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Abstract: We investigate the solvability and Ulam stability for a nonlocal nonlinear third-order
integro-multi-point boundary value problem on an arbitrary domain. The nonlinearity in the
third-order ordinary differential equation involves the unknown function together with its first-
and second-order derivatives. Our main results rely on the modern tools of functional analysis
and are well illustrated with the aid of examples. An analogue problem involving non-separated
integro-multi-point boundary conditions is also discussed.

Keywords: nonlinear boundary value problem; nonlocal; multi-point; multi-strip; existence;
Ulam stability

1. Introduction

Consider a third-order ordinary differential equation of the form:

u′′′(t) = f (t, u(t), u′(t), u′′(t)), a < t < T, a, T ∈ R, (1)

supplemented with the boundary conditions:

∫ T

a
u(s)ds =

m

∑
j=1

γju(σj) +
p

∑
i=1

ξi

∫ ρi+1

ρi

u(s)ds,

∫ T

a
u′(s)ds =

m

∑
j=1

µju′(σj) +
p

∑
i=1

ηi

∫ ρi+1

ρi

u′(s)ds,

∫ T

a
u′′(s)ds =

m

∑
j=1

νju′′(σj) +
p

∑
i=1

ωi

∫ ρi+1

ρi

u′′(s)ds,

(2)

where f : [a, T]× R3 → R is a continuous function, a < σ1 < σ2 < · · · < σm < ρ1 < ρ2 < · · · <
ρp+1 < T, and γj, µj, νj ∈ R+ (j = 1, 2, . . . , m), ξi, ηi, ωi ∈ R+ (i = 1, 2, . . . , p).
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As a second problem, we study Equation (1) with the following type non-separated
boundary conditions:

α1u(a) + α2u(T) =
m

∑
j=1

γju(σj) +
p

∑
i=1

ξi

∫ ρi+1

ρi

u(s)ds,

β1u′(a) + β2u′(T) =
m

∑
j=1

µju′(σj) +
p

∑
i=1

ηi

∫ ρi+1

ρi

u′(s)ds,

δ1u′′(a) + δ2u′′(T) =
m

∑
j=1

νju′′(σj) +
p

∑
i=1

ωi

∫ ρi+1

ρi

u′′(s)ds,

(3)

where αj, β j, δj ∈ R (j = 1, 2), while the rest of parameters are the same as fixed in the problem in
Equations (1) and (2).

The subject of boundary value problems has been an interesting and important area of
investigation in view of its varied application in applied sciences. One can find the examples in
blood flow problems, underground water flow, chemical engineering, thermoelasticity, etc. For a
detailed account of applications, see [1].

Nonlinear third-order ordinary differential equations frequently appear in the study of applied
problems. In [2], the authors studied the existence of solutions for third-order nonlinear boundary
value problems arising in nano-boundary layer fluid flows over stretching surfaces. In the study of
magnetohydrodynamic flow of a second grade nanofluid over a nonlinear stretching sheet, the system
of transformed governing equations involves a nonlinear third-order ordinary equation and is solved
for local behavior of velocity distributions [3]. The investigation of the model of magnetohydrodynamic
flow of second grade nanofluid over a nonlinear stretching sheet is also based on a nonlinear third-order
ordinary differential equation [4].

During the last few decades, boundary value problems involving nonlocal and integral boundary
conditions attracted considerable attention. In contrast to the classical boundary data, nonlocal
boundary conditions help to model physical, chemical or other changes occurring within the given
domain. For the study of heat conduction phenomenon in presence of nonclassical boundary condition,
see [5]. The details on theoretical development of nonlocal boundary value problems can be found in
the articles [6–10] and the references cited therein. On the other hand, integral boundary conditions
play a key role in formulating the real world problems involving arbitrary shaped structures, for
example, blood vessels in fluid flow problems [11–13]. For the recent development of the boundary
value problems involving integral and multi-strip conditions, we refer the reader to the works [14–19].

In heat conduction problems, the concept of nonuniformity can be relaxed by using the boundary
conditions of the form (2), which can accommodate the nonuniformities in form of points or
sub-segments on the heat sources. In fact, the integro-multipoint conditions (2) can be interpreted as
the sum of the values of the unknown function (e.g., temperature) at the nonlocal positions (points
and sub-segments) is proportional to the value of the unknown function over the given domain.
Moreover, in scattering problems, the conditions (2) can be helpful in a situation when the scattering
boundary consists of finitely many sub-strips (finitely many edge-scattering problems). For details
and applications in engineering problems, see [20–23].

In the present work, we derive the existence results for the problem in Equations (1) and (2)
by applying Leray–Schauder nonlinear alternative and Krasnoselskii fixed-point theorem, while the
uniqueness result is obtained with the aid of celebrated Banach fixed point theorem. These results are
presented in Section 3. The Ulam type stability for the problem in Equations (1) and (2) is discussed in
Section 4. In Section 5, we describe the outline for developing the existence theory for the problem in
Equations (1) and (3). Section 2 contains the auxiliary lemmas related to the linear variants of the given
problems, which lay the foundation for establishing the desired results. It is imperative to mention that
the results obtained in this paper are new and yield several new results as special cases for appropriate
choices of the parameters involved in the problems at hand.
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2. Preliminary Result

In this section, we solve linear variants of the problems in Equations (1) and (2), and Equations (1)
and (3).

