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Abstract: This article presents the study of certain analytic functions defined by bounded
radius rotations associated with conic domain. Many geometric properties like coefficient
estimate, radii problems, arc length, integral representation, inclusion results and growth rate of
coefficients of Taylor’s series representation are investigated. By varying the parameters in results,
several well-known results in literature are obtained as special cases.
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1. Introduction

Let A denote the family of complex valued functions f which are holomorphic (analytic) in
E = {z ∈ C : |z| < 1} and are normalized through the conditions f (0) = 0 and f ′(0) = 1. That is,
for f ∈ A, one may have its series form

f (z) = z +
∞

∑
k=2

akzk, z ∈ E. (1)

The class UCV is comprised those univalent functions f (z) by which every circular arc C ⊂ E,
with center at E, is mapped onto the convex arc and such functions are known as uniformly convex
functions. This class was first introduced by Goodman [1]. The interesting analytic condition of class
UCV was given in [2] and is stated as follows:

UCV =

{
f ∈ A : <

{
1 +

z f ′′(z)
f ′(z)

}
>

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣ , z ∈ E

}
.

Kanas et al. [3] further generalized the class UCV by introducing the class of k-uniformly convex
functions, named as k-UCV , k ≥ 0 and the class k-ST of corresponding k-starlike functions. The class
k-UCV is defined as follows:

k-UCV =

{
f ∈ A : <

{
1 +

z f ′′(z)
f ′(z)

}
> k

∣∣∣∣ z f ′′(z)
f ′(z)

∣∣∣∣ , z ∈ E

}
.
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They, in addition, discussed these classes geometrically and established connections with the
conic domains

Gk =
{

u + iv ; u2 > k2
(
(u− 1)2 + v2

)}
. (2)

It is important to mention that the class k-UCV was studied much earlier with some extra
conditions but without geometrical interpretation. The class k-UCV is defined geometrically in a
way that the common region of E and the disk |D| ≤ k is mapped onto a convex domain by these
univalent functions. Thus, the notion of convexity got the generalized version of k-uniform convexity.
If k = 0, Then, the center D shifts to origin and thus k-UCV takes the form of C, the family of convex
univalent functions.

The domain Gk represents conic regions for certain values of parameter k, that is, it gives an
elliptic region for k > 1, the hyperbolic region (right branch) for 0 < k < 1 and the parabolic region
when k = 1. For more details, see [3–6]. The domain Gk,β, which is generalization of Gk is given as:

Gk,β = (1− β) Gk + β,

where

β =


[0, 1) , if k ∈ [0, 1] ,[
0, 1−

√
k2−1
k

)
, if k > 1.

(3)

For details, see [7]. The function which gives the boundary curves of these conical regions is
denoted by ϕk,β (z) which is holomorphic in E and maps E onto Gk,β such that ϕk,β (z) = 1 and
ϕ′k,β (0) > 1 and is defined as:

ϕk,β (z)=



1+(1−2β)z
1−z , k = 0,

1 + 2(1−β)
π2

(
log 1+

√
z

1−
√

z

)2
, k = 1,

1 + 2(1−β)
1−k2 sinh2

[(
2
π cos−1 k

)
tan−1 h

√
z
]

, 0 < k < 1,

1 + (1−β)
k2−1 sin

 π
2R(t)

u(z)√
t∫

0

1
√

1−x2
√

1−(tx)2
dx

+ 1
k2−1 , k > 1.

(4)

For the detailed study of this function, we refer the readers to see [3,6].
Let k-P (β) denote the family of holomorphic functions q (z) with q (0) = 1 and q (z) ≺ ϕk,β (z)

for z ∈ E, where the notion “≺” denotes the familiar subordinations. It is pertinent to have

k-P (β) ⊂ P
(

k + β

1 + k

)
⊂ P ,

where P is the family of functions with a positive real part. In addition, for q ∈ k-P (0) , we have

|arg q (z)| ≤ λπ

2
,

where
λ =

2
π

tan−1 (1/k) . (5)

Therefore, one may write
q (z) = hλ (z) , h (z) ∈ P .
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Definition 1. Let the function q (z) be holomorphic in E with q (0) = 1. Then, q ∈ k-Pm (β) , if for m ≥ 2,
k ≥ 0, z ∈ E and β is given by Equation (3) , we have

q (z) =
(

m
4
+

1
2

)
q1 (z)−

(
m
4
− 1

2

)
q2 (z) ,

where q1 (z) , q2 (z) ∈ k-P (β) [8] .

