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Abstract: As a new torsional vibration absorber, the dual mass flywheel (DMF) contains a symmetric
structure in which the damping element is a pair of springs symmetrically distributed along the
circumference direction. Through reasonable matching parameters, the DMF functions in isolating
torsional vibrations caused by the engine from the transmission system. Our work aims to solve the
accuracy of matching models between the DMF and power transmission system. The critical structural
parameters of each order modal are treated consecutively by two methods: Absolute sensitivity (e.g.,
under the idle condition and driving condition), and relative sensitivity. The operation achieves a
separation of the parameters and diagnosis of the relationship between these parameters and the
natural frequency in the system. In addition, the natural frequency range is determined based upon
the area of the resonance speed. As a result, the matching model is established based on the sensitivity
analysis method and the natural frequency range, which means the moment of inertia distribution
(its coefficient should be used as one structural parameter in relative sensitivity analysis) and the
torsional stiffness in multiple stages can be observed under the combined values. The effectiveness
of the matching model is verified by experiments of a real vehicle test under the idling condition
and driving condition. It is concluded that the analysis study can be applied to solve the parameters
matching accuracy among certain multi-degree-of-freedom dynamic models.
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1. Introduction

As the automobile power output and transmission are linked, dynamic characteristics of power
transmissions are an important factor in ride safety, fuel economy, and NVH (noise, vibration, and
harshness) performance of vehicles. It is recognized that vibrations and noises are the most important
indicators to evaluate the vehicle NVH performance [1]. Vehicle vibration noises can be caused by the
power source, aerodynamics, tires, transmission system, and uneven loads and so on. Among them,
power source vibration noises account for more than one half of vibration noises [2,3]. In fact, torsional
vibration is the main source of the vibration noises of power transmission. There are several ways to
suppress torsional vibration of the power transmission. The traditional way uses the elastic element to
change the natural frequency to avoid the resonance zone and the damping element to attenuate the
vibration amplitude [4]. Traditionally, we used a driven plate type clutch torsional vibration damper.
However, due to its space structure constrains, the damping performance is not satisfactory.
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DMF (Dual Mass Flywheel) is a new kind of vehicle torsional damper, which not only has
the function of the single mass flywheel, but also a driven plate type clutch torsional vibration
damper [5]. Due to its construction on reasonable inertia distribution and torsional stiffness, DMF
can make the resonance rotating speed lower than the idling speed through power transmission, thus
attenuating torsional vibrations under driving conditions [6]. Indeed, DMF has been widely used both
in traditional ICE (internal combustion engine) vehicles and HEVs (hybrid electric vehicle), providing
a more efficient damping performance. Figure 1 shows a schematic diagram of the power transmission
with the DMF, which consists of a primary flywheel assembly, and a secondary flywheel assembly
and a damper. Figure 2 shows a schematic diagram of the DMF, which consists of a primary flywheel
assembly, a secondary flywheel assembly, and a damper. The primary flywheel assembly includes a
starting gear ring, a signal ring, a cover, and a primary flywheel. The secondary flywheel assembly
comprises a flange, a seal disc, and a secondary flywheel. The damper is composed of springs and
damping elements. DMFs can be divided into several types according to the structure and the form
of the springs, in which the circumferential arc spring dual mass flywheel (DMF-CS) is the most
widely used type. As shown in Figure 1, the primary assembly and the crankshaft are connected by
bolts. In addition, the clutch and the AT (automatic transmission) can be connected by the secondary
assembly. Thus, power from the engine can be initially transmitted to the primary assembly, and then
to the secondary assembly by compression of the flange into the arc springs. In the end, the power
reaches the power transmission, leading to the car’s driving.
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Despite recent advances in the DMF’s experiments, simulations, structure innovations, and
performance comparisons, little is known about the matching method between the DMF and power
transmission. Some studies by Hartmut [7], Zeng [8], and Maffiodo [9] suggested that the excellent
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damping performance of DMF is associated with idling and low speed conditions by simulating
characteristics of a power transmission with DMF and reviewing the angular accelerations and
displacements between the output of the engine and the input of the gearbox under idling, sliding,
and accelerating conditions. Others [10] found that although the angular acceleration of the crankshaft
increased with the DMF, the corresponding dynamic load of the crankshaft decreased as the inertia
was reduced. Kang, Kauh, and Ha [11] proposed the development of the displacement measuring
system for the DMF based on the principle of the linear variable differential transformer (LVDT),
which was used for installation in a real vehicle. Liupeng He [12] suggested a method for estimating
the instantaneous engine torque of vehicles with conventional combustion engines and the DMF to
obtain better control of engines equipped with a DMF. Peter and Robert [13] experimentally studied
the dynamic change rules of the torsional stiffness and damping of the DMF. Li [14] and Wang [15]
studied the natural torsion characteristic of DMF, and proposed the result that the natural frequency
would be the minimum when the inertia ratio of the primary and secondary flywheel was 1:1. Yadav,
Birari, et al. created a two-degree freedom dynamic model without a transmission system in the design
of a crankshaft torsional vibration damper, and they found that the torsional vibration of the engine
was attenuated when the natural frequency of the torsional vibration damper was equal to the first
natural frequency of the engine, but this also introduced two new resonating frequencies to the original
system [16]. Shangguan, Liu, and Rakheja proposed that the reduction of the torsional stiffness of a
clutch was the most effective way to reduce gear rattle, and the torsional stiffness of a clutch at the first
stage was determined by considering the excitation frequency of an engine at idle [17].

Structural sensitivity can reflect the gradient of the structural parameters to the response of
the system. It is accepted that structural sensitivity will facilitate the optimization of the dynamic
characteristics by modifying the structural parameters. Yue, et al. [18] studied the design parameters
of a quarter wave tuner through sensitivity analysis by using acoustic simulations of the orifice noise
of an intake system. Moreover, others [19] presented an explicit time-domain method for sensitivity
analysis of structural responses under non-stationary random excitations and a new and more concise
time-domain explicit expression of response sensitivity was derived using the direct differentiation
method (DDM) based on time-domain explicit expressions of dynamic responses. A well-defined
vibration mode [20,21] was used in the properties of a new micro machined tuning fork gyroscope
(TFG) with an anchored diamond coupling mechanism to calculate Eigen sensitivities and establish
exact formulae to connect the natural frequency sensitivity with the modal strain or kinetic energy,
and determine the sensitivity to all stiffness and inertia parameters by the modal energy distribution.