Lemma 1. For g ∈ C([a, T],R) and Λ 6= 0, the unique solution of the problem consisting of the equation

u′′′(t) = g(t), t ∈ [a, T],

and the boundary condition in Equation (2) is

u(t) =
∫ t

a

(t− s)2

2
g(s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
g(s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ µjG1(t)(σj − s) + νjG2(t)

]
g(s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

[ ∫ s

a

(
ξi A1 A2

(s− τ)2

2
+ ηiG1(t)(s− τ) + ωiG2(t)

)
g(τ)dτ

]
ds,

(4)

where

G1(t) = A1

(
A4(t− a)− A5

)
, G2(t) = A3

(
A5 − A4(t− a)

)
− A2

(
A6 − A4

(t− a)2

2

)
, (5)



Λ = A1 A2 A4, A1 =
(

T − a−
p

∑
i=1

ωi(ρi+1 − ρi)−
m

∑
j=1

νj

)
6= 0,

A2 =
(

T − a−
p

∑
i=1

ηi(ρi+1 − ρi)−
m

∑
j=1

µj

)
6= 0,

A3 =
(T − a)2

2
−

p

∑
i=1

ηi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
−

m

∑
j=1

µj(σj − a),

A4 =
(

T − a−
p

∑
i=1

ξi(ρi+1 − ρi)−
m

∑
j=1

γj

)
6= 0,

A5 =
(T − a)2

2
−

p

∑
i=1

ξi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
−

m

∑
j=1

γj(σj − a),

A6 =
(T − a)3

3!
−

p

∑
i=1

ξi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
−

m

∑
j=1

γj
(σj − a)2

2
.

(6)

Proof. Integrating u′′′(t) = g(t) repeatedly from a to t, we get

u(t) = c0 + c1(t− a) + c2
(t− a)2

2
+
∫ t

a

(t− s)2

2
g(s)ds, (7)

where c0, c1 and c2 are arbitrary unknown real constants. Moreover, from Equation (7), we have

u′(t) = c1 + c2(t− a) +
∫ t

a
(t− s)g(s)ds, (8)

u′′(t) = c2 +
∫ t

a
g(s)ds. (9)
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Using the third condition of Equation (2) in Equation (9), we get

c2 =
1

A1

[
−
∫ T

a
(T − s)g(s)ds +

p

∑
i=1

ωi

∫ ρi+1

ρi

∫ s

a
g(τ)dτds +

m

∑
j=1

νj

∫ σj

a
g(s)ds

]
. (10)

Making use of the second condition of Equation (2) in Equation (8) together with
Equation (10) yields

c1 =
1

A2

[
−
∫ T

a

(T − s)2

2
g(s)ds +

p

∑
i=1

ηi

∫ ρi+1

ρi

∫ s

a
(s− τ)g(τ)dτds

+
m

∑
j=1

µj

∫ σj

a
(σj − s)g(s)ds

]
+

A3

A1 A2

[
−
∫ T

a
(T − s)g(s)ds +

p

∑
i=1

ωi

∫ ρi+1

ρi

∫ s

a
g(τ)dτds

+
m

∑
j=1

νj

∫ σj

a
g(s)ds

]
.

(11)

Finally, using the first condition of Equation (2) in Equation (7) together with Equations (10) and (11),
we obtain

c0 =
1
Λ

{(
A3 A5 − A2 A6

)[
−
∫ T

a
(T − s)g(s)ds +

p

∑
i=1

ωi

∫ ρi+1

ρi

∫ s

a
g(τ)dτds

+
m

∑
j=1

νj

∫ σj

a
g(s)ds

]
− A1 A5

[
−
∫ T

a

(T − s)2

2
g(s)ds

+
p

∑
i=1

ηi

∫ ρi+1

ρi

∫ s

a
(s− τ)g(τ)dτds +

m

∑
j=1

µj

∫ σj

a
(σj − s)g(s)ds

]
(12)

+A1 A2

[
−
∫ T

a

(T − s)3

3!
g(s)ds +

p

∑
i=1

ξi

∫ ρi+1

ρi

∫ s

a

(s− τ)2

2
g(τ)dτds

+
m

∑
j=1

γj

∫ σj

a

(σj − s)2

2
g(s)ds

]}
.

In Equations (10)–(12), we have used the notations in Equation (6). Inserting the values of
c0, c1 and c2 in Equation (7) completes the solution to Equation (4). By direct computation, one can
obtain the converse of the Lemma.

Lemma 2. For h ∈ C([a, T],R), the problem consisting of the equation u′′′(t) = h(t), t ∈ [a, T] and
non-separated boundary conditions in Equation (3) is equivalent to the integral equation

u(t) =
∫ t

a

(t− s)2

2
h(s)ds

− 1
∆

∫ T

a

[
α2ζ1ζ2

(T − s)2

2
+ β2P1(t)(T − s) + δ2P2(t)

]
h(s)ds

+
1
∆

m

∑
j=1

∫ σj

a

[
γjζ1ζ2

(σj − s)2

2
+ µjP1(t)(σj − s) + νjP2(t)

]
h(s)ds

+
1
∆

p

∑
i=1

∫ ρi+1

ρi

[ ∫ s

a

(
ξiζ1ζ2

(s− τ)2

2
+ ηiP1(t)(s− τ) + ωiP2(t)

)
h(τ)dτ

]
ds,

(13)
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where

P1(t) = ζ1

(
ζ4(t− a)− ζ5

)
, P2(t) = ζ3

(
ζ5 − ζ4(t− a)

)
− ζ2

(
ζ6 − ζ4

(t− a)2

2

)
, (14)



∆ = ζ1ζ2ζ4, ζ1 =
(

δ1 + δ2 −
p

∑
i=1

ωi(ρi+1 − ρi)−
m

∑
j=1

νj

)
6= 0,

ζ2 =
(

β1 + β2 −
p

∑
i=1

ηi(ρi+1 − ρi)−
m

∑
j=1

µj

)
6= 0,

ζ3 = β2(T − a)−
p

∑
i=1

ηi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
−

m

∑
j=1

µj(σj − a),

ζ4 =
(

α1 + α2 −
p

∑
i=1

ξi(ρi+1 − ρi)−
m

∑
j=1

γj

)
6= 0,

ζ5 = α2(T − a)−
p

∑
i=1

ξi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
−

m

∑
j=1

γj(σj − a),

ζ6 = α2
(T − a)2

2
−

p

∑
i=1

ξi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
−

m

∑
j=1

γj
(σj − a)2

2
.