Taking k = 0 and β = 0, the class Pm introduced by Pinchuk [9] is obtained. In addition,
k-P2 (β) = k-P (β) , 0-Pm (β) = Pm (β) and 0-P2 (β) = P (β) , where Pm (β) and P (β) were
introduced in [9].

It is noted that k-Pm (β) is a convex set. Noor [8] introduced the classes k-UVm (β) and k-URm (β)

of k-uniformly bounded boundary and radius rotation of order β corresponding to the class k-Pm (β).
Now, we consider the following new subclasses of holomorphic functions.

Definition 2. A function f ∈ A is known to be in k-URm
s (β), k ≥ 0, m ≥ 2 and β is given by Equation (3) , if

2z f ′(z)
f (z)− f (−z)

∈ k-Pm (β) , (z ∈ E) .

Definition 3. A function f ∈ A is known to be in the class k-Bm
s (α, β), α > 0, k ≥ 0, m ≥ 2 and β is given

by Equation (3) , if there exists g ∈ k-URm
s (β) such that

<
{

z f ′(z)
f (z)

(
2 f (z)

g(z)− g (−z)

)α}
> k

∣∣∣∣ z f ′(z)
f (z)

(
2 f (z)

g(z)− g (−z)

)α

− 1
∣∣∣∣ ,

or equivalently
z f ′(z)

f (z)

(
2 f (z)

g(z)− g (−z)

)α

∈ k-P (0) .

It is pertinent to note that, by assigning specific values to parameters α, β, m and k in k-URm
s (β)

and k-Bm
s (α, β) , several well-known subclasses of holomorphic and univalent functions are obtained,

from which some are listed below:

1. 0-URm
s (β) = Rm

s (β) , introduced by Bhargava et al. [10].
2. For m = 2 and α = 0, we obtain the class k-ST s (β), and k-UKs (β) , for details, we refer to [8].
3. 0-UR2

s (0) = S∗s , for details, see [11].

Throughout the article, we shall consider, unless otherwise stated, that m ≥ 2, α > 0, k ≥ 0 and β

is given by Equation (3) .

2. Preliminary Lemmas

Lemma 1. [12] Let k ∈ [0, ∞) and ϕk,β (z) be defined by Equation (4). If

ϕk,β (z) = 1 + Q1z + Q2z2 + · · · ,

Then,

Q1 =



2βA2

1−k2 0 ≤ k < 1,

8β
π2 k = 1,

π2 β

4
√

t(k2−1)R2(t)(1+t)
k > 1,

(6)
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and

Q2 =



(A2+2)
3 Q1 0 ≤ k < 1,

2
3 Q1 k = 1,

4R2(t)(t2+6t+1)−π2

24
√

tR2(t)(1+t)
Q1 k > 1,

(7)

where

A =
2 cos−1 k

π
,

and t ∈ (0, 1) is taken such that k = cosh
(

πR′(t)
R(t)

)
, R(t) is the Legendre’s complete elliptic integral of the

first kind.

To proceed our main results, the following Lemmas proved by Pommerenke [13] and Golusin [14]
are needed.

Lemma 2. Let the holomorphic function p ∈ P . Then [13]

1
2π

2π∫
0

|p (z)|2 dθ ≤ 1 + 3r2

1− r2 .

Lemma 3. Let the function s1(z) be starlike in E. Then [14],
(i) : there exists ξ with |ξ| = r such that for all z, |z| = r

|z− ξ| |s1(z)| ≤
2r2

1− r2

(ii)
r

(1 + r)2 ≤ s1(z) ≤
r

(1− r)2 .