The literature [7–15] shows that DMF can greatly improve the dynamic load of the crankshaft
and can effectively isolate the torsional vibration caused by the engine at idling speed and in the
low speed region. Moreover, the inertias of the primary and secondary flywheel assembly and the
multi-stage torsional stiffness have a great influence on the characteristics of the power transmission.
Therefore, the structural parameters of the DMF may be a decisive factor of the damping effect when
the value reasonably matches the power transmission. It can be concluded from the literature [16,17]
that the vibration reduction principle and the structure of a crankshaft torsional vibration damper are
completely different from that of the DMF, which has only two structural parameters, and a torsional
vibration damper of the clutch driven disk has only one structural parameter (torsional stiffness).
Therefore, the matching model of the DMF and power transmission is different from that of a crankshaft
torsional vibration damper and a torsional vibration damper of a clutch driven disk. Studies have
shown that the sensitivity analysis method can be widely used in mechanical dynamical analysis and
can also directly reflect the relationship between the structural parameters and the dynamic response
of the system [18–21].

The literature shows the data of the main structural parameters of the DMF, including the
inertias of the primary and secondary flywheel assemblies as well as the multi-stage torsional stiffness.
Additionally, the sum of inertia of the primary and the secondary flywheel assembly is equal to the
moment of inertia of the single mass flywheel, indicating the moment of inertia of the dual mass
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flywheel is a constant for a certain type of engine. The inertias of the primary and secondary flywheel
assembly and the multi-stage torsional stiffness need to be reasonably determined in the process
of matching, which suggests the matching problem between DMF and the power transmission is
actually a multivariable matching problem. The literature recommends that sensitivity analysis is
suitable for multivariable matching problems. This paper achieves the matching of DMF and the power
transmission by integration of the sensitivity analysis method and the vibration reduction theories.
Firstly, we demonstrated the modal analysis of the power transmission with the DMF. According to
the analysis results, the absolute sensitivity analysis method was used to determine the main structural
parameters, and the relative sensitivity analysis was used for the mathematical relationship between
the main structural parameters and the natural frequencies of the system. Through the relative
sensitivity analysis, the inertias of the primary and secondary flywheel assemblies can be combined
as one structural parameter because of the constraint relation of the moment of inertia of the dual
mass flywheel, namely the inertia ratio of them. The parameter should directly reflect the influence of
the change of the inertias on the natural frequency of the system. Secondly, the range of the natural
frequencies of the system was determined according to the vibration attenuation theories. Finally,
the matching data between the DMF and the power transmission were predicted by using the above
mathematical relationship and the range of natural frequencies.

2. Structural Sensitivity Analysis Method of Automobile Power Transmission

Sensitivity is widely used with different meanings in different areas. The meanings of sensitivity
can be summarized as the gradient of a structural parameter or a variable to the system response or
a solution of a function [16]. As a multivariable function, f (xi), with regard to xi(i = 1, 2 . . . , n), the
sensitivity of f (xi) related to xi can be expressed as:

Sab( f /xi) = lim
∆xi→0

∆ f
∆xi

=
∂ f
∂xi

(1)

where Sab is the absolute sensitivity, of which the value denotes the influence of the variable, xi, on
f (xi). If we change the numerator and denominator of Equation (1) into the change rates of f (xi) and
xi, shown in Equation (2), Srt is the relative sensitivity, of which the value denotes the relation between
the change rates of f (xi) and xi:

Srt( f /xi) = lim
∆xi→0

∆ f
f

∆xi
xi

=

∂ f
f

∂xi
xi

=
xi
f

∂ f
∂xi

(2)

The structural sensitivity analysis method can be regarded as the application of the sensitivity
analysis method in mechanical dynamics. Using this method, we can evaluate the influence of the
change of system structural parameters on the system dynamic response. The dynamic characteristics
of the power transmission generally cover amplitude-frequency and phase-frequency characteristics.
Normally, DMF change the natural frequency of the power transmission by matching inertias and
decreasing stiffness to avoid the resonance zone. Therefore, the structural sensitivity analysis can
only involve the gradients of the system’s natural frequencies to the inertias and stiffness under
free vibration.

With rotational motion, the dynamic model of automobile power transmission is a torsional
vibration model. The dynamic equation without damping is given by:(

[K]−ω2
i [J]
)
{θ}i = 0 (3)

where [K] and [J] are the torsional stiffness matrix and inertia matrix, respectively, ωi is the ith order
natural frequency, and {θ}i is the ith order modal shape. Structural damping and viscous damping still
exist in the actual model; however, damping elements have little influence on the natural frequency of
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the system because of a small damping coefficient [4,22]. Furthermore, viscous friction and coulomb
friction can cause a DMF to assume the hysteresis nonlinearity; however, the nonlinear model needs
to be identified by the modified Bouc-Wen model combined with experimental data [23]. That is, the
nonlinear model must be determined after a DMF is manufactured. Some studies [23] showed that
the real natural frequency is approximately equal to the real natural frequency of the system without
damping at low rotational speed. Therefore, the dynamic Equation (3) can be used to analyze the
model in the process of matching.

