ−2p−2) (19)

Algorithm 1: direct Hermite collocation method.
1. Compute L[i, m, ω, xj], i = 0, 1, 2, 3 by (18);
2. Compute I(k, j, m), k = 0, 1, 2, 3 by (14)–(17) ;
3. Compute ud

j and u′dj by (13).

2.2. Piecewise Hermite Collocation Method

To obtain higher-order approximations, a direct improvement of the direct Hermite collocation
method is the composite Hermite collocation method, which is so-called piecewise Hermite collocation
method (Algorithm 2), that is split the interval into several bins and apply the formula over each bin
independently of the other.

Without loss of generality, suppose that I4 = {xj = j ∗ h : j = 0, 1, · · · , N} is a uniform
nodal point and û(x) is an approximation of u(x) such that û(x)|[xj−1, xj]is the Hermite interpolant
polynomial between u(xj−1) and u(xj) for j = 1, . . . , N .
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Let us define

û(x) = Ĥ0ju(xj−1) + Ĥ1ju(xj) + Ĥ2ju′(xj−1) + Ĥ3ju′(xj),

where the polynomials

Ĥ0j =
(

1 + 2
x−xj−1
xj−xj−1

) ( x−xj
xj−xj−1

)2
=
(

1 + 2
x−xj−1

h

) ( x−xj
h

)2
,

Ĥ1j =
(

1 + 2
xj−x

xj−xj−1

) ( x−xj−1
xj−xj−1

)2
=
(

1 + 2
xj−x

h

) ( x−xj−1
h

)2
,

Ĥ2j = (x− xj−1)
( x−xj

xj−xj−1

)2
= (x− xj−1)

( x−xj
h

)2
, Ĥ3j = (x− xj)

( x−xj−1
xj−xj−1

)2
= (x− xj)

( x−xj−1
h

)2

denote the fundamental polynomials with respect to the nodes xj−1 and xj. Then the collocation
systems follow

uj −
j−1

∑
i=1

∫ xi

xi−1

Jm(ω(xj − t))ûi(t)dt−
∫ xj

xj−1

Jm(ω(xj − t))ûj(t)dt = f j, (20)

u′j − Jm(0)uj +
ω

2

j−1

∑
i=1

∫ xi

xi−1

(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)) ∗ ûi(t)dt

+
ω

2

∫ xj

xj−1

(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)) ∗ ûj(t)dt = f ′j . (21)

This leads to the piecewise Hermite collocation method[
b11 b12

b21 b22

] [
uj
u′j

]
=

[
r1

r2

]
, (22)

where

b11 =1− Ajj1m, b12 = −Ajj3m, b21 = −Jm(0) +
ω

2
(Ajj1(m+1) − Ajj1(m−1)),

b22 =1 +
ω

2
(Ajj3(m+1) − Ajj3(m−1)),

r1 = f j +
j−1

∑
i=1

(Aij0mui−1 + Aij1mui + Aij2mu′i−1 + Aij3mu′i) + Ajj0muj−1 + Ajj2mu′j−1,

r2 = f ′j −
ω

2

j−1

∑
i=1

(Aij0(m+1) − Aij0(m−1))ui−1 + (Aij1(m+1) − Aij1(m−1))ui

+ (Aij2(m+1) − Aij2(m−1))u
′
i−1 + (Aij3(m+1) − Aij3(m−1))u

′
i

− ω

2

(
(Ajj0(m+1) − Ajj0(m−1))uj−1 + (Ajj2(m+1) − Ajj2(m−1))u

′
j−1

)
, (23)

Aijkm denotes the moment

Aijkm =
∫ xi

xi−1

Ĥki Jm(ω(xj − t))dt k = 0, 1, 2, 3.

The specific calculation formula is following that
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Aij0m = (L(0, m, ω, (j− i + 1)h)− L(0, m, ω, (j− i)h)) (2j− 2i + 3)(j− i)2

− (L(1, m, ω, (j− i + 1)h)− L(1, m, ω, (j− i)h)) (j− i + 1)(j− i)6/h

+ (L(2, m, ω, (j− i + 1)h)− L(2, m, ω, (j− i)h)) 3(2j− 2i + 1)/h2

− (L(3, m, ω, (j− i + 1)h)− L(3, m, ω, (j− i)h)) 2/h3,

Aij1m = (L(0, m, ω, (j− i + 1)h)− L(0, m, ω, (j− i)h)) (j− i + 1)2(−2j + 2i + 1)