3. Main Results

Theorem 1. Let f ∈ k-URm
s (β). Then, the odd function

φ(z) =
f (z)− f (−z)

2

belongs to k-URm (β).

Proof. Let f ∈ k-URm
s (β) and consider

φ(z) =
f (z)− f (−z)

2
.

Logarithmic differentiation of the above relation yields

φ′(z)
φ(z)

=
f ′(z) + f ′ (−z)
f (z)− f (−z)

,

or, equivalently,
zφ′(z)
φ(z)

=
1
2
[q(z) + q(−z)] ,
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where

q(z) =
2z f ′(z)

f (z)− f (−z)
and q(−z) =

2 (−z) f ′ (−z)
f (−z)− f (z)

.

Because f (z) ∈ k-URm
s (β), then, there exist p1(z), p2(z) ∈ k-P (β) such that

q(z) =
2z f ′(z)

f (z)− f (−z)
=

(
m
4
+

1
2

)
p1(z)−

(
m
4
− 1

2

)
p2(z).

Therefore, we have

zφ′(z)
φ(z)

=

(
m
4
+

1
2

)
p1(z) + p1(−z)

2
−
(

m
4
− 1

2

)
p2(z) + p2(−z)

2
.

Since k-P (β) is a convex set, we have

pi(z) + pi(−z)
2

∈ k-P (β) , i = 1, 2.

Thus, we have that
zφ′(z)
φ(z)

∈ k-Pm (β) , (z ∈ E) ,

and hence φ(z) ∈ k-URm (β) .

When we take m = 2, the following result, proved by Noor [8], is obtained.

Corollary 1. Let f ∈ k-ST s (β). Then,

φ(z) =
1
2
[ f (z)− f (−z)]

belongs to k-ST (β).

Corollary 2. Let f ∈ Rm
s (β). Then,

φ(z) =
1
2
[ f (z)− f (−z)]

belongs toRm (β).

Theorem 2. If f ∈ k-URm
s (β), then

f ′(z) =
p(z)

2
exp


z∫

0

1
2ξ

(p (ξ) + p (−ξ)− 2) dξ

 (8)

for some p(z) ∈ k-Pm (β) .

Proof. Let f ∈ k-URm
s (β). Then, by definition, one may have

2z f ′(z)
f (z)− f (−z)

= p(z), p(z) ∈ k-Pm (β) . (9)

Simple computation leads us to

f (z)− f (−z)
z

= exp


z∫

0

1
2ξ

(p (ξ) + p (−ξ)− 2) dξ

 . (10)
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Using (9) in (10), we can easily obtain (8).

When we take m = 2, the above result takes the following form, proved by Noor [8].

Corollary 3. If f ∈ k-ST s (β), then

f ′(z) =
p(z)

2
exp


z∫

0

1
2ξ

(p (ξ) + p (−ξ)− 2) dξ


for p(z) ∈ k-P (β) .

When m = 2, k = 0 and β = 0. Then, we have the following result, proved in [11].

Theorem 3. Let f ∈ k-URm
s (β) be of the form (1). Then,

|a2| ≤
m
8
|Q1| , (11)

where Q1 is given by (6).

Proof. Let f ∈ k-URm
s (β) and let it be of the form (9). Then,

f ′′(z) =
p′(z)

2
exp


z∫

0

p(ξ) + p(−ξ)− 2
2ξ

dξ

+
p(z)

2

{
f (z)− f (−z)

z

}′
. (12)

From (12), we have f ′′(0) = p′(0)
2 . It is well known that |p′(0)| in the class k-Pm (β) is

|p′(0)| ≤ m
2 |Q1| , where Q1 is given by (6). Thus, we get (11).

Corollary 4. The following disk is contained in the range of every function from k-URm
s (β).

|w| < 8
16 + m |Q1|

,

where Q1 is given by (6).

Proof. According to the Koebe theorem, each omitted value w satisfies

|w| > 1
2 + |a2|

. (13)

Using (13) and Theorem 3, we get the required result.

By using the similar technique as used in [11], we have the following result.