2.1. Sensitivity of Natural Frequencies of Torsional Vibration to Torsional Stiffness

Both [K] and [J] are the real symmetric matrix. To simplify the calculation, Equation (3) is
pre-multiplied by θT

i to obtain Equation (4):

{θ}T
i

(
[K]−ω2

i [J]
)
{θ}i = 0 (4)

{θ}T
i [J]{θ}i = Mi (5)

where Mi is the modal mass under the ith order. Let the absolute and relative sensitivities of ωi to the
torsional stiffness of the jth unit be Sab

(
ωi/Kj

)
and Srt

(
ωi/Kj

)
, respectively. Referring to Equations

(1) and (2), the partial derivative with respect to Kj in Equation (4) is operated to obtain Equation (6).
Thus, Sab

(
ωi/Kj

)
and Srt

(
ωi/Kj

)
can be derived as:

θT
i

(
∂[K]
∂Kj
− 2ωi

∂ωi
∂Kj

[J]−
ω2

i ∂[J]
∂Kj

)
θi = 0 (6)

Sab
(
ωi/Kj

)
=

∂ωi
∂Kj

=
θT

i
∂[K]
∂Kj

θi

2ωi Mi
(7)

Srt
(
ωi/Kj

)
=

∂ωi/ωi
∂Kj/Ki

=
θT

i
∂[K]
∂Kj

θi

2ωi Mi

Kj

ωi
(8)

[K] is expressed as Equation (9), so ∂[K]
∂Kj

can be obtained as Equation (10) when j < n− 1 and ∂[K]
∂Kj

can be given by Equation (11) when j = n− 1. Where n is the degree of freedom of the system.

[K] =



K1 −K1

−K1 K1 + K2 −K2 0
−K2 K2 + K3 −K3

. . . . . . . . .
−Ki−1 Kj−1 + Kj −Kj

. . . . . . . . .
0 −Kn−2 Kn−2 + Kn−1 −Kn−1

−Kn−1 Kn−1


(9)
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∂[K]
∂Kj

=



0
0

. . . . . . . . .
1 −1
. . . . . . . . .

0
0


(10)

∂[K]
∂Kj

=



0
0

. . . . . . . . .

. . . . . . . . .
0

−1 1


(11)

Combining Equations (7), (8), (10), and (11), Sab
(
ωi/k j

)
and Srt

(
ωi/k j

)
are given by:

Sab
(
ωi/Kj

)
=

[
(θi)j − (θi)j+1

]2

2ωi Mi
(12)

Srt
(
ωi/Kj

)
=

[
(θi)j − (θi)j+1

]2

2ωi Mi

Kj

ωi
(13)

2.2. Sensitivity of Natural Frequencies of Torsional Vibration to Inertias

Let the absolute sensitivity and relative sensitivity of the ith natural frequency, ωi to the torsional
stiffness of the jth unit be Sab

(
ωi/Jj

)
and Srt

(
ωi/Jj

)
. By seeking the partial derivative with respect to

Jj in Equation (4), Equation (14) can be obtained as:

θT
i

(
∂[K]
∂Jj
− 2ωi

∂ωi
∂Jj

[J]−
ω2

i ∂[J]
∂Jj

)
θi = 0 (14)

Therefore, the absolute and relative sensitivities can be calculated by:

Sab
(
ωi/Jj

)
=

∂ωi
∂Jj

= −
ωiθ

T
i

∂[J]
∂Jj

θi

2Mi
(15)

Srt
(
ωi/Jj

)
=

∂ωi/ωi
∂Jj/Jj

= −
Jjθ

T
i

∂[J]
∂Jj

θi

2Mi
(16)
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[J] is expressed as Equation (17), thus ∂[J]
∂Jj

is expressed as Equation (18):

[J] =



J1

J2 0
. . .

Jj

0
. . .

Jn


(17)

∂[J]
∂Jj

=



0
0 0

. . .
1

0
. . .

0


(18)

Combining Equations (15), (16), and (18), Sab
(
ωi/Jj

)
and Srt

(
ωi/Jj

)
are obtained as:

Sab
(
ωi/Jj

)
= −

ωi[(θi)j]
2

2Mi
(19)

Srt
(
ωi/Jj

)
= −

Jj[(θi)j]
2

2Mi
(20)

3. Matching Model of DMF and the Power Transmission Based on the Structural Sensitivity
Analysis Method

Comparative analysis between the DMF and clutch suggested that the DMF can effectively
attenuate the torsional vibrations under the idling condition and in the low engine speed zone
(1200–3000 r/min) and exhibit a similar damping performance to the clutch in the high engine
speed region (above 3000 r/min) [8]. The goals of this study were to describe the reasonable inertia
distributions of the primary and secondary flywheels and multi-stage torsional stiffness, and to identify
a potential association of a matching DMF and power transmission in terms of avoiding resonances
under the idling condition and low speed zone. Only the first order torsional vibration will occur in the
power transmission system under the idling condition and the modal vibrations of the system in the
low speed zone under driving conditions are usually much more complicated, which are determined
by the absolute structural sensitivity analysis method in the low speed zone. The natural frequency
ranges of each mode can be established based on the resonance speed zone and then the matching
model is created based on the natural frequency ranges and the relative structural sensitivity analysis
method. The steps of building a matching model are shown in Figure 3.
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3.1. Matching Model of Inertia and Torsional Stiffness of the DMF under the Idling Condition

The rotational speed of the engine under the idling condition is relatively low, usually around
800 r/min. For four stroke engines, the first order modal resonance under the 0.5th, 1st, 1.5th, and 2nd
harmonic excitations will occur in this range of speed. In theory, the DMF can reduce the 1st natural
frequency of the idling condition to be lower than the frequency corresponding to the idling speed by
adjustment the inertias of the primary and secondary flywheels and torsional stiffness. However, in
practice, many factors may influence the matching of the inertias of the DMF, such as the installation
space, the dynamic load bearing capacity of the engine crankshaft, and the transmission shifting impact.
Since the change interval of the inertias is limited, the natural frequency under the idling condition
may be higher than the frequency corresponding to the idling speed. Therefore, two situations should
be considered:

(1) When the 1st order modal resonance speed of the power transmission is lower than the idling
speed, the 0.5th and 1st harmonic resonances should be avoided. In this case, we should compare
the vector sums of the relative amplitudes of the 0.5th and the 1st harmonic orders to determine
the main harmonic excitations that should be avoided.

(2) When the 1st order modal resonance speed of the power transmission is higher than the idling
speed, the 1st, 1.5th, and 2nd harmonic resonances should be avoided. Under the idling condition,
since nodes of the 1st order modal shape will not exist in the engine blocks, the main harmonic
order will be the 2nd one for four-cylinder engines. In this instance, the 2nd order harmonic
torsional vibration should be avoided.