+ (L(1, m, ω, (j− i + 1)h)− L(1, m, ω, (j− i)h)) (j− i + 1)(j− i)6/h

− (L(2, m, ω, (j− i + 1)h)− L(2, m, ω, (j− i)h)) 3(2j− 2i + 1)/h2

+ (L(3, m, ω, (j− i + 1)h)− L(3, m, ω, (j− i)h)) 2/h3,

Aij2m = (L(0, m, ω, (j− i + 1)h)− L(0, m, ω, (j− i)h)) (j− i + 1)(j− i)2h

− (L(1, m, ω, (j− i + 1)h)− L(1, m, ω, (j− i)h)) (3j− 3i + 2)(j− i)

+ (L(2, m, ω, (j− i + 1)h)− L(2, m, ω, (j− i)h)) (3j− 3i + 1)/h

− (L(3, m, ω, (j− i + 1)h)− L(3, m, ω, (j− i)h)) /h2,

Aij3m = (L(0, m, ω, (j− i + 1)h)− L(0, m, ω, (j− i)h)) (j− i + 1)2(j− i)h

− (L(1, m, ω, (j− i + 1)h)− L(1, m, ω, (j− i)h)) (j− i + 1)(3j− 3i + 1)

+ (L(2, m, ω, (j− i + 1)h)− L(2, m, ω, (j− i)h)) (3j− 3i + 2)/h

− (L(3, m, ω, (j− i + 1)h)− L(3, m, ω, (j− i)h)) /h2. (24)

Algorithm 2: piecewise Hermite collocation method.
1. Compute L[i, m, ω, xj], i = 0, 1, 2, 3 by (18);
2. Compute Aijkm, k = 0, 1, 2, 3 by (24) ;
3. Compute uj and u′j by (22).

3. Error Analyses

Firstly, we introduce some useful lemmas, which will be used to prove theorems for the
later analyses.

Lemma 1 ([15], Lemma 1). For any integers µ, ν ≥ 0 and x ∈ (0, 1], the following integral

ω
∫ x

0
Jµ(ωt)Jν(ω(x− t))dt (25)

is uniformly bounded with respect to ω > 0.

Lemma 2 ([15], Lemma 2). Suppose gω(t) ∈ C[0, 1] and gω(t) = O(1) as ω → ∞. Then for any v > 0 and
x ∈ (0, 1], it is true that the integral ∫ x

0

gω(t)Jν(ωt)
t

dt (26)

is uniformly bounded with respect to ω > 0.

Lemma 3 ([18], Lemma 2.1). For any ω � 1,m ≥ 0 and hω(t) satisfies

•
∫ 1

0
|h′ω(s)|ds is integrable;

•
∫ 1

0
|h′ω(s)|ds and hω(t) are bounded in ω ∈ (0, ∞] for fixed t, respectively,
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it is true that ∣∣∣∣∫ 1

0
hω(t)tk Jm(ωt)dt

∣∣∣∣ ≤
{

K1ω−1−k, −1 < k < 1
2 ,

K2ω−3/2, k ≥ 1
2 ,

(27)

where the constants K1 and K2 are independent of ω.

Let A : C(I)→ C(I) denote the linear Volterra integral operator defined by

(A u)(t) :=
∫ x

0
Jm(ω(x− t))u(t)dt, x ∈ [0, 1], t ∈ I := [0, x],

and I denote identity operator. Then Equation (2) can be reformulated more compactly as

(I −A ) u = f . (28)

To get the expression of (1)–(3) order derivatives of the solution of (2), we first discuss the relation
between the integral operator A and the differential operator D.

Theorem 1. Assume f ∈ C3[0, 1] . The Volterra operator A n := C(I) → C(I) defined by (A nu)(x) :=∫ x
0 Kn(t, x)u(t)dt, n ≥ 1, where Kn(t, x) are the iterated kernels. Then the solution of (2) satisfies

u =
∞

∑
j=0

A j f , (29)

Du =
∞

∑
j=0

(
f (0)A j−1r +A jD f

)
, (30)

D2u =
∞

∑
j=0

(
f (0)r(0)A j−2r + f (0)A j−1Dr + f ′(0)A j−1r +A jD2 f

)
, (31)

D3u =
∞

∑
j=0

(
f (0)r(0)

(
r(0)A j−3r +A j−2Dr

)
+ f (0)

(
r′(0)A j−2r +A j−1D2r

)
+ f ′(0)

(
r(0)A j−2r +A j−1Dr

)
+
(

f ′′(0)A j−1r +A jD3 f
))

. (32)

where, r(x) = Jm(ωx) and A j = 0 if j < 0. Moreover, we have both of ‖Du‖∞,
∥∥D2u− f (0)Dr− D2 f

∥∥
∞

and ‖D3u− f (0)r(0)Dr− f (0)D2r− f ′(0)Dr− D3 f ‖∞ are uniformly bounded with respect to ω.

