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Abstract: The application of machine learning techniques to sound signals requires the previous
characterization of said signals. In many cases, their description is made using cepstral coefficients
that represent the sound spectra. In this paper, the performance in obtaining cepstral coefficients by
two integral transforms, Discrete Fourier Transform (DFT) and Discrete Cosine Transform (DCT),
are compared in the context of processing anuran calls. Due to the symmetry of sound spectra, it is
shown that DCT clearly outperforms DFT, and decreases the error representing the spectrum by more
than 30%. Additionally, it is demonstrated that DCT-based cepstral coefficients are less correlated
than their DFT-based counterparts, which leads to a significant advantage for DCT-based cepstral
coefficients if these features are later used in classification algorithms. Since the DCT superiority
is based on the symmetry of sound spectra and not on any intrinsic advantage of the algorithm,
the conclusions of this research can definitely be extrapolated to include any sound signal.
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1. Introduction

Automatic processing of sound signals is a very active topic in many fields of science and
engineering which find applications in multiple areas, such as speech recognition [1], speaker
identification [2,3], emotion recognition [4], music classification [5], outlier detection [6], classification
of animal species [7–9], detection of biomedical disease [10], and design of medical devices [11]. Sound
processing is also applied in urban and industrial contexts, such as environmental noise control [12],
mining [13], and transportation [14,15].

These applications typically include, among their first steps, the characterization of the sound:
a process which is commonly known as feature extraction [16]. A recent survey of techniques employed
in sound feature extraction can be found in [17], of which Spectrum-Temporal Parameters (STPs) [18],
Linear Prediction Coding (LPC) coefficients [19], Linear Frequency Cepstral Coefficients (LFCC) [20],
Pseudo Wigner-Ville Transform (PWVT) [21], and entropy coefficients [22] are of note.

Nevertheless, the Mel-Frequency Cepstral Coefficients (MFCC) [23] are probably the most
widely employed set of features in sound characterization and the majority of the sound processing
applications mentioned above are based on their use. Additionally, these features have also been
successfully employed in other fields, such as analysis of electrocardiogram (ECG) signals [24],
gait analysis [25,26], and disturbance interpretation in power grids [27].
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On the other hand, the processing and classification of anuran calls have attracted the attention of
the scientific community for biological studies and as indicators of climate change. This taxonomic
group is regarded as an outstanding gauge of biodiversity. Nevertheless, frog populations have
suffered a significant decrease in the last years due to habitat loss, climate change and invasive
species [28]. So, the continual monitoring of frog populations is becoming increasingly important to
develop adequate conservation policies [29].

It should be mentioned that the system of sound production in ectotherms is strongly affected by
the ambient temperature. Therefore, the temperature can significantly influence the patterns of calling
songs by modifying the beginning, duration, and intensity of calling episodes and, thus, the anuran
reproductive activity. The presence or absence of certain anuran calls in a certain territory, and their
evolution over time, can therefore be used as an indicator of climate change.

In our previous work, several classifiers for anuran calls are proposed that use non-sequential
procedures [30] or temporally-aware algorithms [31], or that consider score series [32], mainly using a
set of MPEG-7 features [33]. MPEG-7 is an ISO/IEC standard developed by MPEG (Moving Picture
Experts Group). In [34], the comparison of MPEG-7 and MFCC are undertaken both in terms of
classification performance and computational cost. Finally, the optimal values of MFCC options for
the classification of anuran calls are derived in [35].

State of the art classification of sound relies on Convolutional Neural Networks (CNN) that take
input from some form of the spectrogram [36] or even the raw waveform [37]. Moreover, CNN deep
learning approaches have also been used in the identification of anuran sound [38]. In spite of that,
studying and optimizing the process of extracting MFCC features is of great interest at least for three
reasons. First, because sound processing goes beyond the classification task, including procedures
such as compression, segmentation, semantic description, sound database retrieval, etc. Secondly,
because the spectrograms that feed the state-of-the-art deep CNN classifiers can be constructed
using MFCC [39]. And finally due to the fact that CNN classifiers based on spectrograms or raw
waveforms require intensive computing resources which makes them unsuitable for implementation in
low-cost low-power-consumption distributed nodes, as is the usual case in environmental monitoring
networks [35].

As presented in greater detail later, the MFCC features are a representation of the sounds in the
cepstral domain. They are derived after a first integral transform (from time to frequency domain),
which obtains the sound spectrum, and then a second integral transform is carried out (from frequency
to cepstral domain). In this paper, we will show that, by exploiting the symmetry of the sound spectra,
it is possible to obtain a more accurate representation of the anuran calls and the derived features will
therefore more precisely reflect the sound.