Let the 1st order natural frequency be f, the resonance and the idling speed be n1 and n2,
respectively, the harmonic order be I, and the resonance speed zone be Zn, where n1 = i·n2 = 60 f .
According to vibration attenuation theories, the resonance speed zone, Zn, will be from 0.8·n1 to 1.2·n1,
that is, Zn = (0.8, 1.2)·n1 [20]. We will discuss the two cases respectively.

(1) n1 < n2, i = 0.5, 1. In this case, f should meet the following requirements:

60 f <
in2

1.2
(21)

60 f >
in2

0.8
(22)

For the 0.5th order harmonic excitation, the natural frequency is relatively low. Two situations
will occur when using Equation (21) to design the natural frequency. Firstly, the torsional stiffness at
the idling condition is so low that the torsional stiffness at driving conditions will be exclusively high.
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Thus, resonances will occur under driving conditions. Secondly, the engine starts at an instant speed
of about 200 r/min, which will cause start-up resonance and difficulties in starting. Therefore, only
Equation (22) will be available.

For the 1st order harmonic excitation, the 1.5th and 2nd order resonances will occur when using
Equation (22) to design the natural frequency. Therefore, only Equation (21) will be available in
this situation.

In a word, the natural frequency under the idling condition will be:

0.5n2

0.8
< 60 f <

n2

1.2
(23)

At the 1st mode, when the vector sum of the relative amplitude of the 0.5th harmonic is larger
than that of the 1st harmonic, it is assumed that the resonance speed zone is Zn = (x, 1.2)·n1. Thus, x
should satisfy Equation (24):

0.5n2

x
<

n2

1.2
(24)

According to Equation (24), that is, 0.6 < x < 0.8, so x can be valued at 0.7. Therefore, f can be
calculated by:

0.5n2

0.7
< 60 f <

n2

1.2
(25)

At the 1st mode, when the vector sum of the relative amplitude of the 1st harmonic is larger than
that of the 0.5th harmonic, it is assumed that the resonance speed zone is Zn = (0.8, x)·n1. Thus, x
should satisfy Equation (26):

0.5n2

0.8
<

n2

x
(26)

According to Equation (26), that is, 1.2 < x < 1.6, so x can be valued at
√

2. Therefore, x can be
calculated by:

0.5n2

0.8
< 60 f <

n2√
2

(27)

(2) n1 > n2, i = 1, 1.5, 2.
Similarly, for each order harmonic excitation, f should also satisfy Equations (21) and (22), which

can be expressed as: {
n2
0.8 < 60 f < 1.5n2

1.2
1.5n2

0.8 < 60 f < 2n2
1.2

(28)

In fact, f cannot satisfy Equation (28). Under such a circumstance, resonances under the 1st and
2nd order harmonic excitations can only be considered. Furthermore, since the 2nd order harmonic is
the main one for the four-cylinder engine, f should firstly satisfy Equation (29), and then satisfy the
Equation (30):

n2

0.8
< 60 f <

2n2√
2

(29)

n2

0.8
< 60 f <

2n2

1.2
(30)

In summary, the 1st order natural frequency should be lower than the frequency corresponding to
the idling speed as much as possible. Otherwise, the 1.5th order resonance will not be avoided. It is
assumed that the inertias of the primary and secondary flywheel assembly are J1 and J2, respectively,
and the inertia of the single mass flywheel matched to the engine is J3. J3 is provide by the engine
manufacturer, and will usually be within a certain range; that is, J3 ∈

(
Jx, Jy

)
. Thus, J1 + J2 ∈

(
Jx, Jy

)
.

Furthermore, the inertia ratio of the primary and secondary flywheel assembly can be obtained by
the constraints of the inertias, the masses, and the installation spaces of the primary and secondary
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flywheel assembly. The inertia ratio can be expressed as λ and λ ∈ (a, b). With initial conditions, the
initial values of J1 and J2 can be determined by:

λ =
a + b

2
J1 + J2 =

Jx + Jy

2
(31)

J1 =
λ
(

Jx + Jy
)

2(λ + 1)
J2 =

Jx + Jy

2(λ + 1)
(32)

Let the torsional stiffness of DMF at the idling stage be K1. Based on the initial conditions of the
moment inertias of the primary and secondary flywheel assembly and the torsional stiffness at the
idling stage, combined with the value range of the 1st order resonance and the analysis method of
structural sensitivity, the matching of J1, J2, and K1 to the power transmission follows the procedure
outlined in Figure 4.
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In Figure 4, Sab(ω1/J1) and Sab(ω1/J2) denote the absolute sensitivities of the 1st order natural
frequency to the moment of inertias of the primary and secondary flywheel assembly, respectively,
and Srt(ω1/λ) denotes the relative sensitivity of the 1st order natural frequency to the inertia ratio.
Meanwhile, Sab(ω1/K1) and Srt(ω1/K1) are the absolute and relative sensitivities of the 1st order
natural frequency to the torsional stiffness at the idling stage, respectively. If both Sab(ω1/J1) and
Sab(ω1/J2) are not significant, J1 and J2 will not be the main structural parameters affecting the 1st
order natural frequency. Thus, K1 should be the crucial structural parameter to tune the natural
frequency. On the other hand, if Sab(ω1/K1) is not the largest sensitivity, J1 and J2 will be the key
structural parameters to adjust the natural frequency. In addition, if all the three sensitivities are
significant, K1, J1, and J2 will be the key parameters to adjust the natural frequency. In the matching
process, because of the constraints of the primary and secondary flywheel assembly, any change
of the moment of inertia of the flywheel assembly will cause the change of the other. Thus, the
moment of inertia ratio, λ, should be used instead of J1 and J2 as the structural parameter to conduct
the calculations when analyzing the gradient relationship between the change of the primary and
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secondary flywheel assembly and that of the natural frequency. Therefore, Equation (16) involving λ

can be rewritten as:

Srt(ωi/λ) =
∂ωi/ωi
∂λ/λ

= −
λθT

i
∂[J]
∂λ θi

2Mi
(33)

Let the jth and (j + 1)th units be the primary flywheel assembly and secondary flywheel assembly,
respectively, then:

[J] =



J1

J2 0
. . .

λ(Jx+Jy)
2(λ+1)

0
Jx+Jy

2(λ+1)
. . .