Proof.

A j f =
∫ x

0
Jm(ω(x− s1))

∫ s1

0
Jm(ω(s1 − s2)) . . .

∫ sj−1

0
Jm(ω(sj−1 − s)) f (s)dsdsj−1 . . . ds1. (33)

Let s′1 = x− s1, s′2 = s1 − s2, . . . , s′j−1 = sj−2 − sj−1, s′ = sj−1 − s, it follows that

A j f =
∫ x

0
Jm(ωs′1)

∫ x−s′1

0
Jm(ωs′2) . . .

∫ x−∑
j−1
k=1 s′k

0
Jm(ωs′) f

(
x−

j−1

∑
k=1

s′k − s′
)

ds′ds′j−1 . . . ds′1. (34)

Then

DA j f = f (0)
∫ x

0
Jm(ωs′1)

∫ x−s′1

0
Jm(ωs′2) . . .

∫ x−∑
j−2
k=1 s′k

0
Jm(ωs′j−1)Jm

(
ω(x−

j−1

∑
k=1

s′k)

)
ds′j−1 . . . ds′1

+
∫ x

0
Jm(ωs′1)

∫ x−s′1

0
Jm(ωs′2) . . .

∫ x−∑
j−1
k=1 s′k

0
Jm(ωs′) f ′

(
x−

j−1

∑
k=1

s′k − s′
)

ds′ds′j−1 . . . ds′1

= f (0)A j−1r +A jD f .

(35)
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Since

u =
∞

∑
j=0

A j f , (36)

this series is uniformly absolutely convergent, therefore we can differentiate it term by term

Du =
∞

∑
j=0

(
f (0)A j−1r +A jD f

)
,

D2u =
∞

∑
j=0

(
f (0)r(0)A j−2r + f (0)A j−1Dr + f ′(0)A j−1r +A jD2 f

)
,

D3u =
∞

∑
j=0

(
f (0)r(0)(r(0)A j−3r +A j−2Dr) + f (0)(r′(0)A j−2r +A j−1D2r)

+ f ′(0)(r(0)A j−2r +A j−1Dr) + ( f ′′(0)A j−1r +A jD3 f )
)

,

where A j = 0 if j < 0.

If we define

‖A j‖ := sup
‖A jφ‖∞

‖φ‖∞
= max

x∈I

∫ x

0
|Kj(x, s)|ds

and recall that ‖A jφ‖∞ ≤ ‖A j‖‖φ‖∞, we find

Remark 1.
‖A j‖ ≤ max{|Jm(ω(x− s))| : (x, s) ∈ I × (0, x)}/j! ≤ 1/j!,

‖Du‖ ≤
∞

∑
j=0

(
f (0)‖A j−1‖‖r‖+ ‖A j‖‖D f ‖

)
,∥∥∥∥∥D2u− f (0)

∞

∑
j=0

A j−1Dr

∥∥∥∥∥ ≤ ∞

∑
j=0

(
f (0)r(0)‖A j−2‖‖r‖+ f ′(0)‖A j−1‖‖r‖+ ‖A j‖‖D2 f ‖

)
,

‖D3u−
∞

∑
j=0

( f (0)r(0)A j−2Dr− f (0)A j−1D2r− f ′(0)A j−1Dr) ≤
∞

∑
j=0

(| f (0)r2(0)|‖A j−3‖‖r‖

+| f (0)r′(0)|‖A j−2‖‖r‖+ f ′(0)r(0)|‖A j−2‖‖r‖+ | f ′′(0)|‖A j−1‖‖r‖+ ‖A j‖‖D3 f ‖,

then, we have ‖Du‖∞,
∥∥D2u− f (0)Dr− D2 f

∥∥
∞ and ‖D3u − f (0)r(0)Dr − f (0)D2r − f ′(0)Dr −

D3 f ‖∞ are uniform bounded with respect to ω.