(15)

Proof. We omit the proof as it runs parallel to that of Lemma 1.

3. Main Results

Let us set f̂ (t) = f (t, u(t), u′(t), u′′(t)) and introduce a fixed point problem equivalent to the
problem in Equations (1) and (2) via Lemma 1 as follows

u = Lu, (16)

where the operator L : H → H is defined by

(Lu)(t) =
∫ t

a

(t− s)2

2
f̂ (s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ µjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s− τ)2

2
+ ηiG1(t)(s− τ) + ωiG2(t)

]
f̂ (τ)dτds.

(17)

Here, H = {u|u, u′, u′′ ∈ C([a, T],R)} is the Banach space equipped with the norm ‖u‖H =

maxt∈[a,T]

{
|u(t)|+ |u′(t)|+ |u′′(t)|

}
= ‖u‖+ ‖u′‖+ ‖u′′‖. From Equation (17), we have

(Lu)′(t) =
∫ t

a
(t− s) f̂ (s)ds− 1

A1 A2

∫ T

a

[
A1

(T − s)2

2
+ G3(t)(T − s)

]
f̂ (s)ds

+
1

A1 A2

m

∑
j=1

∫ σj

a

[
µj A1(σj − s) + νjG3(t)

]
f̂ (s)ds

+
1

A1 A2

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ηi A1(s− τ) + ωiG3(t)

]
f̂ (τ)dτds,

(18)
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(Lu)′′(t) =
∫ t

a
f̂ (s)ds +

1
A1

[
−
∫ T

a
(T − s) f̂ (s)ds +

m

∑
j=1

∫ σj

a
νj f̂ (s)ds

+
p

∑
i=1

∫ ρi+1

ρi

∫ s

a
ωi f̂ (τ)dτds

]
,

(19)

where
G3(t) = A2(t− a)− A3. (20)

Observe that the existence of the fixed points for the operator in Equation (16) implies the existence
of solutions for the problem in Equations (1) and (2).

For the sake of computational convenience in the forthcoming analysis, we set

Q = Q1 + Q2 + Q3, (21)

where

Q1 =
(T − a)3

3!
+

1
|A4|

[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]
+

b1

|Λ|

[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

µj
(σj − a)2

2

]
+

b2

|Λ|

[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
,

(22)

Q2 =
(T − a)2

2
+

1
|A2|

[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

µj
(σj − a)2

2

]
+

b3

|A1 A2|

[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
,

(23)

and

Q3 = (T − a) +
1
|A1|

[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
, (24)

where maxt∈[a,T] |G1(t)| = b1, maxt∈[a,T] |G2(t)| = b2 and maxt∈[a,T] |G3(t)| = b3 (G1(t), G2(t) are
given by Equation (5) while G3(t) is defined in Equation (20)).

3.1. Existence of Solutions

In this subsection, we discuss the existence of solutions for the problem in Equations (1) and (2).
In our first result, we make use of Krasnoselskii’s fixed point theorem [24].

Theorem 1. Let f : [a, T]×R3 → R be a continuous function satisfying the conditions:

(H1)
∣∣∣ f (t, u, u′, u′′)− f (t, v, v′, v′′)

∣∣∣ ≤ `
(
|u− v|+ |u′ − v′|+ |u′′ − v′′|

)
, ∀t ∈ [a, T],

` > 0, u, v, u′, v′, u′′, v′′ ∈ R;

(H2) there exist a function ε ∈ C([a, T],R+) with ‖ε‖ = supt∈[a,T] |ε(t)| such that

| f̂ (t)| = | f (t, u, u′, u′′)| ≤ ε(t), ∀(t, u, u′, u′′) ∈ [a, T]×R3;

(H3) `
(

Q− (T−a)
6

[
6 + 3(T − a) + (T − a)2

])
< 1, where Q is given by Equation (21).

Then, there exists at least one solution for the problem in Equations (1) and (2) on [a, T].
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Proof. Consider a closed ball Br = {(u, u′, u′′) : ‖u‖H ≤ r, u, u′, u′′ ∈ C([a, T],R)} for fixed
r ≥ Q‖ε‖ and introduce the operators L1 and L2 on Br as follows:

(L1u)(t) =
∫ t

a

(t− s)2

2
f̂ (s)ds,

(L2u)(t) = − 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ µjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s− τ)2

2
+ ηiG1(t)(s− τ) + ωiG2(t)

]
f̂ (τ)dτds.

Moreover, we have

(L1u)′(t) =
∫ t

a
(t− s) f̂ (s)ds, (L1u)′′(t) =

∫ t

a
f̂ (s)ds,

(L2u)′(t) = − 1
A1 A2

∫ T

a

[
A1

(T − s)2

2
+ G3(t)(T − s)

]
f̂ (s)ds

+
1

A1 A2

m

∑
j=1

∫ σj

a

[
µj A1(σj − s) + νjG3(t)

]
f̂ (s)ds

+
1

A1 A2

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ηi A1(s− τ) + ωiG3(t)

]
f̂ (τ)dτds,

(L2u)′′(t) =
1

A1

[
−
∫ T

a
(T − s) f̂ (s)ds +

m

∑
j=1

∫ σj

a
νj f̂ (s)ds +

p

∑
i=1

∫ ρi+1

ρi

∫ s

a
ωi f̂ (τ)dτds

]
.