Jn


(34)

∂[J]
∂Jj

==



0
0

. . .
(Jx+Jy)
2(λ+1)2

0 − Jx+Jy

2(λ+1)2

. . .
0


(35)

Substituting Equation (35) into Equation (33), it can be rewritten as:

Srt(ωi/λ) = − λ

2Mi

Jx + Jy

2(λ + 1)2

[
(θi)j

2 − (θi)j+1
2
]

(36)

According to Srt(ω1/K1) and Srt(ω1/λ), the mathematical relationships between the 1st order
natural frequency and λ, K1 can be respectively established as:

∆λ =
∆ω1/ω1

Srt(ω1/λ)
λ (37)

∆K1 =
∆ω1/ω1

Srt(ωi/K1)
K1 (38)

where ∆λ is the variation based on the initial value of λ, ∆ω1 is the variation of the 1st order natural
frequency, ω1, based on the initial conditions, and ∆K1 is the variation based on the initial value of K1.
Thus J1, J2, and K1 are obtained as:

J1 =
(λ + ∆λ)

(
Jx + Jy

)
2(λ + ∆λ + 1)

J2 =
Jx + Jy

2(λ + ∆λ + 1)
(39)

K1 = K1 + ∆K1 (40)

∆ω1 can be determined by the difference between the actual value and the value range of
ω1. Then, the range of λ and K1 can be determined by Equations (39) and (40). In this process,
Max

(
Srt

(
ω1
K1

)
, Srt(ω1/λ)

)
should be the structural parameter to be adjusted firstly. When it cannot

meet the requirement, another structural parameter should be adjusted.
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3.2. Matching Model of Inertia and Torsional Stiffness of the DMF under the Driving Condition

Under driving conditions, the torsional stiffness of the DMF at the driving stage that is K2 can
both transfer the engine power and adjust the system natural frequency. Let the operating angle of
DMF at K1 and K2 be θ1 and θ2, respectively. Generally, the total torsion angle of the DMF springs
being θ is about 65◦–70◦ [5], thus, θ1 + θ2 = θ. θ1 can be primarily valued as:

θ1 =
T1

K1
(41)

where T1 is the moment of inertia of the power transmission under the idling condition, which is related
to the inertias of the secondary flywheel assembly, the clutch and the input shaft of the transmission,
and the angular accelerations of the starting motor. Accordingly, K2 can be primarily calculated as:

K2 =
ξTmax

θ − θ1
(42)

where Tmax is the maximum torque from the engine, and ξ is the torque backup coefficient, which is
related to the real car.

Figure 5 shows the matching process of the structural parameters of the DMF using the structural
sensitivity analysis method. Taking J1, J2, and K2 as initial conditions, the torsional vibration model of
the system can be established firstly. Then, modal analysis will be conducted to determine whether the
resonance speed is in the low speed region. If the resonance speed deviates from the low speed region,
J1, J2, K1, and K2 will be the final structural parameters of DMF. Whereas, if the resonance speed is
in the low speed region, we should firstly obtain the order set of resonances, which is order_set1.
Then, the absolute sensitivities of J1, J2, and K2 to the natural frequency are analyzed for each order in
order_set1 to obtain order_set2 associated with J1, J2, and K2. Finally, the structural sensitivities of K2

and λ are analyzed in order_set2, and their values are matched.
In this process, for the orders of resonance, the ranges of the natural frequency can be determined

by Equations (21) and (22). Meanwhile, the relative sensitivities of K2 and λ to each order natural
frequency can be calculated. Then, referring to Equations (39) and (40), the ranges of K2 and λ can
be determined and stored in the K2_set and λ_set, respectively. After traversing order_set2, the
intersection of all values in the λ_ set and K2_set will be obtained, and the values of K2 and λ will
be determined accordingly. After the above calculations under driving conditions, K2 will change
to be K3. If K3 > K2, we value the torsional stiffness of the DMF at the driving stage as K3; that
is K2 = K3. If K3 < K2, K3 cannot meet the requirement of torque transmission. Therefore, in this
case, the intersection of the ranges of K1 and K3 under the idling condition should be determined
firstly. In this intersection, by increasing K1 and its operating angle, θ1, K2 will finally be determined
according to Equation (42).
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4. Matching Example and Real Vehicle Test of DMF

4.1. Matching Example of the DMF Based on the Structural Sensitivity Analysis Method

Taking a car matching a CVT (continuously variable transmission) as an example, the undamped
torsional vibration models under idling and driving conditions are shown in Figures 6 and 7,
respectively, where Ji denotes the moment of inertia and Ki denotes the torsional stiffness linking the
two lumped masses. The structural parameters of the power transmission are listed in Table 1, where
the units of the moment of inertia and torsion stiffness are kg·m2 and N·m/rad, respectively.
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Table 1. Structural parameters of the power transmission.

Names of Elements Inertia Value of Inertia
(kg·m2)

Torsional
Stiffness

Value of Torsional
Stiffness

(N·m/rad)

Driven part of rubber damper J1 4.795 × 10−3 K1 14,320.0
Driving part of rubber damper J2 2.038 × 10−3 K2 74,636.1

Accessories J3 9.74 × 10−5 K3 356,080.5
Cylinder 1 J4 4.669 × 10−3 K4 358,856.9
Cylinder 2 J5 4.712 × 10−3 K5 360,638.8
Cylinder 3 J6 4.712 × 10−3 K6 359,640
Cylinder 4 J7 4.686 × 10−3 K7 1,871,080

Primary flywheel assembly J8 0.08 K8 160.43; 733.39
Secondary flywheel assembly J9 0.012 K9 98,731.62

Input shaft of CVT J10 7.312 × 10−3 K10 48,483.78
Driving cone of CVT J11 0.0268368

The idling speed and maximum torque of the engine of this car are 750 r/min and 225 N·m,
respectively. According to the technical parameters provided by the vehicle factory, the range of the
total inertia of the DMF is 0.08–0.11 kg·m2, where the inertia of the primary flywheel assembly is
not less than 0.075 kg·m2, and the secondary flywheel assembly quality should be less than 5 kg.
Furthermore, ξ = 1.33, thus 4.2 < λ < 9.