Theorem 2. Assuming f ∈ C3[0, 1], the pointwise error of the direct Hermite collocation method for (2) satisfies

|u(xi)− ud
i | =

{
O(ω−3), f (0) = 0

O(ω−2), f (0) 6= 0
ω → ∞, i = 1, 2, 3, . . . , N. (37)

|u′(xi)− u′di | =
{

O(ω−2), f (0) = 0

O(ω−1), f (0) 6= 0
ω → ∞, i = 1, 2, 3, . . . , N. (38)
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Proof. We only prove a situation m > 0. For the case m = 0, the proof method is similar.
By the definition of the direct Hermite collocation method, for any xi ∈ IN , it follows that

 E(xj)−
∫ xj

0 Jm(ω(xj − t))E(t)dt = 0,

E′(xj)− Jm(0)E(t) + ω
2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))E(t)dt = 0,

(39)

where E(x) = u(x)− uh(x) be the error function. Interpolating E(x) at x = 0 and x = xj, we have

E(x) = H1jE(xj) + H3jE′(xj) + R(x), (40)

where R(x) denotes the remainder of the Hermite interpolation. As we know E(x) satisfies that
E(0) = E′(0) = 0. Substituting (40) into (39), we are led to


E(xj)−

∫ xj
0 Jm(ω(xj − t))(H1jE(xj) + H3jE′(xj) + R(t))dt = 0,

E′(xj)− Jm(0)E(t)

+ω
2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))(H1jE(xj) + H3jE′(xj) + R(t))dt = 0.

(41)

That is

(1−
∫ xj

0 Jm(ω(xj − t))H1jdt)E(xj)−
∫ xj

0 Jm(ω(xj − t))H3jdtE′(xj) =
∫ xj

0 Jm(ω(xj − t)R(t)dt(
−Jm(0) + ω

2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H1jdt

)
E(xj)

+
(

1 + ω
2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H3jdt

)
E′(xj)

= −ω
2

∫ xj
0 (Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))R(t)dt.

(42)

Therefore, the error E(xj) can be computed by

E(xj) =
Q1

Q3
, E′(xj) =

Q2

Q3
, (43)

where

Q1 =
∫ xj

0
Jm(ω(xj − t))R(t)dt ∗

(
1 +

ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H3jdt

)
−
∫ xj

0
Jm(ω(xj − t))H3jdt ∗ ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))R(t)dt

Q2 =
∫ xj

0
Jm(ω(xj − t))R(t)dt ∗

(
Jm(0)−

ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H1jdt

)
−
(

1−
∫ xj

0
Jm(ω(xj − t))H1jdt

)
∗ ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))R(t)dt

Q3 =

(
1−

∫ xj

0
Jm(ω(xj − t))H1jdt

)
∗
(

1 +
ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H3jdt

)
−
∫ xj

0
Jm(ω(xj − t))H3jdt ∗

(
Jm(0)−

ω

2

∫ xj

0
(Jm+1(ω(xj − t))− Jm−1(ω(xj − t)))H1jdt

)
.

Defining R(xj − t) = S(t), then S(0) = S′(0) = S(xj) = S′(xj). From Lemma 1 to Lemma 3,
we can easily get Q3 = O(1) with respect to ω. What shall we do is prove that
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∫ xj

0
Jm(ωs)S(s)ds =

{
O(ω−3), f (0) = 0

O(ω−2), f (0) 6= 0
.

Using integration by parts twice, we get

∫ xj

0
Jm(ωs)S(s)ds =

∫ xj

0
S(s)d

sm+1 Jm+1(ωs)
ωsm+1

=
1

ω2

∫ xj

0

(
S′′(s)− (2m + 3)

S′(s)
s

+ (m + 1)(m + 3)
S(s)

s2

)
Jm+2(ωs)ds.

Denote

J =
∫ xj

0

(
S′′(s)− (2m + 3)

S′(s)
s

+ (m + 1)(m + 3)
S(s)

s2

)
Jm+2(ωs)ds.

So, we only need to prove that J =

{
O(ω−1) f (0) = 0

O(1) f (0) 6= 0
.