Notice that L = L1 + L2. For u, v ∈ Br, and t ∈ [a, T], we have

‖L1u + L2v‖

= sup
t∈[a,T]

{∣∣∣ ∫ t

a

(t− s)2

2
f (s, u(s), u′(s), u′′(s))ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f (s, v(s), v′(s), v′′(s))ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ µjG1(t)(σj − s) + νjG2(t)

]
f (s, v(s), v′(s), v′′(s))ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s− τ)2

2
+ ηiG1(t)(s− τ) + ωiG2(t)

]
f (τ, v(τ), v′(τ), v′′(τ))dτds

∣∣∣}

≤ ‖ε‖ sup
t∈[a,T]

{ (t− a)3

3!
+

1
|A4|

[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]

+
|G1(t)|
|Λ|

[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

µj
(σj − a)2

2

]

+
|G2(t)|
|Λ|

[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]}
≤ ‖ε‖Q1,
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where Q1 is given by Equation (22). In a similar manner, it can be shown that

‖(L1u)′ + (L2v)′‖ ≤ ‖ε‖Q2, ‖(L1u)′′ + (L2v)′′‖ ≤ ‖ε‖Q3,

where Q2 and Q3 are, respectively, given by Equations (23) and (24). Consequently, we obtain

‖L1u + L2v‖H ≤ ‖ε‖Q ≤ r,

where we have used (H2) and Equation (21). From the above inequality, it follows that L1u +L2v ∈ Br.
Thus, the first condition of Krasnoselskii’s fixed point theorem [24] is satisfied. Next, we show that L2

is a contraction. For u, v ∈ R, it follows by the assumption (H1) that

‖L2u−L2v‖

≤ sup
t∈[a,T]

{ 1
|Λ|

∫ T

a

[
|A1 A2|

(T − s)3

3!
+ |G1(t)|

(T − s)2

2
+ |G2(t)|(T − s)

]

×
∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))

∣∣∣ds +
1
|Λ|

m

∑
j=1

∫ σj

a

[
γj|A1 A2|

(σj − s)2

2

+µj|G1(t)|(σj − s) + νj|G2(t)|
]∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))

∣∣∣ds

+
1
|Λ|

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi|A1 A2|

(s− τ)2

2
+ ηi|G1(t)|(s− τ) + ωi|G2(t)|

]
×
∣∣∣ f (τ, u(τ), u′(τ), u′′(τ))− f (τ, v(τ), v′(τ), v′′(τ))

∣∣∣dτds
}

≤ `
(
‖u− v‖+ ‖u′ − v′‖+ ‖u′′ − v′′‖

){ 1
|A4|

[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)

+
m

∑
j=1

γj
(σj − a)3

3!

]
+

b1

|Λ|

[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

µj
(σj − a)2

2

]

+
b2

|Λ|

[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]}

≤ `
(

Q1 −
(T − a)3

3!

)
‖ u− v ‖H .

Similarly, we can obtain

‖(L2u)′ − (L2v)′‖ ≤ `
(

Q2 −
(T − a)2

2

)
‖ u− v ‖H,

and

‖(L2u)′′ − (L2v)′′‖ ≤ `
(

Q3 − (T − a)
)
‖ u− v ‖H .

Thus, we get

‖L2u−L2v‖H ≤ `
(

Q− (T − a)
6

[
6 + 3(T − a) + (T − a)2

])
‖ u− v ‖H,

which, in view of the condition (H3), implies that L2 is a contraction. Thus, the second hypothesis of
Krasnoselskii’s fixed point theorem [24] is satisfied. Finally, we verify the third and last hypothesis of
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Krasnoselskii’s fixed point theorem [24] that L1 is compact and continuous. Observe that continuity of
f implies that the operator L1 is continuous. In addition, L1 is uniformly bounded on Br as

‖L1u‖H ≤ ‖ε‖
[ (T − a)3

3!
+

(T − a)2

2
+ (T − a)

]
.

Let us fix sup(t,u,u′ ,u′′)∈[a,T]×Br
| f (t, u, u′, u′′)| = f̄ , and take a < t1 < t2 < T. Then,

|(L1u)(t2)− (L1u)(t1)| =
∣∣∣ ∫ t1

a

[ (t2 − s)2

2
− (t1 − s)2

2

]
f̂ (s)ds

+
∫ t2

t1

(t2 − s)2

2
f̂ (s)ds

∣∣∣
≤ f̄

( (t2 − t1)
3

3
+

1
3!

∣∣∣(t2 − a)3 − (t1 − a)3
∣∣∣)→ 0 as t2 → t1,

independently of u ∈ Br. In addition, we have

|(L1u)′(t2)− (L1u)′(t1)| =

∣∣∣∣∫ t1

a
[(t2 − s)− (t1 − s)] f̂ (s)ds +

∫ t2

t1

(t2 − s) f̂ (s)ds
∣∣∣∣

≤ f̄
∣∣∣(t2 − t1)(t1 − a) +

(t2 − t1)
2

2

∣∣∣→ 0 as t2 → t1,

independently of u ∈ Br and

|(L1u)′′(t2)− (L1u)′′(t1)| ≤ f̄ (t2 − t1)→ 0 as t2 → t1,

independently of u ∈ Br. From the preceding arguments, we deduce that L1 is relatively compact on
Br. Hence, the operator L1 is compact on Br by the Arzelá–Ascoli theorem. Since all the hypotheses
of Krasnoselskii’s fixed point theorem [24] are verified, its conclusion applies to the problem in
Equations (1) and (2).

Remark 1. When the role of the operators L1 and L2 is mutually interchanged, the condition (H3) of Theorem 1

takes the form: ` (T−a)
6

[
6 + 3(T − a) + (T − a)2

]
< 1.

In the next result, we make use of Leray–Schauder nonlinear alternative for single valued
maps [25].

Theorem 2. Suppose that f : [a, T]×R3 → R is a continuous function and the following conditions hold:

(H4) | f̂ (t)| = | f (t, u, u′, u′′)| ≤ p(t)Ψ(|u|), ∀(t, u, u′, u′′) ∈ [a, T] × R3, where p ∈ C([a, T],R+),
and Ψ : R+ → R+ is a nondecreasing function;

(H5) there exists a positive constant N satisfying the inequality:

N
‖p‖Ψ(N)Q

> 1,

where Q is defined by Equation (21). Then, the problem in Equations (1) and (2) has at least one solution
on [a, T].