The main contribution of the paper is to offer a better understanding of the reason (symmetry)
that justify and quantify why Discrete Cosine Transform (DCT) has been extensively used to
compute MFCC. In more detail, the paper will show that DCT-based sound features yielded
to a significantly lower error representing spectra, which is a very convenient result for several
applications such as sound compression. Additionally, through the paper it will be demonstrated that
symmetry-based features (DCT) are less correlated, which is an advantage to be exploited in later
classification algorithms.

2. Materials and Methods

2.1. Extracting MFCC

The process of extracting the MFCC features from the n samples of a certain sound requires 7 steps
in 3 different domains, which are depicted in Figure 1, and can be summarized as follows:

1. Pre-emphasis (time domain): The sound’s high frequencies are increased to compensate for the
fact that the Signal-to-Noise Ratio (SNR) is usually lower at these frequencies.
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2. Framing (time domain): The n samples of the full-length sound segment are split into frames of
short duration (N samples, N � n). These frames are commonly obtained using non-rectangular
overlapping windows (for instance, Hamming windows [40]). The subsequent steps are executed
on the N samples of each frame.

3. Log-energy spectral density (spectral domain): Using the Discrete Fourier Transform (DFT) or its
faster version, the Fast Fourier Transform (FFT), the N samples of each frame are converted into
the N samples of an energy spectral density, which are usually represented in a log-scale.

4. Mel bank filtering (spectral domain): The N samples of each frame’s spectrum are grouped into
M banks of frequencies, using M triangular filters centred according to the mel scale [41] and the
mel Filter Bank Energy (mel-FBE) is obtained.

5. Integral transform (cepstral domain): The M samples of the mel-FBE (in the spectral domain)
are converted into M samples in the cepstral domain using an integral transform. In this article,
it will be shown that the exploitation of the symmetry of the DFT integral transform obtained in
step 3 yields a cepstral integral transform with a better performance.

6. Reduction of cepstral coefficients (cepstral domain): The M samples of the cepstrum are reduced
to C coefficients by discarding the least significant coefficients.

7. Liftering (cepstral domain): The C coefficients of the cepstrum are finally liftered to compensate
for the fact that high quefrency coefficients are usually much smaller than their low
quefrency counterparts.
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certain sound.

In this process, integral transforms are used twice: in step 3 to move from the time domain into the
spectral domain; and in step 5 to move forward into the cepstral domain. In this paper, the symmetric
properties of the DFT integral transform in step 3 will be exploited for the selection of the most
appropriate integral transform required in step 5.

2.2. Integral Transforms of Non-Symmetric Functions

As detailed in the previous subsection, a sound spectrum is featured in order to obtain the
MFCC of a sound, specifically by characterizing the logarithm of its energy spectral density. In short,
this would be a particular case of the characterization of a function f (x) by means of a reduced set of
values where, in this case, f (x) is the spectrum of a sound. To address this problem, which is none
other than that of the compression of information, several techniques have been proposed, from among
which the frequency representation of the function stands out. In effect, the idea underlying this type
of technique is to consider the original signal, expand it in Fourier series, and then approximate the
function by means of a few terms of its expansion. Thus, instead of having to supply the values of the
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function corresponding to each value of x, only the amplitude values (and eventually also the phase)
of a reduced number of harmonics are provided.

Let us consider an arbitrary example function f (x), such as that shown in Figure 2, of which
we know only one fragment in the interval [x0, x0 + P] (dashed line). Now let us consider that
this function is sampled, and the values only at specific points for x = xn, separated at intervals
∆x, are known. By denoting N as the total number of points (samples) in a period, we know that
∆x = P/N. The sampled function will be called f̂ (xn) = fn where the hat ( ˆ ) above f represents a
sampled function.
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Figure 2. Known fragment of an example function f (x) (dashed line) and its corresponding sampled
function f̂ (xn) (dots).

The usual way to obtain the spectrum of that function is to define a periodic function fp(x) of
period P that coincides with the previous function in the known interval (see Figure 3), and to proceed
to compute the spectrum of that new function. The spectral representation of the function fp(x) is
composed of the complex coefficients of the Fourier series expansion given by [42].

ck =
1
P

∫ x0+P

x0

f (x)e−j 2πkx
P dx. (1)
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On the other hand, the sampled function, f̂ (xn) = fn, will have a spectral representation ĉk that
corresponds to ck, when the sampling of the variable x is taken into account. Now let us call I(x) the
integrand of Equation (1), i.e.,

I(x) = f (x)e−j 2πkx
P , (2)

and hence the spectral representation of the non-sampled function fp(x) is featured by the coefficients

ck =
1
P

∫ x0+P

x0

I(x)dx. (3)

in order to obtain the values ĉk that take into account the sampling of the variable x, the continuous
calculation of the area that supposes the integral of the previous expression is substituted with the sum
of the rectangles corresponding to the discrete values (sum of Riemann). In Figure 4, the calculation of
the real part of ĉ1 is depicted for the example function fp(x).
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Therefore,