In the following, we show that the convergence degree of J with respect to ω.
Letting

F(s) = S′′(s)− (2m + 3)
S′(s)

s
+ (m + 1)(m + 3)

S(s)
s2 ,

then we have

F(0) = S′′(0)− (2m + 3)S′′(0) + (m + 1)(m + 3)
S′′(0)

2
,

J =
∫ xj

0
F(s)Jm+2(ωs)ds

=
∫ xj

0
(F(s)− F(0))Jm+2(ωs)ds +

∫ xj

0
F(0)Jm+2(ωs)ds

=
1
ω

(
Jm+3(ωs)(F(s)− F(0))|s=xj

s=0 −
∫ xj

0

(
F′(s)− (m + 3)

F(s)− F(0)
s

)
Jm+3(ωs)ds

)
+ F(0)

∫ xj

0
Jm+2(ωs)ds.

Observing that

F′(s) = S′′′(s)− (2m + 3)
S′′(s)s− S′(s)

s2 + (m + 1)(m + 3)
(

S′(s)
s2 − 2S(s)

s3

)
,

F(s)− F(0)
s

=
S′′(s)s− S′(0)

s
− (2m + 3)

(
S′(s)

s
− S′′(0)

)
+ (m + 1)(m + 3)

(
S′(s)

s2 − S′′(0)
2

)
.

Notice that

S′′′(s) = u′′′(s)− u′′′h (s)

= u′′′(s) + c1 · u′0 + c2 · u′j,

where c1 and c2 are some constants independent of ω. For uh(x) is cubic polynomial, we can easily show
that u′′′h (s) = O(1) with respect to ω. According to Theorem 1 it follows that ‖D3u− f (0)r(0)Dr−
f (0)D2r− f ′(0)Dr− D3 f ‖∞. Together with Lemma 3 we can easily get
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∫ xj

0
(u′′′(s)− f (0)r(0)Dr− f (0)D2r− f ′(0)Dr− D3 f )Jm(ω(xj − s)ds =

{
O(1), f (0) = 0,

O(ω), f (0) 6= 0.

That is ∫ xj

0
S′′′(s)Jm(ω(xj − s))ds =

{
O(1), f (0) = 0,

O(ω), f (0) 6= 0.

Then

J =

{
O(ω−1), f (0) = 0,

O(1), f (0) 6= 0.

Therefore, we can get

|u(xi)− ud
i | =

{
O(ω−3), f (0) = 0

O(ω−2), f (0) 6= 0
ω → ∞, i = 1, 2, 3, . . . , N. (44)

|u′(xi)− u′di | =
{

O(ω−2), f (0) = 0

O(ω−1), f (0) 6= 0
ω → ∞, i = 1, 2, 3, . . . , N. (45)

Theorem 3. Assuming f ∈ C3(I), the error of the piecewise Hermite collocation method for (2) satisfies

|u(xi)− ui| =
{

O(ω−3h), f (0) = 0

O(ω−2h), f (0) 6= 0
ω → ∞, i = 1, 2, 3, . . . , N. (46)

|u′(xi)− u′i| =
{

O(ω−2h), f (0) = 0

O(ω−1h), f (0) 6= 0
ω → ∞, i = 1, 2, 3, . . . , N. (47)

Proof. For the piecewise Hermite collocation method, u(xj) satisfies

u(xj)−
j−1

∑
k=1

∫ xk

xk−1

Jm(ω(xj − t))u(t)dt−
∫ xj

xj−1

Jm(ω(xj − t))u(t)dt = f (xj). (48)

Combining the above equation with

uj −
j−1

∑
k=1

∫ xk

xk−1

Jm(ω(xj − t))ûk(t)dt−
∫ xj

xj−1

Jm(ω(xj − t))ûj(t)dt = f (xj), (49)

we get

ε j =
∑

j−1
k=1 εk

∫ xk
xk−1

Jm(ω(xj − t))dt + ∑
j
k=1

∫ xk
xk−1

Jm(ω(xj − t))rk(t)dt

1−
∫ x1

0 Jm(ωt)dt
, (50)

where ε j = u(xj)− uj, j = 1, 2, · · ·, N and rk(t) = (u(t)− ûk(t))|t ∈ [xk−1, xk]. An argument similar to
the one used in Theorem 2 shows that

∑
j
k=1

∫ xk
xk−1

Jm(ω(xj − t))rk(t)dt

1−
∫ x1

0 Jm(ωt)dt
=

{
O(ω−3h), f (0) = 0

O(ω−2h), f (0) 6= 0
, (51)

the desired result is then found by employing the generalized discrete Gronwall inequality ([4], p. 95).
Similarly, one can derive the convergence order of |u′(xi)− u′i| .
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4. Numerical Examples

From Section 4, we can see that direct Hermite collocation method and piecewise Hermite
collocation method are very efficient for solving the second-kind Volterra integral equation with highly
oscillatory Bessel kernel. They possess the property that the higher oscillation, the higher accuracy.
In this section, based on the Formulas (11), (13) and (22), we present some preliminary numerical
experiments to verify the result of theoretical analysis. The experiments are performed on a 1.86 GHz
PC with 2 GB of RAM. We are using the R2016a version of the MATLAB system. The following Direct
Filon method (DF) is presented in paper [14].