Proof. We verify the hypotheses of Leray–Schauder nonlinear alternative [25] in several steps. We first
show that the operator L : H → H defined by Equation (17) maps bounded sets into bounded sets in
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H. Let us consider a set Br̄ = {(u, u′, u′′) : ‖u‖H ≤ r̄, u, u′, u′′ ∈ C([a, T],R), r̄ > 0} and note that it
is bounded inH. Then, in view of the condition (H4), we get

‖(Lu)‖ = sup
t∈[a,T]

{∣∣∣ ∫ t

a

(t− s)2

2
f̂ (s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ µjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s− τ)2

2
+ ηiG1(t)(s− τ) + ωiG2(t)

]
f̂ (τ)dτds

∣∣∣}
≤ ‖p‖Ψ(‖u‖H)Q1 ≤ ‖p‖Ψ(r̄)Q1,

where Q1 is given by Equation (22). Similarly, one can establish that

‖(Lu)′‖ ≤ ‖p‖Ψ(r̄)Q2, ‖(Lu)′′‖ ≤ ‖p‖Ψ(r̄)Q3,

where Q2 and Q3 are given by Equations (23) and (24), respectively. In view of the foregoing arguments,
we have

‖(Lu)‖H ≤ ‖p‖Ψ(r̄)Q,

where Q is given by Equation (21). Next, it is verified that the operator L maps bounded sets into
equicontinuous sets inH. Notice that L is continuous in view of the continuity of f̂ (t). Let t1, t2 ∈ [a, T]
with t1 < t2 and u ∈ Br̄. Then, we have

|(Lu)(t2)− (Lu)(t1)|

≤
∣∣∣ ∫ t1

a

[ (t2 − s)2

2
− (t1 − s)2

2

]
f̂ (s)ds +

∫ t2

t1

(t2 − s)2

2
f̂ (s)ds

∣∣∣
+

1
|Λ|

∫ T

a
(t2 − t1)

[
|A1 A4|

(T − s)2

2
+
(
|A3 A4|+

|A2 A4|
2

(t2 + t1)
)
(T − s)

]
f̂ (s)ds

+
1
|Λ|

m

∑
j=1

∫ σj

a
(t2 − t1)

[
µj|A1 A4|(σj − s) + νj

(
|A3 A4|+

|A2 A4|
2

(t2 + t2
1)
)]
| f̂ (s)|ds

+
1
|Λ|

p

∑
i=1

∫ ρi+1

ρi

∫ s

a
(t2 − t1)

[
ηi|A1 A4|(s− τ) + ωi

(
|A3 A4|+

|A2 A4|
2

(t2 + t1)
)]
| f̂ (τ)|dτds

≤ ‖p‖Ψ(r̄)
{ (t2 − t1)

3

3
+

1
3!

∣∣∣(t2 − a)3 − (t1 − a)3
∣∣∣

+
(t2 − t1)

|A2|

[ (T − a)3

3!
+

m

∑
j=1

µj
(σj − a)2

2
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)]

+
1
|Λ|

(
|A3 A4|(t2 − t1) +

|A2 A4|
2

(t2
2 − t2

1)
)[ (T − a)2

2
+

m

∑
j=1

νj(σj − a)

+
p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)]}
→ 0 as (t2 − t1)→ 0,
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independently of u ∈ Br̄. Moreover, we have

|(Lu)′(t2)− (Lu)′(t1)| ≤ ‖p‖Ψ(r̄)
{∣∣∣(t2 − t1)(t1 − a) +

(t2 − t1)
2

2

∣∣∣
+
(t2 − t1)

|A1|

[ (T − a)2

2
+

m

∑
j=1

νj(σj − a)

+
p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)]}
→ 0 as (t2 − t1)→ 0,

independently of u ∈ Br̄ and

|(Lu)′′(t2)− (Lu)′′(t1)| ≤
∣∣∣ ∫ t2

t1

f̂ (s)ds
∣∣∣

≤ ‖p‖Ψ(r̄)(t2 − t1)→ 0 as (t2 − t1)→ 0,

independently of u ∈ Br̄. In view of the foregoing arguments, the Arzelá–Ascoli theorem applies
and hence the operator L : H → H is completely continuous. The conclusion of Leray–Schauder
nonlinear alternative [25] is applicable once we establish the boundedness of all solutions to the
equation u = λLu for λ ∈ [0, 1]. Let u be a solution of the problem in Equations (1) and (2). Then,
as before, one can find that

|u(t)| = |λ(Lu)(t)| ≤ ‖p‖Ψ(‖u‖H)Q,

which can alternatively be written in the following form after taking the norm for t ∈ [a, T]:

‖u‖H
‖p‖Ψ(‖u‖H)Q

≤ 1.

By the assumption (H5), we can find a positive number N such that ‖u‖H 6= N. Introduce a set
U = {u ∈ C([a, T],R) : ‖u‖H < N} such that the operator L : U → C([a, T],R) is continuous and
completely continuous. In view of the the choice of U, there does not exist any u ∈ ∂U satisfying
u = λL(u) for some λ ∈ (0, 1). Thus, it follows from the nonlinear alternative of Leray–Schauder
nonlinear alternative [25] that L has a fixed point u ∈ U which corresponds a solution of the problem
in Equations (1) and (2).

3.2. Uniqueness of Solutions

In this subsection, the uniqueness of solutions for the problem in Equations (1) and (2) is
established by means of contraction mapping principle due to Banach.

Theorem 3. Let f : [a, T]×R3 → R be a continuous function satisfying the assumption (H1) with ` < Q−1,
where Q is given by Equation (21). Then, there exists a unique solution for the problem in Equations (1) and (2)
on [a, T].

