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Abstract: In this article, we establish some new difference equations for the family of A-generalized
Hurwitz-Lerch zeta functions. These difference equations proved worthwhile to study these newly
defined functions in terms of simpler functions. Several authors investigated such functions and their
analytic properties, but no work has been reported for an estimation of their values. We perform some
numerical computations to evaluate these functions for different values of the involved parameters.
It is shown that the direct evaluation of involved integrals is not possible for the large values of
parameter s; nevertheless, using our new difference equations, we can evaluate these functions for
the large values of s. It is worth mentioning that for the small values of this parameter, our results
are 100% accurate with the directly computed results using their integral representation. Difference
equations so obtained are also useful for the computation of some new integrals of products of
A-generalized Hurwitz—Lerch zeta functions and verified to be consistent with the existing results.
A derivative property of Mellin transforms proved fundamental to present this investigation.

Keywords: analytic number theory; A-generalized Hurwitz—Lerch zeta functions; derivative
properties; recurrence relations; integral representations; Mellin transform

1. Introduction

In this paper, we practice the customary symbolizations:
N:={1,2---} No:=NU{0}; 27 := {-1,-2,---}; Z, := Z~ U {0}, 1)

where Z~ is the set of integers. The involved symbols R, R, and C represent the set of real, positive
real, and complex numbers, consistently.

The Hurwitz-Lerch zeta function has always been a topic of motivation for several researchers
due to its impact in analytic number theory and other applied sciences. Recently, Srivastava presented
a considerably new universal family of Hurwitz-Lerch zeta functions defined by [1] (p. 1487,
Equation (1.14)):

(Pl,...,Pp,‘Tlr-~-f‘7q) .
(D/\lz---;/\p/,ulr---rrﬂq <Z’ S, 4; b’ )\>

_ 1 [%®s—1 e\ | Q) (Ap o) ] ()
= Jo exp( at t,\)p q[ (41,00 s 0) ;zet|dt;
(min[R(a),R(s)] > 0;R(b) 2 0;A = 0)
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so that, evidently, one can get the subsequent connection with the extended Hurwitz-Lerch zeta

(PL..£p.010%) (z,s,a) defined by the authors of [2] (p. 503, Equation (6.2)) (see also

function q)
unctions ALl

References [3 4])

(Pl Pp, 01, /Uﬁl) (Z s, a; 0 /\) (D(Pl,...,Pp,‘Tlr---/Uq)

_ (Pl LPp, 01, r”q)
PO PO (z,5,a) =¢ b (z,8,a;b,0). (3)

Mo Ap 1 eenstlq

In the above Equation (2), p¥ q where (p, g € Ny) is the standard Fox-Wright function defined by
the authors of [4] (p. 2219, Equation (1)) (see also References [3] (p. 516, Equation (1)) and [2] (p. 493,

Equation (2.1)):
p‘F*q[ (Al/ pl)/"~/ ()\p/ pp) .7

(H1/C71),--~, (quo_q)

o (o)) e 2%
] XZ—;O([UqD Xt Y

ogX
Pochhammer symbols ([A,] )ppn = [M]p,, [/\P]ppn symbolize the shifted factorial defined
in terms of the basic Gamma function as follows:

_T(A+p) _ { 1 (p=0,A€ C\{0})

Mo = =Ty AA+1)...A+x—1) (p=x € N;A€ C), ©)

q p p q
A= Zaj - ij and V: = (Hpj_pj) . (Hcrjgj) .
=1 j=1 =1 =1

The series given by Equation (4) converges in the entire complex z-plane for A > —1; and if
A = 0, the series (Equation (4)) converges only for |z| < V. For more detailed discussion of such
functions, we refer the interested reader to also see References [5-9].

The analysis of Srivastava’s A-generalized Hurwitz-Lerch zeta functions and its different forms
have attracted noteworthy concern, and many papers have subsequently appeared on this subject.
Jankov et al. [10] and Srivastava et al. [3] discussed some inequalities for different cases of A-generalized
Hurwitz-Lerch zeta functions. Srivastava et al. [11] introduced a nonlinear operator related with the
A-generalized Hurwitz-Lerch zeta functions to analyze the inclusion properties of definite subclass of
special type of meromorphic functions. Srivastava and Gaboury [12] deliberated on new expansion
formulas for such functions (see, for details, References [13,14]; see also the further thoroughly
associated studies cited in each of these publications). Luo and Raina [4] discussed some new
inequalities involving Srivastava’s A-generalized Hurwitz-Lerch zeta functions and obtained the
following series representation [4] (p. 2221, Equation (6)):

ZX
x!(x+a)*’ (6)
(NEeRG=1,., p)and iy R\Z—0(j=1,..., Q);pj > 0~ ., P)i0j > 0( =1,..., Qi1+ 4 >0).