Example 1. Consider the following equation

u(x)−
∫ x

0
Jm(ω(x− t))u(t)dt = f (x) with x ∈ I = [0, 1], (52)

where f (x) = ex −
∫ x

0 Jm(ω(x− t))etdt. The analytic solution is u(x) = ex.

In Table 1, we compare the relative error of u(x) from the DF method, piecewise linear collocation
method, direct Hermite collocation, and piecewise Hermite collocation method. In Table 2, for fixed ω,
we compare the relative error of u(x) from the piecewise linear collocation method and piecewise
Hermite collocation method when the steps are different. In Figures 1–3, we can see the convergence
rate with respect to ω of these methods.

Table 1. Relative errors of u(x) in N–point approximations to the Example 1 by the DF method,
the piecewise linear method (PL), the direct Hermite method(DH) and the piecewise Hermite
collocation method(PH). The step is 0.1 for piecewise method and the test point is 0.8.

ω\Method DF PL DH PH

10 6.85× 10−3 6.86× 10−5 8.80× 10−5 1.14× 10−8

100 8.89× 10−5 1.06× 10−5 1.56× 10−7 2.08× 10−9

1000 9.38× 10−7 1.31× 10−7 1.56× 10−10 3.08× 10−12

10, 000 9.36× 10−9 1.46× 10−9 1.57× 10−13 3.39× 10−15
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Figure 1. The relative errors of u(x) for DF method, direct Hermite collocation method (DH) and
piecewise Hermite collocation method (PH) at point x = 0.8 (left), the maximum relative errors at
collocation points x = 0.1:0.1:1 (right).
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Figure 2. The relative errors of u(x) at point x = 0.8 for DF method, direct Hermite collocation
method (DH), piecewise Hermite collocation method (PH).
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Figure 3. The relative error of u′(x).

Table 2. Relative errors of u(x) in N–point approximations to the Example 1 by the PL method and the
piecewise Hermite collocation method(PH). where ω = 1000 and the test point is 0.8.

Method\h 0.2 0.1 0.05 0.01

PL 2.71× 10−7 1.31× 10−7 5.69× 10−8 1.10× 10−8

PH 1.21× 10−11 3.08× 10−12 7.44× 10−13 1.03× 10−14

Example 2. Consider the following equation,

u(x)−
∫ x

0
J3(ω(x− t))u(t)dt = f (x) with x ∈ I = [0, 1], (53)

where f (x) = 1
1+x2 −

∫ x
0 J3(ω(x− t)) 1

1+t2 dt. The analytic solution is u(x) = 1
1+x2 .

We can see the numerical solutions from the Tables 3 and 4 and Figures 4 and 5.
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Figure 4. The relative errors of u(x) for DF method, direct Hermite collocation method (DH) and
piecewise Hermite collocation method (PH) at point x = 0.8 (left), the maximum relative errors at
collocation points x = 0.1:0.1:1 (right).
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Figure 5. The relative error of u′(x).

Table 3. Relative errors of u(x) in N–point approximations to the Example 2 by the DF method, the PL
method, the DH method, and the piecewise Hermite collocation method (PH). The step is 0.1 for
piecewise method and the test point is 0.8.

ω\Method DF PL DH PH

10 1.13× 10−2 6.83× 10−5 4.34× 10−4 2.22× 10−7

100 5.10× 10−5 7.23× 10−6 1.68× 10−6 2.53× 10−8

1000 5.12× 10−7 6.77× 10−8 1.75× 10−9 4.11× 10−11

10, 000 5.32× 10−9 9.68× 10−10 1.75× 10−12 4.21× 10−14

Table 4. Relative errors of u(x) in N–point approximations to the Example 2 by the PL method and the
piecewise Hermite collocation method (PH). where ω = 10, 000 and the test point is 0.8.