Theorem 4. Let f ∈ k-URm
s (β). Then, for z = reiθ and 0 ≤ θ1 < θ2 ≤ 2π,

θ2∫
θ1

<
(

z f ′(z)
f (z)

)
dθ > − (1− β1)

(m
2
− 1
)

π,

for

β1 =
β + k
1 + k

. (14)
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Theorem 5. Let f (z) ∈ k-Bm
s (α, β). Then, for z = reiθ ,

θ2∫
θ1

<J (α, f (z))dθ > −
(

α (1− β1)
(m

2
− 1
)
+ σ

)
π, (15)

where 0 ≤ θ1 < θ2 ≤ 2π, β1 is defined by (14) and

J (α, f (z)) =
(

1 +
z f ′′(z)
f ′(z)

)
+ (α− 1)

z f ′(z)
f (z)

. (16)

Proof. Let
z f ′(z)

f (z)

(
2 f (z)

g(z)− g (−z)

)α

= hσ (z) ,

where h (z) ∈ P ,
(z f ′(z))′

f ′(z)
+ (α− 1)

z f ′(z)
f (z)

=
σzh′(z)

h(z)
+

αzφ′(z)
φ(z)

,

θ2∫
θ1

[
(z f ′(z))′

f ′(z)
+ (α− 1)

z f ′(z)
f (z)

]
dθ = σ

θ2∫
θ1

zh′(z)
h(z)

dθ + α

θ2∫
θ1

zφ′(z)
φ(z)

dθ,

where φ(z) is an odd function of the form

φ(z) =
1
2
[g(z)− g (−z)] .

Since g(z) ∈ k-URm
s (β) and by Theorem 1 φ(z) ∈ k-URm (β) ⊂ Rm (β1), therefore, by using

Theorem 4, we have
θ2∫

θ1

<
(

zφ′(z)
φ(z)

)
dθ > − (1− β1)

(m
2
− 1
)

π. (17)

In addition, we observe that, for h (z) ∈ P ,

∂

∂θ
arg h

(
reiθ
)

=
∂

∂θ
<
{
−i ln h

(
reiθ
)}

= <
{

reiθh′
(
reiθ)

h
(
reiθ
) }

.

Therefore,
θ2∫

θ1

<
{

reiθh′
(
reiθ)

h
(
reiθ
) }

dθ = arg h
(

reiθ2
)
− arg h

(
reiθ1

)
,

which takes the form ∣∣∣∣∣∣
θ2∫

θ1

<
{

reiθh′
(
reiθ)

h
(
reiθ
) }

dθ

∣∣∣∣∣∣ =
∣∣∣arg h

(
reiθ2

)
− arg h

(
reiθ1

)∣∣∣ .

This implies that

max
h∈P(β)

∣∣∣∣∣∣
θ2∫

θ1

<
(

reiθh′
(
reiθ)

h
(
reiθ
) )

dθ

∣∣∣∣∣∣ = max
h∈P(β)

∣∣∣arg h
(

reiθ2
)
− arg h

(
reiθ1

)∣∣∣ . (18)
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Since h (z) ∈ P , thus ∣∣∣∣h (z)− 1 + r2

1− r2

∣∣∣∣ ≤ 2r
1− r2 .

Thus, the values h (z) are contained in the circle of Apollonius with diameter end points 1−r
1−r and

1+r
1−r and radius 2r

1−r2 . Thus, the maximum of |arg h(z)| is attained at points where tangent ray from
origin to the circle can be drawn, that is, when

arg h (z) = ± sin−1
(

2r
1− r2

)
.

Now,

max
h∈P(β)

∣∣∣∣∣∣
θ2∫

θ1

<
(

reiθh′
(
reiθ)

h
(
reiθ
) )

dθ

∣∣∣∣∣∣ ≤ 2 sin−1
(

2r
1− r2

)
.