Srivastava beautifully described important results about the zeta and related functions in
an expository article [15]. Choi et al. [16] further discussed these functions by introducing one
more variable. Srivastava et al. [17] presented an innovative integral transform connected with the
A-extended Hurwitz—Lerch zeta function. More recently, Tassaddiq [18] obtained a new representation
for this family of the A-generalized Hurwitz-Lerch zeta functions in terms of complex delta functions
such that the definition of these functions is formalized over the space of entire test functions denoted
by Z. The author also listed and discussed all the possible special cases of Srivastava’s A-generalized
Hurwitz-Lerch zeta functions [18] (p. 4) in the form of a table. For the purposes of our present investigation,
this table is given on the next page. For any use of the special cases of the generalized Hurwitz-Lerch zeta
functions, the reader is referred to this table. For more detailed study of zeta and related functions, we refer
the interested reader to References [19-40] and further bibliography cited therein.
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Table 1. Different special cases of A-generalized Hurwitz-Lerch zeta functions [18].

min[R(a),R(s)]1 > 0; Rb) 20; A 2 0;

(p—1=q=0A = p;=1)

(p-1=q=0AM=wp; =1

p:plwlpp;0'=0'1,...,0'q;}\ =7\1,...,7\p;u=p,1,...,,uq A=1 ’4=1 A=[l=1 b=0 b=0 ]l=1;b=0
(0;0) . A . (picr) * y
. . DV (£z,5,a;b, 1) 0, (Fz,5,a;b) PN (£z,5,a) D5 (£z,5,a) P(+tz,5,a) ([44],
A-Generalized Hurwitz-Lerch A H . A J ]
Zeta Functions [1], (p. 1487), [41], (p. 90), Equation <I>;;(:k:z,s,u,b) Dy(£z,5,a,A) Pp(+£z,s,a) ([1], p. 1486, Equation ([43]f p- 100, p- 27, Equation
Equation (1.14) (6) and [42] (1.11)) & [2] Equation (1.5)) (L11))
O (x,s,a)
. ; ; pATT O.(x;8) ([45], p. 9,
B) (e 5,m1,1) O wsaby)  Oxsmb)  Oxsal)  Oywser)  Onse)  0fmsa  @flpiy  Glue (LR
A-Generalized Extended Equation (45))
Fermi-Dirac and Extended ¥ (x,s,a)
. . P . 4
Bose-Einstein Functions ¥ (xs,a:b,0) i (x,s,a:) Fi(nsab)  ¥y(used)  ¥(wsa) ¥4 (x,s,0) (31, p 12, Felus) BO)p- 115,
M P . Equation (4.4)
Equation (45))
(o) . sk
P (£2,5,1;b,A) Lij(z,s) .
A (2 [ - ‘ i i i 43 otz
A-Generalized L1(§ff;(iz, 5;b,\) Li} (Fz,5,a;b) Lij,(2,5,b) Liy(z,5,A) Lip(z,5) L1(§f;)l(z,s) (1431, p- 12, [44], (C;(afzter 0
Polylogarithm Functions Equation (47))
Fi(x,8)
(p;o) . A . * (0;0) I Fs(x) ([45], p. 109,
. FA27 (x,5,0,7) Fj(x,s,a;b) F} (x,s,b) Fp(x,8,A) Fy(x,s) F (x,8) ([43], p- 12, .
E — A%, 4 M 33 A%, 4
¢(//{:Z (£e%,s+1,1;b,A) H iz Equation (47)) Equation (1.12)
A-Generalized Fermi-Dirac and B (%,5)
Bose-Einstein Functions ; ; wA Bs(x) ([45], p. 109,
B<§;ff;(x, ;b \) B} (x,5,a;b) B;i(x,s,b) By(x,s,A) By(x,5) B<§;f;>l(x,s) (43, p. 12, Egu)a(t[lon] (f 12)
Equation (45))
(0;0) .
QN (£1,5,a;b,A)
I ,5,4,0, . s, a 5 ) s, a
A-Generalized Hurwitz C(f\”f;), (s,a;b,A) C,/) (s,a;b) CZ(S,a, b) Co(s,a,7) [4gf,(p. 3)08 5%{(5'”) C;(S’ a) [43] [44], (€C<hap)ter 1)
zeta Functions
(0:0) .
@) (11,5,1;b,7)
A 75, 4,0, . S . S
A-Generalized Riemann C(ﬁlgz (S) C;}S} b) C; (Sr b) gb (S/ /\) [46]§’hl£ )308 g(/’{lz)l (S) (; (S) [43] [44], (Cgk(la)pter 1)

Zeta Functions
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In this research, our focus is to establish some new difference equations for the family of
A-generalized Hurwitz-Lerch zeta functions and its special cases by following the approach of
Tassaddiq and Qadir [33]. From the above discussion and Table 1, we can notice that several authors
presented and studied worthwhile generalizations of the Hurwitz-Lerch zeta functions. They obtained
various analytic formulas, integral, and series representations. However, as we deeply study Riemann
zeta functions, we know their values, their graphs, and several other important aspects. We could
not develop this approach for these generalizations. Bayad and Chiki [43] obtained reduction and
duality formulas of the generalized Hurwitz-Lerch zeta functions. Their results contain the earlier
obtained results of Choi [47]. These reduction formulas were concerned with the reduction of one
parameter that represent the generalized Hurwitz-Lerch zeta ®},(z, s, a) and Hurwitz zeta functions
Cu(s,a) in terms of Hurwitz-Lerch zeta ®(z,s,a) and Hurwitz zeta {(s,a) functions, respectively.
The difference equations presented here have the advantage of reducing the generalized Hurwitz-Lerch
zeta @7 (z,s,a) and the generalized Hurwitz zeta functions (} (s, a) in terms of basic polylogarithm
Lis(z) and zeta functions {(s), respectively. That means we have reduced one more parameter and our
results are simple enough to evaluate these functions for different values of the involved parameters.
By following the approach developed in this paper, we can initiate a deeper analysis of these functions
that will enhance their applications. The Riemann hypothesis is a well-known unsolved problem
in analytic number theory [22]. It states that “all the non-trivial zeros of the zeta function exist on
the real line s = %”. These zeros seem to be complex conjugates and hence symmetric on this line.
The integrals of the zeta function and its generalizations are vital in the study of Riemann hypothesis
and for the investigation of zeta functions themselves. The study of distributions in statistical
inference and reliability theory [1,48,49] also involves such integrals. Difference equations obtained
in this investigation are worthwhile to evaluate integrals of products of the family of A-generalized
Hurwitz-Lerch zeta functions that are consistent with the existing results.