Method\h 0.2 0.1 0.05 0.01

PL 1.64× 10−9 9.68× 10−10 4.91× 10−10 8.78× 10−11

PH 1.85× 10−13 4.21× 10−14 1.00× 10−14 0
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Example 3. Consider the following equation,

u(x)−
∫ x

0
Jm(ω(x− t))u(t)dt = f (x) with x ∈ I = [0, 1], (54)

where f (x) = sin(x)−
∫ x

0 J2(ω(x− t)) sin(t)dt. The analytic solution is u(x) = sin(x).

Results of these calculations are given in Table 5 and Figures 6 and 7.
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Figure 6. The relative errors of u(x) for DF method, direct Hermite collocation method (DH) and
piecewise Hermite collocation method (PH) at point x = 0.9 (left), the maximum relative errors at
collocation points x = 0.1:0.1:1 (right).
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Figure 7. The relative error of u′(x).

Table 5. Relative errors of u(x) in N–point approximations to the Example 3 by the DF method and the
PL method and the DH method, and the piecewise Hermite collocation method (PH). The step is 0.1
for piecewise method and the test point is 0.9.

ω\Method DF PL DH PH

10 5.02× 10−3 7.35× 10−5 7.88× 10−5 1.23× 10−8

100 6.31× 10−5 6.83× 10−6 7.01× 10−8 1.03× 10−9

1000 6.38× 10−7 8.92× 10−8 6.62× 10−11 1.20× 10−12

10, 000 6.35× 10−9 9.88× 10−10 6.56× 10−14 1.28× 10−15
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Example 4. Consider the following equation,

u(x)−
∫ x

0
J3(ω(x− t))u(t)dt = f (x) with x ∈ I = [0, 1], (55)

where f (x) = (x− 0.5)3.1 −
∫ x

0 J3(ω(x− t))(t− 0.5)3.1dt. The analytic solution is u(x) = (x− 0.5)3.1.

We can see the numerical solutions from the Figure 8.
From above examples, as can be seen, there is a good agreement between the present result

and the exact solution. The Hermite-type collocation methods are better than DF method and PL
collocation method. For Hermite-type collocation methods, the higher oscillation, the higher accuracy.
For fixed frequency, the error is decrease with the increase of nodes.
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Figure 8. The relative errors of u(x) and u′(x) for direct Hermite collocation method (DH) and
piecewise Hermite collocation method (PH) .

5. Conclusions

Collocation methods are efficient in solving Volterra integral equation with highly oscillatory
kernel. In this paper, we present two collocation methods: DH collocation method and piecewise
Hermite collocation method. The first conclusion to be drawn from the numerical evidence
presented earlier is that Hermite-type collocation methods are higher efficient than existent collocation
methods. Both methods can calculate the approximate value of function value and derivative value
simultaneously. Finally, while we have considered only the case of Bessel kernel in this paper, the
Hermite-type collocation methods can be extended to Fourier kernel.

In the future work, we will study better methods to solve the Volterra integral equations with
different kernel and Fredholm integral equations.

Author Contributions: C.F., G.H. and S.X. conceived and designed the experiments; C.F. performed the
experiments; G.H. analyzed the data; C.F. contributed reagents/materials/analysis tools; C.F. and G.H.
wrote the paper.

Funding: This work is supported partly by National Natural Science Foundation of China (No. 11701171,
11771454), the Scientific Research Fund of Hunan Provincial Education Department (No. 17B113 ), the Hunan
Provincial Natural Science Foundation of China (No. 2016JJ4037), the Aid program for Science and Technology
Innovative Research Team in Higher Educational Institutions of Hunan Province, the Fundamental Research Funds
for the Central Universities (No. 21618333), and the Opening Project of Guangdong Province Key Laboratory of
Computational Science at the Sun Yat-sen University (No. 2018010) .

Acknowledgments: The authors are grateful to the anonymous referees for their useful comments and
constructive suggestions for improvement of this paper.



Symmetry 2019, 11, 168 17 of 17

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Bao, G.; Sun, W.W. A fast algorithm for the electromagnetic scattering from a large cavity. SIAM J. Sci.
Comput. 2005, 27, 553–574. [CrossRef]

2. Davis, P.J.; Duncan, D.B. Stability and convergence of collocation schemes for retarded potential integral
equations. SIAM J. Numer. Anal. 2004, 42, 1167–1188. [CrossRef]

3. Langdon, S.; Chandler-Wilde, S.N. A wavenumber independent boundary element method for an acoustic
scattering problem. SIAM J. Numer. Anal. 2006, 43, 2450–2477. [CrossRef]

4. Brunner, H. Collocation Methods for Volterra Integral and Related Functional Equations; Cambridge University
Press: Cambridge, UK, 2004.