This implies that

max
h∈P(β)

∣∣∣∣∣∣
θ2∫

θ1

<
(

reiθh′
(
reiθ)

h
(
reiθ
) )

dθ

∣∣∣∣∣∣ ≤ π − 2 cos−1
(

2r
1− r2

)
. (19)

Thus,

θ2∫
θ1

<J (α, f (z))dθ > −
(

α (1− β1)
(m

2
− 1
)
+ σ

)
π + 2σ cos−1

(
2r

1− r2

)
,

which gives

θ2∫
θ1

<J (α, f (z))dθ > −
(

α (1− β1)
(m

2
− 1
)
+ σ

)
π, (r → 1) .

This completes the proof.

For talking k = 0, we obtain the integral representation for the class T m
s (β) .

Corollary 5. Let f ∈ T m
s (β). Then, for z = reiθ ,

θ2∫
θ1

<
(

1 +
z f ′′(z)
f ′(z)

)
dθ > −σπ,

where 0 ≤ θ1 < θ2 ≤ 2π.

Theorem 6. Let f ∈ k-Bm
s (α, β) . Then, for α

2−σ (m + 2) (1− β1) > 1,

Lr f (z) ≤


C (α, σ, m, β1)M

1−α (r)
(

1
1−r

)α(m
2 +1)(1−β1)−1+σ

, 0 < α ≤ 1,

C (α, σ, m, β1)m
1−α (r)

(
1

1−r

)α(m
2 +1)(1−β1)−1+σ

, α > 1,

where M (r) = max
|z|=r
| f (z)|, m (r) = min

|z|=r
| f (z)| and C (α, σ, m, β1) is a constant depending upon α, σ, m and

β1 only.
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Proof. We know that

Lr f (z) =
2π∫
0

∣∣z f ′ (z)
∣∣ dθ, z = reiθ , 0 < r < 1.

Since f ∈ k-Bm
s (α, β) , thus

z f ′ (z)
f 1−α (z)

(
2

g (z)− g (−z)

)α

= pσ (z) , p (z) ∈ P .

By Theorem 1, we have for g ∈ k-URm
s (β) , the function

φ (z) =
1
2
[g (z)− g (−z)] ∈ k-URm (β) ,

which yields
z f ′ (z) = ( f (z))1−α (φ (z))α pσ (z) .

Therefore, we have

Lr f (z) ≤
2π∫
0

| f (z)|1−α |φ (z)|α |p (z)|σ dθ

≤ M1−α (r)
2π∫
0

|φ (z)|α |p (z)|σ dθ.

Since φ (z) ∈ k-URm (β) ⊂ Rm (β1), we have

φ (z) =
(s1 (z))(

m
4 +

1
2 )

(s2 (z))(
m
4 −

1
2 )

, s1, s2 ∈ k-UR2 (β) .

Since k-UR2 (β) ⊂ S∗ (β1) , so we can write

si (z) = z
(

φi (z)
z

)1−β1

, for i = 1, 2 and φi (z) ∈ S∗.

Thus, for odd functions s1 (z) , s2 (z) ∈ S∗ (β1) , we have

Lr ( f (z)) ≤ M1−α (r)
2π∫
0

|z|β1

∣∣∣∣∣ (φ1 (z))
(1−β1)(m

4 +
1
2 )

(φ2 (z))
(1−β1)(m

4 −
1
2 )

∣∣∣∣∣
α

|p (z)|σ dθ

≤ M1−α (r)
2π∫
0

|(φ1 (z))|α(
m
4 +

1
2 )(1−β1)

|(φ2 (z))|α(
m
4 −

1
2 )(1−β1)

|p (z)|σ dθ

≤ M1−α (r)
2π∫
0

2α(m
2 −1)(1−β1)

rα(m
4 −

1
2 )(1−β1)

|(φ1 (z))|α(
m
4 +

1
2 )(1−β1) |p (z)|σ dθ

=
M1−α (r) 2α(m

2 −1)(1−β1)

rα(m
4 −

1
2 )(1−β1)

2π∫
0

|(φ1 (z))|α(
m
4 +

1
2 )(1−β1) |p (z)|σ dθ.
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Now, by making use of Holder’s inequality, with m1 = 2/2 − σ and m2 = 2/σ such that
(1/m1) + (1/m2) = 1, we have

Lr ( f (z)) ≤ M1−α (r) π 2α(m
2 −1)(1−β1)+1

rα(m
4 −

1
2 )(1−β1)

 1
2π

2π∫
0

|p (z)|2 dθ

 σ
2

×

 1
2π

2π∫
0

|φ1 (z)|
α

2−σ (
m
2 +1)(1−β1) dθ

 2−σ
2

.