The plan of the paper as follows: We present some new difference equations involving the
A-generalized Hurwitz—Lerch zeta functions in Section 2 and obtain similar results for other related
functions. We discuss some applications of these difference equations in Section 3 by evaluating some
special cases of the function. Based upon the results of Section 2, we evaluate new integrals of products
of these functions in Section 4. We conclude our results in the last Section 5 by highlighting some
future directions of this work.

Throughout this investigation, conditions on the parameters will be considered standard as given
in Equations (1)-(6) and Table 1 unless otherwise stated.

2. Results

New Difference Equation of the A-Generalized Hurwitz—Lerch Zeta Functions

Theorem 1. Prove that A-Generalized Hurwitz—Lerch zeta functions satisfy the following relation:

7\1,---,?\p,u1,-~-,,uq
(}\1+pl,m,)\p pp,u1+0‘1,.”,uq+(_yq) (Z, s,a+ 1/ b, 7\) =
(P1/++/Pp 01, Oq)

At Apbiir oty (z,s—A—1,a,b)+TI(s) 7)
z(M)gy-(Aplg, [q>(pl""'ppgl""'6q)(z,s —1,a;b,A) — aCD(pl""'pPUl""'Gq) (z,5,a;b,7)]

I'(s)®
bAL(s — A — 1)@

A1y Ap M b A1y Ap g

Proof: Consider the function:

f(t) = exp(_at_ 3) qu*q[ P ()\p’ pp> ;ze_t] 8

(leo—l),-'-/ (Hq/(fq)
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and differentiate Equation (8) to get:

e )]

¥ Aer)eer (Aprpp) o
(HL 0-1)/*“/ (quo'q) (9)
_at—L . AM,P1), -y, Ap,
+b7\wp\y Cl{ (a,p1) ( P pp) sz
(legl)/---r (qu‘fq)
(M +p1,P1) e, (Apprp'pp) et
) 7

—t

—a.exp (—at - t%)p

(A1) gy (Ap),y

7z Pexp(—(at+1)t— 8 )pY¥
G CTey <uq)leP( (a+1) t*>p U mtono,..., (kg +0g,09
so that:
% }\1,p Ry A , P _
£(t) = exp(—at— & )p¥ ql (o) (ro-60) ze t] [a+ #]
(w1, 01),--+, (g 0q) (10)
A1)y, (Ap) . A A
2y arexp (@t = §)p¥g (rtor e (Mot epop) jzet|,
H1)oy Mgy (M +01,01),.., (Hq+6q'gq)

where we have used the usual differentiation and the derivative property, which is obtained on the
same lines as given by Reference [1] (p. 1492, Equation (3.1)):

« A,P1)y---r [ Ap, _
ileq[(1p1> (ppp) ;Zet]_
(Hll 0-1)/"’/ (Hq/ O-q) (11)
()\1 + P1, pl)/~ cey (Ap + pp/ pp)
(ul+61161)/'-'/ (Hq+6qrgq)

e (A1) g, r(Ap) -
(Hl)o‘l """ (Hq) 4 .

Taking Mellin transform on both sides of Equation (8) and using the defining integral
representation as given in Equation (2), we can write:

D)0 (2,5,2b,0) = M {exp (—at- t‘i)p‘y*q{ Oa e (o) zef} ;s} .12
(ullcl)/~--/ (IJPIGP)

Using the derivative property of Mellin transform given by, see [50] (Chapter 10):
M[W'(y); ] = —(t = 1)Mlu(y); T—1] (13)
we obtain the following equation:

(Pl,.“,Pp,Glrm,Gq)
(Z/ S/ a; br )\) - QAI""’AP’}ll’""’uq

(P1,..,Pp,01,--,0q)
Al,...,xg,ul,,_”uz (z,s—A—1,a,b) (14)

ALseesAp s feverr 1

P p/H1 q .
zI'(s)®P z,s,a+1;b,A
( ) (7\1+P1,~-~r7\pPer1+01,~-/Mq+Uq)( +S,a+1;b, )

(Pl,m,Pp,le.,Uq)
A1y Ap M g

bAT(s — A — 1)@

I(s)|a® (z,s—1,ab,A)] =

which leads to:

Ao Ap g e
Pp 17+ AprH e Mg
——F—L27I(s)P z,s,a+ 1;b,A) =
(M) gy (Hg) (s) (>\1+pl,...,>\ppp,ul+m,...,uq+oq)( sa+1;bA)

q
(pl,m,Pp,U],...,Gq)
AT (s —A = 1)@y 3

(pl,..., pp, O_1/"*/0‘61)
Alr---r)\pr K1/ Mg

(z,s—A—1,a,b) (15)

(P1,..,Pp,1,--,0g)

+T(s) |D (z,s—1,ab,A) — a¢)\1r---r)\p/ulr---uuq (z,8,a;b,N\)].
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After some simple modifications, one can arrive at the required result of Equation (7). O

Remark 1. We can obtain similar results for other related functions as listed in Table 1 by considering different
parameter values in the resulting corollaries.