Proof. Let us define a set Bw = {u, u′, u′′ ∈ C([a, T],R) : ‖u‖H ≤ w}, where w ≥
QM

1− `Q
, sup

t∈[a,T]
| f (t, 0, 0, 0)| = M, and show that LBw ⊂ Bw, where the operator L is defined by
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Equation (17). For any u ∈ Bw, t ∈ [a, T], one can find with the aid of the condition (H1) that
| f̂ (t)| ≤ ‖u‖H + M ≤ `w + M. Then, for u ∈ Bw, we have

‖(Lu)‖ = sup
t∈[a,T]

∣∣∣∣∣
∫ t

a

(t− s)2

2
f̂ (s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ µjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s− τ)2

2
+ ηiG1(t)(s− τ) + ωiG2(t)

]
f̂ (τ)dτds

∣∣∣∣∣
≤ sup

t∈[a,T]

{ (t− a)3

3!
+

1
|A4|

[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]

+
|G1(t)|
|Λ|

[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

µj
(σj − a)2

2

]

+
|G2(t)|
|Λ|

[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]}

(`w + M)

≤ Q1(`w + M),

where Q1 is given by Equation (22). In addition,

‖(Lu)′‖ ≤ (`w + M)Q2 and ‖(Lu)′′‖ ≤ (`w + M)Q3,

where Q2 and Q3 are, respectively, given by Equations (23) and (24). Consequently, we have

‖(Lu)‖H ≤ (`w + M)Q ≤ w,

where Q is given by Equation (21). This shows that LBw ⊂ Bw. Next, it is shown that the operator L is
a contraction. For that, let u, v ∈ H. Then, we have

‖Lu−Lv‖ = sup
t∈[0,T]

∣∣∣Lu(t)−Lv(t)
∣∣∣

≤ sup
t∈[a,T]

{ ∫ t

a

(t− s)2

2

∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))
∣∣∣ds

+
1
|Λ|

∫ T

a

[
|A1 A2|

(T − s)3

3!
+ |G1(t)|

(T − s)2

2
+ |G2(t)|(T − s)

]
×
∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))

∣∣∣ds

+
1
|Λ|

m

∑
j=1

∫ σj

a

[
γj|A1 A2|

(σj − s)2

2
+ µj|G1(t)|(σj − s) + νj|G2(t)|

]

×
∣∣∣ f (s, u(s), u′(s), u′′(s))− f (s, v(s), v′(s), v′′(s))

∣∣∣ds
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+
1
|Λ|

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi|A1 A2|

(s− τ)2

2
+ ηi|G1(t)|(s− τ) + ωi|G2(t)|

]
×
∣∣∣ f (τ, u(τ), u′(τ), u′′(τ))− f (τ, v(τ), v′(τ), v′′(τ))

∣∣∣dτds
}

≤ `
(
‖u− v‖+ ‖u′ − v′‖+ ‖u′′ − v′′‖

){ (T − a)3

3!

+
1
|A4|

[ (T − a)4

4!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]

+
b1

|Λ|

[ (T − a)3

3!
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

µj
(σj − a)2

2

]

+
b2

|Λ|

[ (T − a)2

2
+

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]}

≤ `Q1 ‖ u− v ‖H .

In a similar manner, one can obtain

‖(Lu)′ − (Lv)′‖ ≤ `Q2 ‖ u− v ‖H, ‖(Lu)′′ − (Lv)′′‖ ≤ `Q3 ‖ u− v ‖H .

Consequently, we deduce that

‖Lu−Lv‖H ≤ `Q ‖ u− v ‖H,

which, in view of the given condition (` < Q−1), shows that the operator L is a contraction. Thus,
by the conclusion of Banach contraction mapping principle, the operator L has a unique fixed point,
which implies that the problem in Equations (1) and (2) has a unique solution on [a, T].

3.3. Examples

Here, we illustrate the results obtained in the last subsections with the aid of examples.

Example 1. Consider the following integral multi-point and multi-strip boundary value problem:

u′′′(t) =
1

45
√

t2 + 3
tan−1 u(t) +

1
162

|u′|
(|u′|+ 1)

+
1

270t
|u′′|2

(|u′′|2 + 1)
+ cos(t− 1), t ∈ [1, 4], (25)



∫ 4

1
u(s)ds =

4

∑
i=1

ξi

∫ ρi+1

ρi

u(s)ds +
3

∑
j=1

γju(σj),∫ 4

1
u′(s)ds =

4

∑
i=1

ηi

∫ ρi+1

ρi

u′(s)ds +
3

∑
j=1

µju′(σj),∫ 4

1
u′′(s)ds =

4

∑
i=1

ωi

∫ ρi+1

ρi

u′′(s)ds +
3

∑
j=1

νju′′(σj),

(26)

where a = 1, T = 4, m = 3, p = 4, γ1 = 1/2, γ2 = 7/10, γ3 = 9/10, µ1 = 1/4, µ2 = 5/12, µ3 =

7/12, ν1 = 2/5, ν2 = 13/20, ν3 = 9/10, σ1 = 7/4, σ2 = 15/8, σ3 = 16/8, ρ1 = 5/2, ρ2 = 8/3, ρ3 =

17/6, ρ4 = 18/6, ρ5 = 19/6, ξ1 = 3/4, ξ2 = 25/28, ξ3 = 29/28, ξ4 = 33/28, η1 = 2/7, η2 =
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23/56, η3 = 15/28, η4 = 37/56, ω1 = 1/5, ω2 = 2/5, ω3 = 3/5, ω4 = 4/5. Clearly, | f (t, u, u′, u′′)| ≤
π

90
√

t2+3
+ 1

270t +
163
162 and

∣∣∣ f (t, u, u′, u′′)− f (t, v, v′, v′′)
∣∣∣ ≤ `

(
|u− v|+ |u′ − v′|+ |u′′ − v′′|

)
with ` = 1/90. Using the given data, it is found that A1 ≈ 0.716667 6= 0, A2 ≈ 1.434524 6= 0, A3 ≈
2.768849, A4 ≈ 0.257143 6= 0, A5 ≈ 1.414087, A6 ≈ 2.512768, and |Λ| ≈ 0.264363 (Λ and Ai (i = 1, . . . , 6)
are defined by Equation (6)), Q1 ≈ 35.810002, Q2 ≈ 18.708093, Q3 ≈ 12.638560 and Q ≈ 67.156655 (Q1, Q2,
Q3 and Q are given by Equations (22), (23), (24) and (21), respectively). Furthermore, we note that all the
conditions of Theorem 1 are satisfied with

`
(

Q− (T − a)
6

[
6 + 3(T − a) + (T − a)2

])
≈ 0.612852 < 1.