By using Lemma 2 and distortion results, we obtain

Lr ( f (z)) ≤ M1−α(r) π 2α( m
2 −1)(1−β1)+1

rα( m
4 −

1
2 )(1−β1)

(
1+3r2

1−r2

) σ
2

(
1

2π

2π∫
0

r
α

2−σ (
m
2 +1)(1−β1)

|1−reiθ |
2α

2−σ (
m
2 +1)(1−β1)

dθ

) 2−σ
2

=
M1−α(r) π 2α( m

2 −1)(1−β1)+1

rα( m
4 −

1
2 )(1−β1)

r
α

2−σ (
m
2 +1)(1−β1)

(
1

2π

2π∫
0

1

|1−reiθ |
2α

2−σ (
m
2 +1)(1−β1)

dθ

) 2−σ
2 (

1+3r2

1−r2

) σ
2 .

This implies that

Lr ( f (z)) ≤ M1−α (r)π
σ
2 2α(m

2 −1)(1−β1)+1+σ

(
1

(1− r)
2α

2−σ (
m
2 +1)(1−β1)−1

) 2−σ
2 (

1
1− r

) σ
2

= M1−α (r)π
σ
2 2α(m

2 −1)(1−β1)+1+σ

(
1

1− r

)( 2−σ
2 )( 2α

2−σ (
m
2 +1)(1−β1)−1) ( 1

1− r

) σ
2

= C (α, σ, m, β1)M
1−α (r)

(
1

1− r

)α(m
2 +1)(1−β1)−1+σ

,

where
C (α, σ, m, β1) = π

σ
2 2α(m

2 −1)(1−β1)+1+σ

is a constant depending upon α, σ, m and β1 only. Similarly, for α > 1, we have

Lr ( f (z)) ≤ C (α, σ, m, β1) mα−1 (r)
(

1
1− r

)α(m
2 +1)(1−β1)−1+σ

.

Theorem 7. Let f ∈ k-Bm
s (α, β) . Then, for n ≥ 2 and α

2−σ (m + 2) (1− β1) > 1,

|an| ≤


C1 (α, σ, m, β1) M1−α (n) (n)α(m

2 +1)(1−β1)−2+σ , 0 < α ≤ 1,

C1 (α, σ, m, β1) mα−1 (n) (n)α(m
2 +1)(1−β1)−2+σ , α > 1,

where β1 is given by (14) and m, M are the same as in Theorem 6 and C1 (α, σ, m, β1) is a constant.

Proof. Since z = reiθ , Cauchy theorem gives

nan =
1

2πrn

2π∫
0

z f ′ (z) e−inθdθ,
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which reduces to

|nan| =

∣∣∣∣∣∣ 1
2πrn

2π∫
0

z f ′ (z) e−inθdθ

∣∣∣∣∣∣
≤ 1

2πrn

2π∫
0

∣∣∣z f ′ (z) e−inθ
∣∣∣ dθ.

Therefore,

n |an| ≤
1

2πrn Lr f (z) .

Now, using Theorem 6 for 0 < α ≤ 1, we have

n |an| ≤
1

2πrn C (α, σ, m, β1) M1−α (r)
(

1
1− r

)α(m
2 +1)(1−β1)−1+σ

.

Putting r = 1− 1
n , we have

|an| ≤ C1 (α, σ, m, β1) M1−α (r) (n)α(m
2 +1)(1−β1)−2+σ .

Similarly, we obtain the required result for α > 1.