Corollary 1. A-Generalized Extended Fermi—Dirac functions have the following representation:

(P1,..,Pp, T,/ 0g) . -
F(S)@A1+p],l.3..,)\p+pp,ul+61,,_wuch(x, s,a+1;b,A) =
(P1,...,Pp,01,-+,0q) (1. 0p, O1,er o)
T ey ree) {a(a}‘lf""}‘:'*‘l"-"'“i (xs,a;b,A) — ®>\1T...,7\§,u1,.“,,uc; (x,s —1,a;b,A) (16)
(?\1>pl ----- (7\P)Pp —bAr(S A 1)@(91,,“,9961,.‘.,061) (X s—A—1lab }\)

ALy A, H e Mg

and A-Generalized Extended Bose—Einstein functions have the following representation:

(P1,.._,PP, 01,-+,0q) .

F(S)‘YAH P1seeApt PpsH1t 0‘1,;(,,,,”.lngr o (X, s,a+1;b, }\)

= S oy A - 1)¥
(7\1)91 ..... (?\p)pp

(p1,...,Pp,01,--,0q) (p1,...,Pp,01,--,0q)
+T(s) {‘I’)\IT_“,A;’,H:NW;{ (x,s—1,a;b,A) — aTAl,l.'.,A;,u:,...,,u?{ (x,s, a;b,)\)} } .

(01,..,0p,01,-+53)
A]wnJ‘erl/n-qu

(x,s—A—1,a,b,A) (17)

Proof. The results follow directly from Equation (7) upon replacing z — +e™ and using the parallel
case given in row 2 and column 2 of Table 1. [
Corollary 2. A-Generalized Fermi-Dirac functions have the following representation:
(pl,m,pp,o_l/'“lo-q) .
T(8)0 5 " A Py (x, s,) 2;b,A)
P1,..,Pp, 01,0
(1) gy () bAT' (s — A — 1)F>\1,---,?\;ul,---uu1 (x,s—A—1,b,A) (18)

| o [ s )~

and A-Generalized Bose—Einstein functions have the following representation:

D(s) 7y S (x,5,2:b, )

A14P1sAp+ Pps K14 O gt O
. (111) g 1)

°g [b)\F(s —A— 1)B;T.’:'_"’{’;’slll'_':,"iz) (xs—A—1bA) (19

(P1,..,Pp, 01,/ 0q) (P1,..,Pp, 01,/ 0q)
+T(s) [BM}---,A;H;,-.-”& (x,s—1;b,A) — B?\S---,?\;u;,---"uﬁ, (x,s;b, ?\)} } .

Proof. The results follow directly from Equation (7) upon replacing z — +e™*;a — 1 and taking
the item from Table 1 corresponding to these parameter values. [

Corollary 3. A-Generalized Polylogarithm functions have the following representation:

.(PL...,pp,Ulr---,Uq)

F(S)Ll)\lJr pl,...,7\P+ Pp/H14+ 01 qt Oq (Z, S), 2,‘ b, )\)
.(P1,..,Pp,01,--,0q
() lig) o bAT' (s — A — 1)L1;\1,,,,,>\§,u1,_””uq (z,s—A—1,b,7) 20)

(pl,..., pp, 0_1/-"/0‘(1)
Alr---r)\pr K1/ Mg

.(P1,.,Pp, 01,/ 0g)

Tor = p) gy +I'(s)|Li DN S,

(z,s—1;b,A) =L (z,s;b,A)



Symmetry 2019, 11, 311 7 of 16

Proof. The result follows directly from Equation (7) upon replacing 4 — 1 and considering the
specific case of these parameter values from Table 1. [

Corollary 4. A-Generalized Hurwitz zeta functions have the following representation:

pl ,,,,, pp,o-lr“-ro-q) .
( )C7\1+ P1/Ap+ Pp/H14 01, Mgt Og (S, a+1Lb, }\)
(1) g ()

- (A)p, - (Ap),

+F(s){€7\1”ppcl %) (g 1ab7\)—C)\1HpP01 )(sab)\)H

oq)
{b?xl’(s— - )CM, ,{’;’,Ef ”u‘; (s—A—1,a;b,A) 1)

Ap K1/ Hg Ap K1/ Hg

Proof. The result follows directly from Equation (7) upon replacing z — 1 and in view of the defined
item from Table 1 dependable on these parameter values. [J

Corollary 5. A-Generalized Riemann zeta functions have the following representation:

( ,,,,, Pp, 01, qu) .
C7\1+91 < Apt Pps M1+ 01, Mg+ Og (5’2 b,A)
BAT(s — A — 1) Ppov0d) 3 1y 3
o (H1)61 """ (Hq)o—q }\1/ /Ap/}l]r -Hq (22)
— Ay, Ap) Pp,01,--,0q) ) Pp,01,-0q) , :
oy Plop | 4T'(s) C7\1 7\5#1/ u(; (s—1;b,A) — C}\] 7\5% ,u‘l (s;b,A)

Proof. The result follows directly from Equation (7) upon replacing z — 1;a — 1 and with reference
to the definite element from Table 1 stable with these parameter values. [J

Remark 2. We can get similar representations for other special cases of these functions by considering different
parameter variations in view of Table 1 column-wise.