Hence, the problem in Equations (25) and (26) has a solution on [1, 4] by Theorem 1.
Since `Q ≈ 0.746185 < 1, therefore the conclusion of Theorem 3 also applies to Equation (26).

Example 2. Consider the third-order ordinary differential equation

u′′′(t) =
1

18
√

t + 24

[ 1
21π

sin(3πu) +
3
4

u′(t) +
|u′′|
|u′′|+ 1

]
, t ∈ [1, 4] (27)

supplemented with the boundary conditions in Equation (26). Evidently,

| f (t, u, u′, u′′)| ≤ 1
18
√

t + 24

( |u|
7

+
3
4
|u′(t)|+ 1

)
.

Let us set Ψ(‖u‖) = ‖u‖
7 + 3

4‖u′‖+ 1, p(t) = 1
18
√

t+24
, (‖p‖ = 1

90 ). The condition (H5) implies that
N > 2.235673. In consequence, it follows by the conclusion of Theorem 2 that the problem (27) and (26) has at
least one solution on [1, 4].

4. Ulam Stability

This section is concerned with the Ulam stability of the problem in Equations (1) and (2) by
considering its equivalent integral equation:

v(t) =
∫ t

a

(t− s)2

2
f̂ (s)ds

− 1
Λ

∫ T

a

[
A1 A2

(T − s)3

3!
+ G1(t)

(T − s)2

2
+ G2(t)(T − s)

]
f̂ (s)ds

+
1
Λ

m

∑
j=1

∫ σj

a

[
γj A1 A2

(σj − s)2

2
+ µjG1(t)(σj − s) + νjG2(t)

]
f̂ (s)ds

+
1
Λ

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξi A1 A2

(s− τ)2

2

+ηiG1(t)(s− τ) + ωiG2(t)
]

f̂ (τ)dτds.

(28)

Let us introduce a continuous nonlinear operator χ : H → H given by

χv(t) = v′′′(t)− f̂ (t).
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Definition 1. For each ε > 0 and for each solution v ∈ H, we call the problem in Equations (1) and (2)
Ulam–Hyers stable provided that

‖χv‖ ≤ ε, (29)

and there exists a solution v1 ∈ H of Equation (1) such that ‖v1 − v‖ ≤ $ε1 for positive real numbers $ and
ε1(ε).

Definition 2. Let there exist a function κ ∈ C(R+,R+) and a solution v1 ∈ H of Equation (1) with
|v1(t)− v(t)| ≤ κ(ε), t ∈ [a, T] for each solution v ∈ H of Equation (1). Then, the problem in Equations (1)
and (2) is called generalized Ulam–Hyers stable.

Definition 3. The problem in Equations (1) and (2) is said to be Ulam–Hyers–Rassias stable with respect to
ϕ ∈ C([a, T],R+) if

|χv(t)| ≤ εϕ(t), t ∈ [a, T], (30)

and there exists a solution v1 ∈ H of Equation (1) such that

|v1(t)− v(t)| ≤ $ε1 ϕ(t), t ∈ [a, T],

where ε, $, ε1 are the same as defined in Definition 1.

Theorem 4. If (H1) and the condition ` < Q−1 (see Theorem 3) are satisfied, then the problem in Equations
(1) and (2) is both Ulam–Hyers and generalized Ulam–Hyers stable.

Proof. Recall that v1 ∈ H is a unique solution of Equation (1) by Theorem 3.6. Let v ∈ H be an other
solution of (1) which satisfies Equation (29). For every solution v ∈ H (given by Equation (28)) of
Equation (1), it is easy to see that χ and L − I are equivalent operators. Therefore, it follows from
Equations (16) and (29) and the fixed point property of the operator L given by Equation (17) that

|v1(t)− v(t)| = |Lv1(t)−Lv(t) + Lv(t)− v(t)| ≤ |Lv1(t)−Lv(t)|+ |Lv(t)− v(t)|
≤ `Q ‖v1 − v‖H + ε,

which, on taking the norm for t ∈ [a, T] and solving for ‖v1 − v‖H, yields

‖v1 − v‖H ≤
ε

1− `Q
,

where ε > 0 and `Q < 1 (given condition).
Letting ε1 = ε

1−`Q , and $ = 1, the Ulam–Hyers stability condition holds true. Furthermore,
one can notice that the generalized Ulam–Hyers stability condition also holds valid if we set κ(ε) =

ε
1−`Q .

Theorem 5. Let the assumptions of Theorem 4 be satisfied and that there exists a function ϕ ∈ C([a, T],R+)

satisfying the condition in Equation (30). Then, the problem in Equations (1) and (2) is Ulam–Hyers–Rassias
stable with respect to ϕ.