The car has been fitted with a DMF. The inertias of the primary and secondary flywheel assembly
are 0.08 kg·m2 and 0.012 kg·m2, respectively, and the torsional stiffness at the idling stage and driving
stage is 160.43 N·m/rad (θ1 = 45.25 ◦) and 733.39 N·m/rad (θ2 = 15 ◦), respectively. In addition, the
hollow travel angle is 4.75 ◦, and the total torsional stiffness is 65 ◦, that is, θ = 65 ◦.

Based on the above data, the simulation model is established by using Adams software. Figures 8
and 9 are the simulation models of the automotive power transmission system with the DMF under
idle and driving conditions, respectively. The simulation models created by Adams software usually
consist of bodies, connectors, and forces, where bodies represent centralized mass units and constraints
on each body are implemented by connectors, and the force transfer between bodies is achieved by
torsion springs in forces.
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The modal analysis is carried out according to the above simulation models, and the natural
frequencies under idling and driving conditions are listed in Tables 2 and 3.

Table 2. Natural frequencies under the idling condition (Hz).

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9

15.8 239.8 603.8 742 1053 1731 2481 3602 10,667

Table 3. System natural frequency under the driving condition (Hz).

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10

22.5 239.8 300 603.8 821.79 1053 1731 2481 3602 10,667

It is shown that the 1st order natural frequency is 15.8 Hz under the idling condition and the
corresponding resonance speed will be 940 r/min under the idling condition, which can meet the
requirement of Equation (29). The 1st order natural frequency is 22.5 Hz under the driving condition
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and the corresponding resonance speed is 1350 r/min under the driving condition, which means that
resonance will occur in the low speed region. Therefore, the structural parameters of the original DMF
needed to be modified.

The calculation flow of sensitivity is shown in Figure 10, where n is the degree of freedom of the
system, and i stands for the ith order and j represents the jth unit. According to this calculation flow,
the program of m file is coded by using MATLAB, and the corresponding program code is shown in
Appendix A. The absolute sensitivities of the 1st order natural frequency to the inertias and torsional
stiffness can be obtained based on the torsional vibration model under the driving condition, as shown
in Tables 4 and 5 and Figures 11 and 12.
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Table 4. The absolute sensitivities of the 1st order natural frequency to inertias under the
driving condition.

J1 J2 J3 J4 J5 J6 J7 J8 J9 J10 J11

−221.583 −218.24 −217.333 −217.14 −216.821 −216.376 −215.803 −215.668 −1104.44 −1122.1 −1150.73

Table 5. The absolute sensitivities of the 1st order natural frequency to torsional stiffness under the
driving condition.

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

5.62 × 10−7 4.18 × 10−8 1.89 × 10−9 5.18 × 10−9 1.01 × 10−8 1.68 × 10−8 9.29 × 10−10 0.101543 3.1 × 10−6 7.97 × 10−6
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For inertias, the absolute sensitivities show that the inertias of the secondary flywheel assembly
and the CVT component have the greatest influence on the 1st order natural frequency under the
driving condition and the natural frequency will decrease with the increase of inertias. For the torsional
stiffness, the torsional stiffness of the DMF at the driving stage has the greatest influence on the 1st
order natural frequency and the natural frequency will increase with the increase of the torsional
stiffness. Since the structural parameters of the CVT cannot be modified, the key structural parameters
will be the inertia ratio of the primary and secondary flywheel assembly (λ) and the torsional stiffness
of the DMF under the driving condition (K8).

The relative sensitivities of the 1st order natural frequency to the torsional stiffness driving
condition are shown in Table 6 and Figure 13, where Srt(ω1/K8) = 0.495, and it can be calculated
that Srt(ω1/λ) = 0.062 according to Equation (36). Combined with Equations (37) and (38), Figure 4,
Figure 5, and the initial conditions, the matching results can be obtained, which are J8 = 0.077 kg·m2,
J9 = 0.018 kg·m2, K8 = 257.8 N·m/rad (θ1 = 54.25 ◦) (the torsion stiffness under idling condition),
K8 = 710.5 N·m/rad (θ2 = 6 ◦) (the torsion stiffness under driving condition), θ0 = 4.75 ◦ (the hollow
travel angle), and θ = 65 ◦ (the total torsion angle). The rematching DMF is shown as Figure 14.

Table 6. The relative sensitivities of the 1st order natural frequency to torsional stiffness under the
driving condition.

K1 K2 K3 K4 K5 K6 K7 K8 K9 K10

5.35 × 10−5 2.08 × 10−5 4.47 × 10−6 1.24 × 10−5 2.42 × 10−5 4.03 × 10−5 1.16 × 10−5 0.495229 0.002033 0.00257
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After rematching, the natural frequencies of the power transmission under idling and driving
conditions are obtained as shown in Tables 7 and 8. The 1st order natural frequency is 18.8 Hz and
the corresponding resonance speed is 1128 r/min under the idling condition, which can meet the
requirement of Equation (29). Furthermore, the 1st order natural frequency under the driving condition
is 15 Hz and the corresponding resonance speed is 900 r/min under the driving condition, which can
avoid resonances in the low speed region.

Table 7. Natural frequencies under the idling condition (Hz).