Note that by taking b = 0 in the above results, we can get the following formulae for unified

(P1,.,Pp,01,--,0q)
)\lr“'r)\prul/"'rruq (Z/ Sl a/ 0/ )\)’

extended Hurwitz—Lerch zeta functions ®
(pl,..”pp,o_lrmro-q)
A4 P1Apt Pp 14 Oy gt Oq
(1) gy ooor(Hq)
1 q (P1,...,Pp,01,--,0q)
= 1 [Py P (z,s—1,a) —ad
z.(A1) g, e (?\p)pp e Ap e g

(z,s,a+1)

(pP1,..,Pp, 01, 0q)
A1y Ap M Hg

(23)
(z,s,a)].

Next, by selecting p —1 =g = 0;A; = u # 0; 1 = p; in the above results, we can get the
following result for unified Hurwitz-Lerch zeta functions @}, (z, s, a):

o s—lg—(atl) . ( ) . .
/0 mdt:r(s)cpw(z,s,aﬂ) o eies 1) —adl(zsa). @9

Next, we note that by taking = 1, we get for Hurwitz-Lerch zeta functions:

=TI(s)®P3(z,s,a+1) =

oo ps—le—(at)t I'(s)[®(z,s—1,a) —ad(z,s,a)]
/ e . . (25)

If we consider the same parameter values as above but with b # 0, then we can find the following
new results for the extended Riemann and Hurwitz zeta functions:
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;4:21"(5)(92Jrl (z,5,a+1,b)
= AT (s —A — 1)@ (z,5s — A — 1,4,b) (26)
+T'(s) [@2(2,5 —1,a,b) — a@i} (z,, u,b)}

0o =1, (a+)t- & i
Jo i At =T(E)P5(z 5,0 +1;0,1)
= W62 (2,5 —2,a) + T (D, (2,5 — 1,a) — ady(z,5,4)]

4 z

(27)

o 45—1,-2t— b
/O t(l_eet)Zdt = F(S)gi(S,Z} b,l) = bf(s — 2)&,(5 — 2) -+ F(S)[Cb(s _ 1) _ gb(s)} (28)

3. Some applications of the difference equation

In this section, we consider some interesting special cases of difference equations. On one side,
these are useful to know the values of generalized Hurwitz zeta functions ®j (z,s,a) in terms of
zeta functions, and on the other, they lead to the computation of some elementary integrals that are
nontrivial to obtain for small values of i = 2,3, 4,5 and the large values of s.

Taking y = 2 and 2 — a + 1 in Equation (24), we get:

I %dt =T(s)®5(z,5,a+2) = %[@; (z,5s—1,a+1)— (a+1)P}(z,5,a+1)]. (29)

Next, making use of Equation (25) on the right-hand side of the above Equation (29) leads to the
following form of ®3(z,s, a + 2) in terms of the Hurwitz-Lerch zeta function:

fOoo t*(;ie;f)i)’dt 1r2(52)2 [®(z,5s —2,a) —ad®(z,s —1,a) — (a+1)P(z,5s — 1,a) + a(a + 1)D(z,s,a)] (30)

1?2(22 [@(z,5—2,a) — (2a+1)®P(z,5s — 1,a) + a(a + 1)P(z,s,a)].

Now we consider some interesting special cases of the above Equation (30).
For z = 1, it leads to the following representation in terms of the Hurwitz zeta function:

0 tsflef(a+2)t F(S) |
e = T e 20— e D L) ek e 6D

1) dt = 17 [C(s—2,a)— (2a+1){(s—1,a)+a(a+1){(s,a)]. (32)

For a = 1, we get the following representation in terms of the polylogarithm function:

/oo 51— (a+2)t F(S)
0

) tsfl —3t T ' . '
/0 (1— zee—t)3dt - 1.2(.5.2)3 [Lis—2(2) = 8Lis-1(2) + 2Lis(2)]. (33)

Fora =1, z =1, it leads to the following relation in terms of the zeta function:

) tsflef3t B r(s) .
/0 i _ft)gdt = 2 20(s) + (s —2) ~30(s — 1)) (s £ 1,2,3). (34)

For s = 4 in Equation (34), we get the following integral:

oo 43,3t B 1—.<4)

Similarly, by considering different values of s, we can produce the following Tables 2 and 3 of
values. These computations show that Mathematica is unable to compute the involved integral on
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a commonly available computer for the large values of s, but it can be done using these new difference
equations. For small values of s, our results are 100% accurate with the direct computed results

Table 2. Computation of [;°

,E—t)3

dt.