Theorem 8. Let f ∈ k-Bm
s (α, β) . Then, for α

2−σ (m + 2) (1− β1) > 1,

||an+1| − |an|| ≤


M1−α (r) C2 (α, σ, m, β1) (n)

α(m
2 +1)(1−β1)+σ−3 , 0 < α ≤ 1,

m1−α (r) C2 (α, σ, m, β1) (n)
α(m

2 +1)(1−β1)+σ−3 , α > 1,

where m (r) = min
|z|=r
| f (z)| , M (r) = max

|z|=r
| f (z)| and C2 (α, σ, m, β1) is a constant depending upon α, σ, m

and β1 only.

Proof. We know that, for ξ ∈ E and n ≥ 1,

|(n + 1) ξan+1 − nan| ≤
1

2πrn+1

2π∫
0

|z− ξ|
∣∣z f ′ (z)

∣∣ dθ, z = reiθ , 0 < r < 1, 0 ≤ θ ≤ 2π.

As f ∈ k-Bm
s (α, β) , thus

z f ′ (z)
f (z)

(
2 f (z)

g (z)− g (−z)

)α

= pσ (z) , p ∈ P .

From Theorem 4, we have

φ (z) =
1
2
[g (z)− g (−z)] ∈ k−URm (β) for g ∈ k−URm

s (β) .

This leads us to
z f ′ (z) = ( f (z))1−α (φ (z))α pσ (z) .
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Thus, for ξ ∈ E and n ≥ 1, we have

|(n + 1) ξan+1 − nan| ≤
M1−α (r)
2πrn+1

2π∫
0

|z− ξ| |φ (z)|α |p (z)|σ dθ.

Since φ (z) ∈ k-URm (β) ⊂ Rm (β1), therefore, for φ1 (z) , φ2 (z) ∈ S∗, we have

|ξan+1 (n + 1)− nan| ≤
M1−α (r)
2πrn+1

2π∫
0

|z|αβ1 |z− ξ|
∣∣∣∣∣ (φ1 (z))

(1−β1)(m
4 +

1
2 )

(φ2 (z))
(1−β1)(m

4 −
1
2 )

∣∣∣∣∣
α

|p (z)|σ dθ

≤ M1−α (r)
2πrn+1

2π∫
0

|z− ξ| |(φ1 (z))|α(1−β1)(m
4 +

1
2 )

|(φ2 (z))|α(1−β1)(m
4 −

1
2 )
|p (z)|σ dθ.

Using Lemma 3(i), we have

|(n + 1) ξan+1 − nan| ≤ 2α( m
2 −1)(1−β1)M1−α(r)

2πrn+1+α( m
4 −

1
2 )(1−β1)

×
2π∫
0
|z− ξ| |(φ1 (z))| |(φ1 (z))|α(1−β1)( m

4 +
1
2 )−1 |p (z)|σdθ.

Now, using Lemma 3(ii), we have

|(n + 1) ξan+1 − nan| ≤ 2α( m
2 −1)(1−β1)M1−α(r)

2πrn−1+α( m
4 −

1
2 )(1−β1)(1−r)

2π∫
0
|(φ1 (z))|α(1−β1)( m

4 +
1
2 )−1 |p (z)|σdθ.

Now, using Cauchy–Schwarz inequality, we have

|(n + 1) ξan+1 − nan| ≤ 2α( m
2 −1)(1−β1)M1−α(r)

rn−1+α( m
4 −

1
2 )(1−β1)(1−r)

(
1

2π

2π∫
0
|p (z)|2 dθ

) σ
2

×
(

1
2π

2π∫
0
|(φ1 (z))|

α(1−β1)(
m
2 +1)−2

2−σ dθ

) 2−σ
2

.