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9

18.8 240.1 605.1 713.4 1053.6 1731.9 2481.7 3604.7 10,667.8

Table 8. Natural frequencies under the driving condition (Hz).

f 1 f 2 f 3 f 4 f 5 f 6 f 7 f 8 f 9 f 10

15 240.1 282.9 605.1 801.7 1053.6 1731.9 2481.7 3604.7 10,667.8



Symmetry 2019, 11, 187 19 of 29

4.2. Real Vehicle Test

Real vehicle tests were carried out for the power transmissions matching the DMFs before and
after optimization, as shown in Figures 15 and 16. As is shown in Figure 16, two electromagnetic
speed sensors of which the model number is ONOSOKKI-MP-910 were mounted on the housing of
the transmission. Furthermore, the arrangement details of these two sensors are shown in Figure 17,
where sensor 1 is pointed to signal gear 1 on the primary flywheel of the DMF and sensor 2 is pointed
to signal gear 2 on the input shaft of the transmission. As is shown in Figure 18, with the rotation of
the gear, the clearance between the gear and the sensor will also change due to the different distances
between the addendum and the dedendum of the gear and the sensor, which will cause a variation of
the magnetic flux of the coil in the sensor, thus the output signal of the sensor is similar to a sinusoidal
wave. Let the rotating speed of the gear be ω (r/min), the number of teeth of the gear be Z, and the
frequency of the signal be f (Hz), so ω will be:

ω =
f
Z
× 60 (43)
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In this experiment, the signal wires of these two rotating speed sensors were connected with
a Siemens data acquisition instrument, LMS SCADAS302VB. The collected data were processed by
Siemens LMS Test.Lab 15A, and the tracking settings for the two signal channels are shown in Figure 19,
where the number of teeth of signal gear 1 (as shown in Figure 17) is 133 and the number of teeth
of signal gear 2 (as shown in Figure 17) is 60. In Figure 20, tacho1 and tacho2 are the rotating speed
signal channel of the primary flywheel and the rotating speed signal channel of the input shaft of the
transmission, respectively.

Speed signals were collected under idling and driving conditions and the angular acceleration of
the primary flywheel and the transmission input were analyzed. For the engine mounted with the
original DMF, under the idling condition, the engine speed starts at around 750 r/min, as shown in
Figure 21, in which the red curve represents the engine speed. Figure 22 shows the angular acceleration,
in which the red and green curves respectively present the angular acceleration of the primary flywheel
and the transmission input, where the maximum angular acceleration of the transmission input is
about 83 rad/s2. Under the driving condition, the range of the engine speed is 750 r/min–1500 r/min,
as shown in Figure 23, in which the red curve represents the engine speed in the time-domain.
Figure 24 shows the angular acceleration, in which the red and green curves respectively present the
angular acceleration of the primary flywheel and the transmission input, where the maximum angular
acceleration of the transmission input is about 203 rad/s2 around 1210 r/min.
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For the rematching DMF, the engine speed was around 750 r/min under the idling condition,
as shown in Figure 25, in which the red curve represents the engine speed. Figure 26 shows the
angular acceleration under the idling condition, in which the red and green curves respectively present
the angular acceleration of the primary flywheel and the transmission input, where the maximum
angular acceleration of the transmission input is about 25 rad/s2. Under the driving condition, the
range of the engine speed is 750 r/min–2500 r/min, as shown in Figure 27, in which the red curve
represents the engine speed in the time-domain. Figure 28 shows the angular acceleration, in which
the red and green curves respectively present the angular acceleration of the primary flywheel and the
transmission input, where the maximum angular acceleration of the transmission input is 184 rad/s2

around 836 r/min.
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Figure 24. The angular acceleration of the primary flywheel and the transmission input under the
driving condition for the engine with the original DMF.

Theoretical calculation results and the experimental results of the engine with the original
DMF and rematching DMF are compared as shown in Table 9. Under the idling condition, the
theoretical value of the first order resonance speed of the system is 940 r/min with the original
DMF and 1128 r/min with the rematching DMF, however, there is no change in terms of the engine
speed, remaining around 750 r/min under the idling condition. Thus, the resonance speed appears
unmeasured. Figure 25 shows that the resonance speed under the idling condition occurs around
750 r/min; Figure 26 shows that the resonance speed under the idling condition remains around
750 r/min and the maximum angular acceleration of the transmission input is decreased as the
torsional stiffness of the DMF at the idling stage rises, suggesting an acceptance of the theoretical
calculation result.
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driving condition for the engine with the rematching DMF.

Table 9. Comparative analysis of the results.

Items Under Idling Condition Under Driving Conditon

Original DMF Rematching DMF Original DMF Rematching DMF
The maximum angular acceleration

(rad/s2) 83 25 203 184

Measured resonance speed (r/min) 1210 836
Theoretical resonance speed (r/min) 940 1128 1350 900

Under the driving condition, the actual measurement result of the first order resonance speed of
the engine with the original DMF is 1210 r/min, and then the theoretical calculation of the resonance
speed is 1350 r/min based on the undamped torsional vibration model; that is, the error is about 11%.
Moreover, the actual measurement result of the first order resonance speed of the engine with the
rematching DMF is 836 r/min and the theoretical calculation of the resonance speed is 900 r/min
based on the undamped torsional vibration model; that is, the error is about 7%, which means the
theoretical model can be used to analyze the modal in the process of matching.

Under the idling condition, the angular acceleration of the transmission input is not damped
compared with that of the primary flywheel because the resonance speed is higher than the idling
speed for the engine with the rematching DMF. Nevertheless, the maximum angular acceleration of the
transmission input decreases from 83 rad/s2 to 25 rad/s2. Under the driving condition, the maximum
angular acceleration of the transmission input decreases from 203 rad/s2 to 184 rad/s2 for the engine
with the rematching DMF. Moreover, the resonance speed is reduced from 1210 r/min to 836 r/min for
the engine with the rematching DMF under the driving condition, avoiding the resonance at the low
speed region. Obviously, the damping performance of the rematching DMF is better than the original
DMF, thus these results confirm the validity of the matching model.

5. Conclusions

This study addressed the matching model of the DMF and the power transmission by integration
of the sensitivity analysis method and the vibration reduction theories. Based on the mathematical
meaning of sensitivity, the structural sensitivity analysis method for an automobile power transmission
system was obtained. Furthermore, considering the constraints of the inertia of the primary and
secondary flywheel assembly, the inertia ratio of them was taken as one structural parameter
completing a successful sensitivity analysis. The main function of the DMF is to attenuate torsional
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vibration from the engine and hence the resonance speed zones were defined in light of the vibration
reduction theories and their working characteristics. The matching model of the DMF and the power
transmission was established based on the resonance speed zones and the structural sensitivity analysis
method. The matching model was applied to modify the structural parameters of the DMF of a certain
vehicle and then the effectiveness of the matching model was verified by experiments of a real vehicle
test under the idling condition and driving condition. The main conclusions in this research are
summarized as follows:

(1) The absolute structural sensitivity can effectively isolate key structural parameters of the vibration
modal at each stage and the resultant parameters can be quantitatively revised by the relative
structural sensitivity. Under the driving condition, the inertia of the secondary flywheel assembly
and torsional stiffness of DMF have a significant influence on the 1st order natural frequency
of automotive power transmission. The inertia of the secondary flywheel assembly is inversely
proportional to the 1st order natural frequency. In contrast, the torsional stiffness is positively
proportional to the 1st order and the inertia ratio of the primary and secondary assembly is
positively associated to the 1st order.