S

Direct Evaluation by Mathematica

Using difference Equation (34)

4 0.610229 0.610229
30 4.29669 x 1016 4.29669 x 101°
40 1.67783 x 10 1.67783 x 10
45 8.998 x 1032 8.998 x 1032

46 1.3497 x 1034 1.3497 x 103
48 3.24227 x 10% 3.24227 x 1036
48.5 1.29353 x 10% 1.29353 x 10%7
48.9 3.92781 x 10%7 3.92781 x 10%
49 5.18762 x 10%7 5.18762 x 10%7
52 2.40071 x 1041 2.40071 x 1041
56 2.426 x 10% 2.426 x 10%

160 Unable to compute 1.349 x 10206
220 Unable to compute 1.121 x 10314
400 Unable to compute 2.269 x 10%7°

Putting 4 = 3, a — a + 2 in Equation (24), we get:

[ee) tsflef(ﬂ+3)f

0 (et =T @5, (25,0 +3)
= 52 (@35 1,a+2) ~ (a +2)@5(z,5,0 +2)).

s
- 3z

(36)

Next, combining the above two results (Equations (30) and (36)), we get the following
representation in terms of the Hurwitz-Lerch zeta function

o st
_r(s) | ®(zs—3,a)—3(a+1)®(z,s—2a)+ (32> +6a+2)P(zs—1,a) (37)
1237 —a(a+1)(a+2)P(zs,a) '

Some interesting special cases: For z = 1, it leads to the following representation in terms of the
Hurwitz zeta function:

Joo e gy — T (s) g5 (s,a + 3)

(1—e—t)*
_1(s) | C(s—3,a) =3(a+1)Z(s—2,a) + (3a®> +6a+2){(s — 1,a) )
= 123 —a(a+1)(a+2)(s,a) '

For a = 1, we get the following representation in terms of the polylogarithm function:

00 t571674t o %
0 mdt =T(s)®P;(z,5,4) 39)

= 280 [Lis_3(z) — 6Lis_(z) + 11Lis_1(z) — 6Lis(2)].

Fora =1, z =1, it leads to the following relation in terms of the zeta function:
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Joo e = T(s) T3 (s, 4)

e (1=e=)? (40)
= 193] 25 -3)—60(s —2) +11Z(s— 1) = 67(5) |; (s #1,2,3,4).
For s =5, we have:
S S _ *
r(5) g (H#)Mt ~IeRY (41)
= 1] ¢(2) - 62(3) +11¢(4) — 62(5) |.
Table 3. Computation of [;° %dt.
s Direct Evaluation by Mathematica By using difference Equation (40)
90 1.07719 x 10%2 1.07719 x 10%2
100 5.8077 x 10% 5.8077 x 10%°
140 Unable to compute 1.78191 x 1015
160 Unable to compute 1.37955 x 10186
Similarly, putting 4 = 4, a — a + 3 in Equation (24), we get:
oo 5—1,—(a+4)t
0 mdt [(s)®yq(z,5,a+4) @)
= % (@} (z,5s —1,a+3) — (a+3)P;(z,5,a+3)].
Next, combining the above two results (Equations (38) and (42)), we get:
0o plem(atd)t
fO (1fze*t)5
() ®(z,s —3,a) + (64> + 182 + 11)D(z,5 — 2,a) (43)
123420 | (403 + 1847 + 2204 6)D(z,5 — 2,a) +a(a+ 1) (a+2)(a +3)D(z,5,a) |’

Some interesting special cases:
Forz=1:
oo $s—1,—(a+4)t %
I t(lfﬁdt =T(s)C%(s,a+4)
() [ {(s —4,a) —2(2a+3){(s — 3,a) + (642 + 18a +11){(s — 2,4) (44)
)l

T T23%| (42% + 180> + 220+ 6){(s — 2,a) + a(a+1)(a+2)(a +3){(s,a
Fora=1 -
o (;_Zsit)sdt =TI(s)Pi(z,s,5)
1) | Lis_a(2) —10Lis_3(2) 4 37Lis_»(2) (45)
© 12342 —50Lis_p(z) 4+ 24Lis(z) ‘
Fora=1,z=1:
Iy (ot = ()83 (5,5)
e [ 54— 102(s - ) +37¢(s=2) |. (46)
1234 [ —50(s — 2) + 24 (s) ]’(S #1234

Now put s = 6:

Iy st = T(6)33(6,5)

_ 16 [ 70 ) - wg( ) +370(4) ] (47)
—508(5) + 24Z(6) '
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Continuing in this way, by putting 4 = 5, a — a + 4 in Equation (24), we get:

00 5= 1—a+5

0 mdt [(s)®3,(z,5a+5)

= [@s(z,s —1L,a+4) — (a+4)PL(z,5,a+4)).

(48)

Next, combining the above two results of Equations (43) and (48), we can get ®;(z,s,a + 4) in
terms of Hurwitz—Lerch zeta functions. Similarly, for nonzero values of z, for example, z = 0.3;a = 1;
# = 3 in Equation (33) we have:

.00 -3t
/ %dt — 0.125061 (49)
0 (1 -5 )
F(5)(Li3(0.3) — 3Li4(0.3) + 2Li5(0‘3)) — 0125061 (50)
2 (0.3)°

and so on and so forth.