By using Lemma 2 and distortion results, we obtain

|(n + 1) ξan+1 − nan| ≤ 2α( m
2 −1)(1−β1)M1−α(r)

rn−1+α( m
4 −

1
2 )(1−β1)(1−r)

(
1+3r2

1−r2

) σ
2

×
(

1
2π

2π∫
0

r
1

2−σ {α( m
2 +1)(1−β1)−2}

|1−reiθ |
2

2−σ {(α m
2 +1)(1−β1)−2} dθ

) 2−σ
2

≤ C2(α,σ,m,β1)M1−α(r)rα(1−β1)−n

(1−r)1+ σ
2

(
1

(1−reiθ)
2

2−σ {α( m
2 +1)(1−β1)−2}−1

) 2−σ
2

≤ C2(α,σ,m,β1)M1−α(r)
rn−1(1−r)1+ σ

2

(
1

(1−r)α( m
2 +1)(1−β1)+

σ
2 −3

)
≤ C2(α,σ,m,β1)M1−α(r)

rn−1(1−r)α( m
2 +1)(1−β1)+σ−2

,

where C2 (α, σ, m, β1) is a constant. Now, putting |ξ| = n
n+1 , we obtain

n ||an+1| − |an|| ≤
C2 (α, σ, m, β1) M1−α (r)

rn−1 (1− r)α(m
2 +1)(1−β1)+σ−2

.
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Now, taking r = 1− 1
n (n→ ∞),we have

C2 (α, σ, m, β1)M
1−α (r) (n)α(m

2 +1)(1−β1)+σ−3 , 0 < α ≤ 1.

Similarly for α > 1, we have

||an+1| − |an|| ≤ C2 (α, σ, m, β1) mα−1 (r) (n)α(m
2 +1)(1−β1)+σ−3 .

Thus, the result follows.

Theorem 9. Let f ∈ k-Bm
s (α, β) for α > 0. Then, f (z) is 1

α−convex for |z| < r∗m,

r∗m =
2α

(αm + 2σ− αβ1m) +
√
(αm + 2σ− αβ1m)2 − 4α2 (1− 2β1)

, α > 0.

Proof. Let
z f ′ (z) = ( f (z))1−α (φ (z))α hσ (z) ,

where g(z)−g(−z)
2 = φ (z) ∈ k-URm (β) ⊂ Rm (β1) and h (z) ∈ P . Differentiating logarithmically,

we obtain
1
α

(
(z f ′(z))′

f ′(z)

)
+

(
1− 1

α

)
z f ′(z)

f (z)
=

zφ′ (z)
φ (z)

+
σ

α

zh′ (z)
h (z)

.

We can write

<
{

1
α

(
(z f ′(z))′

f ′(z)

)
+

(
1− 1

α

)
z f ′(z)

f (z)

}
= <

(
zφ′ (z)
φ (z)

)
+

σ

α
<
(

zh′ (z)
h (z)

)
> <

(
zφ′ (z)
φ (z)

)
− σ

α

∣∣∣∣ zh′ (z)
h (z)

∣∣∣∣ .

Now, using the distortion results for the classesRm (β1) and P , we have

<
{

1
α

(
(z f ′(z))′

f ′(z)

)
+

(
1− 1

α

)
z f ′(z)

f (z)

}
≥ β1 +

(1− β1)
(
1−mr + r2)

1− r2 − 2σr
α (1− r2)

=
αβ1

(
1− r2)+ α (1− β1)

(
1−mr + r2)− 2σr

α (1− r2)

≥ α (1− 2β1) r2 − (αm + 2σ− αβ1m) r + α

α (1− r2)
,

taking
α (1− 2β1) r2 − (αm + 2σ− αβ1m) r + α = 0,

r∗m =
(αm + 2σ− αβ1m)±

√
(αm + 2σ− αβ1m)2 − 4α2 (1− 2β1)

2α (1− 2β1)
.

Since 0 ≤ r < 1,

r∗m =
(αm + 2σ− αβ1m)−

√
(αm + 2σ− αβ1m)2 − 4α2 (1− 2β1)

2α (1− 2β1)

=
2α

(αm + 2σ− αβ1m) +
√
(αm + 2σ− αβ1m)2 − 4α2 (1− 2β1)

, α > 0.
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This completes the proof.

4. Conclusions

In this article, we have presented certain analytic functions defined by bounded radius rotations
associated with conic domain. We have investigated many geometric properties like coefficient
estimate, radii problems, arc length, integral representation, inclusion results and growth rate of
coefficients of Taylor’s series representation. By varying the parameters in results, several well-known
results in literature have been shown as special cases.
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