Proof. As argued in the proof of Theorem 4, we can get

‖v1 − v‖H ≤ ε1‖ϕ‖,

with ε1 = ε
1−`Q .
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5. Existence Results for the Problem in Equations (1) and (3)

We only outline the idea for obtaining the existence and uniqueness results for the problem in
Equations (1) and (3). In relation to the problem in Equations (1) and (3), we introduce an operator
S : H → H by Lemma 2 as

(Su)(t) =
∫ t

a

(t− s)2

2
f̂ (s)ds

− 1
∆

∫ T

a

[
α2ζ1ζ2

(T − s)2

2
+ β2P1(t)(T − s) + δ2P2(t)

]
f̂ (s)ds

+
1
∆

m

∑
j=1

∫ σj

a

[
γjζ1ζ2

(σj − s)2

2
+ µjP1(t)(σj − s) + νjP2(t)

]
f̂ (s)ds

+
1
∆

p

∑
i=1

∫ ρi+1

ρi

∫ s

a

[
ξiζ1ζ2

(s− τ)2

2
+ ηiP1(t)(s− τ) + ωiP2(t)

]
f̂ (τ)dτds,

(31)

where

P1(t) = ζ1

(
ζ4(t− a)− ζ5

)
, P2(t) = ζ3

(
ζ5 − ζ4(t− a)

)
− ζ2

(
ζ6 − ζ4

(t− a)2

2

)
,

and ζi(i = 1, . . . , 6) are given by Equation (15).
Moreover, we set

Θ1 =
(T − a)3

3!
+

1
|ζ4|

[
|α2|

(T − a)3

3!
+

p

∑
i=1

ξi

( (ρi+1 − a)4

4!
− (ρi − a)4

4!

)
+

m

∑
j=1

γj
(σj − a)3

3!

]
+

p1

|∆|

[
|β2|

(T − a)2

2
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

µj
(σj − a)2

2

]
+

p2

|∆|

[
|δ2|(T − a) +

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
,

Θ2 =
(T − a)2

2
+

1
|ζ2|

[
|β2|

(T − a)2

2
+

p

∑
i=1

ηi

( (ρi+1 − a)3

3!
− (ρi − a)3

3!

)
+

m

∑
j=1

µj
(σj − a)2

2

]
+

p3

|ζ1ζ2|

[
|δ2|(T − a) +

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
,

Θ3 = (T − a) +
1
|ζ1|

[
|δ2|(T − a) +

p

∑
i=1

ωi

( (ρi+1 − a)2

2
− (ρi − a)2

2

)
+

m

∑
j=1

νj(σj − a)
]
, (32)

where maxt∈[a,T] |P1(t)| = p1, maxt∈[a,T] |P2(t)| = p2 and maxt∈[a,T] |ζ2(t− a)− ζ3| = p3 (P1(t) and
P2(t) are given by Equation (14)). With the aid of the operator S defined by Equation (31) and the
notations in Equation (32), we can obtain the existence results (analog to the ones derived in Section 3)
for the problem in Equations (1) and (3). As an example, we formulate the uniqueness result for the
problem in Equations (1) and (3) as follows.

Theorem 6. Let f : [a, T]×R3 → R be a continuous function satisfying the Lipschitz condition (H1) with
the Lipschitz constant `1 (instead of ` in (H1)) such that `1(Θ1 + Θ2 + Θ3) < 1, where Θ1, Θ2 and Θ3 are
given by (32). Then, the problem in Equations (1) and (3) has a unique solution on [a, T].

Now, we present an example illustrating Theorem 6.
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Example 3. Consider the following problem:

u′′′(t) =
1

210
sin u +

1
4
√

t + 440
u′(t) +

1
168

|u′′|
(|u′′|+ 1)

+ e−t, t ∈ [1, 4],

α1u(a) + α2u(T) =
4

∑
i=1

ξi

∫ ρi+1

ρi

u(s)ds +
3

∑
j=1

γju(σj),

β1u′(a) + β2u′(T) =
4

∑
i=1

ηi

∫ ρi+1

ρi

u′(s)ds +
3

∑
j=1

µju′(σj),

δ1u′′(a) + δ2u′′(T) =
4

∑
i=1

ωi

∫ ρi+1

ρi

u′′(s)ds +
3

∑
j=1

νju′′(σj),

(33)

where α1 = 1/4, α2 = 1/2, β1 = 1/5, β2 = 3/8, δ1 = 1/3, δ2 = 2/3. The other constants are the same
as chosen in example 3.7. Clearly, | f (t, u, u′, u′′) − f (t, v, v′, v′′)| ≤ `1(|u − v| + |u′ − v′| + |u′′ − v′′|),
with `1 = 1/84. Using the given data, we find that |ζ1| ≈ 1.283333 6= 0, |ζ2| ≈ 0.990476 6= 0, |ζ3| ≈
0.606151, |ζ4| ≈ 1.992857 6= 0, |ζ5| ≈ 1.585913, |ζ6| ≈ 0.262769, and |∆| ≈ 2.533142 (∆ and ζi (i =
1, . . . , 6) are given by Equation (15)), Θ1 ≈ 23.050129, Θ2 ≈ 15.505245, Θ3 ≈ 6.434525 (Θ1, Θ2 and Θ3 are
given by Equation (32)) and `1(Θ1 + Θ2 + Θ3) ≈ 0.535594 < 1. Obviously, all the conditions of Theorem 6
hold and therefore Theorem 6 applies to the problem in Equation (33).

6. Conclusions

We developed the existence theory and Ulam stability for a third-order nonlinear ordinary
differential equation equipped with: (i) nonlocal integral multi-point and multi-strip; and (ii)
non-separated integro-multi-point boundary conditions. The results obtained in this paper are new and
quite general, and lead to several new ones for appropriate choices of the parameters involved in the
problems at hand. For example, letting γj = ρj = νj = 0, ∀j and ξi = ηi = ωi = 0, ∀i in Equation (2),
the results for the problem in Equations (1) and (2), respectively, correspond to the ones for: (i) nonlocal
integral multi-strip boundary conditions; and (ii) nonlocal integral multi-point boundary conditions.
Likewise, by fixing αk = βk = δk = 0, k = 1, 2 in the results of this paper, we obtain the ones for a
third-order differential equation with purely nonlocal multi-point and multi-strip boundary conditions.
Setting γj = ρj = νj = ξi = ηi = ωi = 0, ∀j, i and αk = βk = δk = 1, k = 1, 2, the results obtained
for the problem in Equations (1) and (3) reduce to the ones for anti-periodic boundary conditions. In
the nutshell, the work presented in this paper significantly contributes to the existing literature on
the topic.
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