4. Integrals of products of the family of A-Generalized Hurwitz-Lerch zeta functions

By means of the basic Parseval’s identity of Mellin transform [50] (Chapter 10) and difference
equations obtained in Section 2, we can get the following integral formulae in view of Equation (2) and
column 3 of Table 1. For example, for the generalized Hurwitz-Lerch zeta functions @i,‘ (z,s,a,b):

2b
oo pw—1,720t= %

1 potie A A
% \/C,ioo F(S)F(w — S)G)P‘ (Z, s, a, b)®§ (Z,w —S,4, b) = /0 mdt (51)

that leads to the following by simply replacing 4 — u + J — 1 in Equation (26):

2bAT (w — A — )®# 145(z,w0—A—1,2a —1,2b)
+T'(w )®V 146(z,w—1,2a —1,2b) . (52)
—(2a-1)T(w )G)WHJ,-(Z, w,2a —1,2b)

A —
[(w)0y (2, w,2a,2b) = ZGi=159)

Therefore, we get the following new integral formulae for other related cases given in column 3
of Table 1 and Equations (51) and (52):

joo oo sw—1 —2at—
e [T ()T (W — 8)@) (2,5,2,b)@) (z, W — 5,2, b) = I Wdt
_ e I'(w) [(Za — 1)®ﬁ 1+5(x,w,2a—1,2b) — u 145X, w—1,2a— 1,2b)] (53)
nolre —26AT(w —A = 1)@} _1,5(x @ —A—1,2a—1, 2b)

ico w—1
2 Jh T()T (W = $)FR (x5, b)Fy (x w —5,b) = [ i; it
o [ T(@)[Bh s (ow,20) — F) 1+z.,(x w=1,2b)] (54)
R 2bAT(w A= 1)F)_; s(x, @ —A—1, 2b)
(00 oo w—1 A
e SRR T(s)T(w —8)¥A (2,5,a,b)¥3(z,w —s,a,b) = [; (tlfxﬁdt
. 2bAT(w — A —1)¥A_; 5(x, w —A—1,2a—1, 2b) (55)

— €
 p—1+%

+T(w) [Yﬁ_1+5(x, w—1,2a— 1,2b)} —(2a—1)¥)_1,5(xw,2a—1,2b) ]
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. 2t—
L [ ()T (w — s)B}(x,5,b)B} (x, w —s,b) = [;° Ldt

2mi Je—ico 0 (1—exet)HF?

2DAT (w —A—1)B)} 1 5(x,w —A—1, 2b) (56)
+T(w )[Bu s (6w —=1,2b) =B} 4, 5(x, szb)}

eX

= n—i¥s

. w1 2=
L[S T(s)T(w — s)Li}\ (z,5,b)Li} (z,w — s,b) = [~ “Wdt

27t Jc—ico (1—z
26AT (w —A—1)Li} 1, 5(xw —A—1, 2b) ] (57)

_ 1
+T(w) {Liﬁ,m(x,w 1,2b) — Li}_ 1+z.,(x,w,zb)]

T (u—149)z

. W 2at—
ok S TN — )i s )R o — 5, ab) = i 2 Ly

27 Jc—ico 1
) 2bAT(w —A—1)Ch_; (@ —A—1,2a—1, 2b) (58)
= | 4T (w )[c s(w—1,2a—1,2b) — (2a—1)cﬁ_1+5(w,2a—1,2b)}
o S TN = )2 (51D) R w = sib) = ”%%%Wm
2DAT (w — A —1)C} 4, 5(w —A—1,2b) : (59)
= W | 4T (w )[Cu Lis(W—1,2b) — cu l+5(w,zb)}

Next, for b = 0, we can get the following new formulae in view of column 8 of Table 1 and
Equation (53):

fw—1,-2at

+ico %
e [ e T(s)T(w — 5) @} (2,5, a) D (z,w — =I5 T W,dt )
I(w .
= - (u— (l+)5) [(by 1+6 ( —1,2a - 1) - ( 1)q>y_]+(5(zr w, 251 1)}
L [CHO T ()T (w — 5)0% (x,5,0) 0% (x, w — = 5= L2t gy
2mi Je—ico U ) 0 (T+e MH 61)
Xl" *
= e - 1)@y s(x w20 1) - @u—1+5( o120 1)]
+ico * w—1 72t
2 R T (w = 9)Fy (5, 9)F; (v, 0 =) = 7 et @
T N
= B [Frsa(vw) - aqﬁ<, -1)]
+ico * % w—1,~2at
ZLT[i cc izoo F(S)F(w_S)T‘u(xlsla)‘fg(x/w fO 1 te o y+¢>dt (63)
T * *
= o [‘PV (W —1,20—1) — (20 — 1)‘PM Lis(x,w,20 — 1)}
+ico w—1,-2t
g [T (s)T (w — s)B, (x,5)Bj (x, w — = ﬁdt o
= - 1(+25 {B; 1s(X @ —=1) = BH71+5(x,w)]
0o w—1,-2t
ﬁ Cc:riloo I'(s)T(w —s)Liy(z,s) Lij(z,w — fO Wdt )
I(w
= - (1—1—)(5) [Lly 1+ (zw—1)— L1y7]+§(zlw):|
Y * * oo jw—1,-2at
% ccji:o T(S)F(w - S)C’,{(s/ Ll) C5 (w — S,Ll)ds = Jo W (66)
r *
= (y—(ﬂd)[ je1ge (@—=1a) = (20 =1)Z7 4 5(w, )]
ico % % 0o pw—1,-2t
2 S DT (@ = )G (5) G (w = s)ds =[5~ =2t o