5. Brunner, H.; Davis, P.J.; Duncan D.B. Discontinuous Galerkin approximations for Volterra integral
equations of the first kind. IMA J. Numer. Anal. 2009, 29, 856–881. [CrossRef]

6. Ma, J.; Fang, C.; Xiang, S. Modified asymptotic orders of the direct Filon method for a class of Volterra
integral equations. J. Comput. Appl. Math. 2015, 281, 120–125. [CrossRef]

7. Wang, H.; Xiang, S. Asymptotic expansion and Filon-type methods for a Volterra integral equation with a
highly oscillatory kernel. IMA J. Numer. Anal. 2011, 31, 469–490. [CrossRef]

8. Brunner, H. On Volterra integral operators with highly oscillatory kernels. Discret. Contin. Dyn. Syst. 2014,
34, 915–929. [CrossRef]

9. Ma, J.; Liu, H. On the Convolution Quadrature Rule for Integral Transforms with Oscillatory Bessel Kernels.
Symmetry 2018, 10, 239. [CrossRef]

10. Chen, H; Zhang, C. Boundary value methods for Volterra integral and integro-differential equations.
Appl. Math. Comp. 2011, 218, 2619–2630. [CrossRef]

11. Ma, J.; Xiang, S. A Collocation Boundary Value Method for Linear Volterra Integral Equations. J. Sci. Comput.
2017, 71, 1–20. [CrossRef]

12. Xiang, S.; Wu, Q. Numerical solutions to Volterra integral equations of the second kind with oscillatory
trigonometric kernels. Appl. Math. Comp. 2013, 223, 34–44. [CrossRef]

13. Wu, Q. On graded meshes for weakly singular Volterra integral equations with oscillatory trigonometric
kernels. J. Comput. Appl. Math. 2014, 263, 370–376. [CrossRef]

14. Xiang, S.; Brunner, H. Efficient methods for Volterra integral equations with highly oscillatory Bessel kernels.
BIT Numer. Math. 2013, 53, 241–263. [CrossRef]

15. Fang, C.; Ma, J.; Xiang M. On Filon methods for a class of Volterra integral equations with highly oscillatory
Bessel kernels. Appl. Math. Comp. 2015, 268, 783–792. [CrossRef]

16. Watson, G.N. A Treatise on the Theory of Bessel Functions; Cambridge University Press: Cambridge, UK, 1952.
17. Xiang, S.; Wang, H. Fast integration of highly oscillatory integrals with exotic oscillators. Math. Comp. 2010,

79, 829–844. [CrossRef]
18. Ma, J.; Xiang, S.; Kang, H. on the convergence rates of Filon methods for the solution of a Volterra integral

equation with a highly oscillatory Bessel kernel. Appl. Math. Lett. 2013, 26, 699–705. [CrossRef]

Sample Availability: Samples of the compounds ...... are available from the authors.

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1137/S1064827503428539
http://dx.doi.org/10.1137/S0036142901395321
http://dx.doi.org/10.1137/S0036142903431936
http://dx.doi.org/10.1093/imanum/drn037
http://dx.doi.org/10.1016/j.cam.2014.12.010
http://dx.doi.org/10.1093/imanum/drp048
http://dx.doi.org/10.3934/dcds.2014.34.915
http://dx.doi.org/10.3390/sym10070239
http://dx.doi.org/10.1016/j.amc.2011.08.001
http://dx.doi.org/10.1007/s10915-016-0289-3
http://dx.doi.org/10.1016/j.amc.2013.07.075
http://dx.doi.org/10.1016/j.cam.2013.12.039
http://dx.doi.org/10.1007/s10543-012-0399-8
http://dx.doi.org/10.1016/j.amc.2015.06.111
http://dx.doi.org/10.1090/S0025-5718-09-02279-0
http://dx.doi.org/10.1016/j.aml.2013.01.011
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Hermite-Type Collocation Methods
	 Direct Hermite Collocation Method (Algorithm 1)
	 Piecewise Hermite Collocation Method

	Error Analyses
	Numerical Examples
	Conclusions
	References