(2) Given that the resonance speed is higher than the idle speed under the idling condition, the 1st
order natural frequency of the system should be increased through enhancement of the torsional
stiffness of the DMF at the idling stage to decrease the angular acceleration amplitude of the input
shaft of the transmission. In contrast, the 1st order natural frequency of the system should be
decreased through reduction of the torsional stiffness of the DMF at the idling stage to attenuate
the angular acceleration amplitude of the input shaft of the transmission.

(3) Under the driving condition, the 1st order natural frequency of the system should be decreased
by reduction of the inertia ratio and the torsional stiffness of the DMF at the driving stage,
which appears to protect resonances in low speed zones and attenuates the angular acceleration
amplitude of the input shaft of the transmission.

(4) Given that the torsional stiffness at the driving stage cannot meet the requirements of the matching
model, the operation range of the torsional stiffness at the idling stage should be enlarged to
make it work under driving conditions.

As the matching model proposed in this paper can achieve reasonable matching between
structural parameters of the DMF and power transmission system, it is useful to make a transmission
system that is insulated from torsional vibrations caused by the engine. The matching model can
also be applied in structural parameters matching of other types of shock absorber in vehicle systems
and other mechanical systems after adjusting the resonance frequency ranges and vibration model
according to the actual operating conditions of the system.

The matching model can be used to preliminarily determine the main structural parameters of the
DMF, however, these were not further optimized according to the dynamic non-linear characteristics
of the DMF, so in future study, we will combine the dynamic non-linearity model of the DMF with
the linear matching model to further optimize the structural parameters in order to obtain a better
damping performance.
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Appendix A

function [m1,m2,m3,m4,m5,m6]=Sensibilty()
JZ11=0.004795;
JZ12=0.002038;
JZ13=0.0000974;
JZ14=0.004669;
JZ15=0.004712;
JZ16=0.004712;
JZ17=0.004686;
JZ18=0.08;
JZ19=0.012;
JZ110=0.00731216;
JZ111=0.0268368;
KZ11=14320;
KZ12=74636.1;
KZ13=356080.5;
KZ14=358856.9;
KZ15=360638.8;
KZ16=359640;
KZ17=1871080;
KZ18=733.39;
KZ19=98731.62;
KZ110=48483.78;
J1=[JZ11 JZ12 JZ13 JZ14 JZ15 JZ16 JZ17 JZ18 JZ19 JZ110 JZ111];
K1=[KZ11 KZ12 KZ13 KZ14 KZ15 KZ16 KZ17 KZ18 KZ19 KZ110];
J=diag(J1);
K=[KZ11 -KZ11 0 0 0 0 0 0 0 0 0;

-KZ11 KZ12+KZ11 -KZ12 0 0 0 0 0 0 0 0;
0 -KZ12 KZ12+KZ13 -KZ13 0 0 0 0 0 0 0;
0 0 -KZ13 KZ14+KZ13 -KZ14 0 0 0 0 0 0;
0 0 0 -KZ14 KZ14+KZ15 -KZ15 0 0 0 0 0;
0 0 0 0 -KZ15 KZ16+KZ15 -KZ16 0 0 0 0;
0 0 0 0 0 -KZ16 KZ16+KZ17 -KZ17 0 0 0;
0 0 0 0 0 0 -KZ17 KZ18+KZ17 -KZ18 0 0;
0 0 0 0 0 0 0 -KZ18 KZ18+KZ19 -KZ19 0;
0 0 0 0 0 0 0 0 -KZ19 KZ110+KZ19 -KZ110;
0 0 0 0 0 0 0 0 0 -KZ110 KZ110;];

J2=inv(J);
[v,d]=eig(J2*K);
d=dˆ0.5;
m5=abs(diag(d))’;
v1=[v;abs(diag(d))’]’;
v2=sortrows(v1,12);
n=11;
senb_J=zeros(n,n);
senb_K=zeros(n,n-1);
senb_J2=zeros(n,n);
senb_K2=zeros(n,n-1);
modal_mass=zeros(1,n);
Temp_V1=zeros(1,n);
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Temp_V2=0;
Temp_V3=0;
for i=1:n

for j=1:n
Temp_V(1,j)=v2(i,j);

end
modal_mass(1,i)=Temp_V*J*Temp_V’;

end
Temp_V4=0;
y=JZ18/JZ19;
senb_J3=0;
for i=1:n

for j=1:n
Temp_V2=-v2(i,j)ˆ2*v2(i,n+1);
if j<n

Temp_V3=(v2(i,j)-v2(i,j+1))ˆ2;
senb_K(i,j)=Temp_V3/(2*v2(i,n+1)*modal_mass(1,i));
senb_K2(i,j)=senb_K(i,j)*K1(1,j)/v2(i,n+1);

end
senb_J(i,j)=Temp_V2/(2*modal_mass(1,i));
senb_J2(i,j)=senb_J(i,j)*J1(1,j)/v2(i,n+1);

end
end
m1=senb_K; % The absolute sensitivities of natural frequency to torsional stiffness
m2=senb_K2; % The relative sensitivities of natural frequency to torsional stiffness
m3=senb_J; % The absolute sensitivities of natural frequency to inertias
m4=senb_J2; % The relative sensitivities of natural frequency to inertias
m6=modal_mass; % modal mass
m5=m5/(2*pi);
xlswrite(’.\sensibility.xls’,senb_K,’A1:J11’);
xlswrite(’.\sensibility.xls’,senb_K2,’A13:J23’);
xlswrite(’.\sensibility.xls’,senb_J,’A25:K35’);
xlswrite(’.\sensibility.xls’,senb_J2,’A37:K47’);
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