= 025 [Gmies (@ = D) = G ()]
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Next, if we consider 6 = 4 = A = 1;b # 0 in Equation (53), we can obtain the following new
integral formulae in view of column 6 of Table 1:

+ico oo jw—1,—2at— 2b
51 S i T(5)T (W — )@y (2,5,a) Py (z,w —s,a)ds =[5! (lize*f)rt ¢ (68)
_ 2T (w—2) Py (z,w—2,2a—1)+T (w) [Py (z,w—1,2a—1)— (2a—1) Dy (z,w,20—1)]

z

1 +ico . . _ poo pol,720n 2b
3t S i T(8)T(w = 5)Lip(2,5) Liy(z, w0 —s)ds = [ f(l_gZT);dt )
_ 2bI'(w—2)Lipy (z,w—2)+T(w)[Lipy (z,w—1)—Lipy (z,w)]
z

o) tw71e—2m‘—

— fccjii: T(s)T(w —s)Cy(s,a) Tp(w —s,a)ds = [, (1,e—t)22T dt
= 2T (w —2)op(w —2,2a — 1) + T'(w) [Gop(w — 1,20 — 1) — (2a — 1) {pp(w,2a — 1)]

(70)

ctico 0o ju—1,-2t— 28
ﬁ fc—ioo r(s)r(w - S)Cb(s) éb(w - S)dS = Jo t(liﬁ)ztdt ' (71)

= 20T (w — 2)Gop(w — 2) + T'(w) [Cop(w — 1) — Cap(w)]

Similarly, by considering the different parameter values consistent with the results obtained
in Section 2, one can obtain more integral formulae for the family of zeta and associated functions.
One model is the following by means of Theorem 1:

i (P1,..,Pp,01,-/0q) (p1,..,Pp,01,,0q)
ﬁ fccjiio I(s)T(w— S)q>>\1f--.,7\;u11,.--,,u1 (z,s,a,b; }‘)q>7\1}.-.,7\;u11,-.-,,u211 (z,w —s,a,b;\)ds

(P1,..,Pp,01,--/0q)
2b7\q)}\1,_..,?\§,u1,._,,,u1 F(W —A— 1) (Z,W —A—1,2a—1, Zb) (72)
_ (M) gy veee (Hq)cq (P1,..,Pp, 01,/ 0q) L2 Lob
=z, Py PN ST (z,w —1,2a —1;2b,A)—

)pl P)pp +F w p q

(2a o 1)q>(pl,m,9p,0'],...,0‘q)

)‘1/"~/}‘p/|41r~~wuq (Z, w, 2a — 1/2b; )\)

and for b = 0, it leads to:

+i (P1,.,Pp, 01,/ 0q) (P1,..,Pp,O1,0q)
% fcc_iz’o F(S)F(W - S)(D?\li--r)‘::rMn--uHZ (Z' S, a)q)M}u.,?\;Hl,--.,,HZ (Z’W -5 a)ds

(@) () gy i) q>;‘;1;’}f$:) (zzw —1,2a — 1;2b,A) - (73)

| a0l 2 w20 20

5. Discussion and Future Directions

In this study, we obtained some recurrence relations for the newly defined family of the
A-generalized Hurwitz-Lerch zeta functions using the familiar Mellin transforms. These relations
proved valuable to acquire new integral formulae involving the family of zeta functions. The outcomes
were also confirmed with the previous obtained results as special cases. It is remarkable that the
recurrence relations obtained in this research work are worthwhile to achieve simple relations such as
Equations (34) and (40) that express special cases of A-generalized Hurwitz-Lerch zeta functions in
terms of Riemann zeta functions, so that we can evaluate the values of these functions. By following
the method, we can obtain significant new results by considering the further specific values of the
involved parameters. This is useful for the further analysis of these functions by plotting the graphs
and deriving different series and asymptotic representations, etc. This work is in progress and would
be a part of some future research.

A-generalized Hurwitz-Lerch zeta functions analytically generalize the functions of the zeta
family and offer consideration for some further presumable new members of this family that are
not discussed in the literature. This aspect is most suitable for attaining new consequences from
one key result. Our foremost results produce simultaneously important new results for a class of
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well-studied functions by applying the new difference equations. The Bose-Einstein and Fermi-Dirac
functions are of fundamental importance in quantum statistics that contracts by means of two specific
categories of spin symmetry, that is, fermions and bosons. Fitting together these functions here
with the A-generalized Hurwitz-Lerch zeta functions yields substantial new identities for them that
provides clues regarding the forthcoming applications of these difference equations in quantum
physics and associated fields. This practice to acquire the outcomes by making use of new difference
equations explores the required simplicity that always inspires hope. We have discussed here the
direct consequences of our results. It is remarked that the method established in this research is in fact
noteworthy for the analysis and study of these higher transcendental functions.
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