ĉk ≡ [ck]x=xn
=

[
1
P

∫ x0+P

x0

I(x)dx
]

x=xn

. (4)

From this equation it can be derived (see supplementary material) that

ĉk =
1
N

e−j 2πkx0
N∆x

N−1

∑
n=0

fn e−j 2πkn
N . (5)

It can be observed that the spectral representation ĉk depends on the point x0 selected as the origin

of coordinates, due to the factor e−j 2πkx0
N∆x . This factor does not affect the amplitude spectrum (since its

modulus is 1), but it does affect the phase spectrum corresponding to the known time-shift property of
the Fourier Transform. For practical purposes, the origin of coordinates is usually considered to be the
starting point of the sequence, that is, at x0 = 0, and hence the spectral representation finally becomes

ĉk =
1
N

N−1

∑
n=0

fn e−j 2πkn
N . (6)

This expression coincides with the usual definition of the Discrete Fourier Transform (DFT) [43].
In other words: The Discrete Fourier Transform of a known fragment of a function presupposes the
periodic repetition of that fragment.
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2.3. Integral Transforms of Symmetric Functions

Let us now again consider the function f (x) of which we know only sampled values of a fragment
fn in the interval [x0, x0 + P], as shown in Figure 2. An alternative way of representing its spectrum
to that of periodically repeating the values fn as in Figure 3, lies in defining a sequence of values gn

of length 2P that coincides with fn in the interval [x0, x0 + P], which is its symmetric in the interval
[x0 − P, x0], as depicted in Figure 5.
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Figure 5. Known fragment of a symmetric example function g(x) (dashed line) and its corresponding
sampled function ĝ(xn) (dots). These functions are obtained by considering the original fragment of
the example function f (x) (blue) and its symmetric (green).

It can be observed that
gn = fn ∀n ∈ [0, N − 1]

gn = f−n−1 ∀n ∈ [−N,−1]
. (7)

Subsequently, a sequence of periodic values hn of period P′ = 2P is defined that coincides with gn in
the interval [x0 − P, x0 + P], as shown in Figure 6.
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In order to obtain the spectrum of the sequence of values hn it can be written that

ĉk =
1
P′

xn=x0+P−∆x

∑
xn=x0−P

hn e−j 2πkxn
P′ ∆x. (8)
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From this equation it can be derived (see supplementary material) that

ĉk =
1

2N
e−j πkx0

N∆x

[
ej πk

N

N−1

∑
n=0

fn ej πkn
N +

N−1

∑
n=0

fn e−j πkn
N

]
. (9)

As can be observed, due to the factor e−j 2πkx0
N∆x , the spectral representation ĉk depends on the point

x0 where the origin of coordinates is defined. This factor does not affect the amplitude spectrum
(since its modulus is 1), but it does affect the phase spectrum, which corresponds to the known
time-shifting property of the Fourier transform. For practical purposes, the origin of coordinates
is usually considered to be located the midpoint of the symmetric sequence gn, that is, x0 = ∆x/2,
as shown in Figure 7.
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Finally, the spectral representation becomes (see supplementary material)

ĉk =
1
N

N−1

∑
n=0

fn cos
[

πk
N

(
n +

1
2

)]
. (10)

This expression coincides with the usual definition of the Discrete Cosine Transform (DCT) [44].
In other words, the Discrete Cosine Transform of a known fragment of a function presupposes the
periodic repetition of that fragment and its symmetric.

2.4. Representing Anuran Call Spectra

With this digression, we can now address the question posed at the beginning of Section 2.2
concerning the best way to characterize the spectrum of a sound by using the sum of its harmonics.
Note that it is necessary to compute the spectrum (step 5) of a spectrum (step 4), that is,
the trans-spectrum or the cepstrum, as previously discussed. The decision regarding whether
this trans-spectrum (cepstrum) should be derived using either the Fourier transform, or the cosine
transform, is based on the form of the fragment fn (in this case the spectral values of the sound). That is,
it should be considered whether the best approximation to the spectrum is either a periodic repetition
of fn or, in contrast, a periodic repetition of fn and its symmetric.

Although this is a general question, we have addressed it in the context of a specific application
by featuring anuran calls for their further classification. The dataset employed contains 1 hour and
13 minutes of sounds which have been recorded at five different locations (four in Spain, and one in
Portugal) [32] and they were subsequently sampled at 44.1 kHz. The recordings include 4 types of
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anuran calls and, since they have been taken in their natural habitat, are affected by highly significant
surrounding environmental noise (such as that of wind, water, rain, traffic, and voices).

In this paper, the duration of the frames (step 2) was set to 10 ms, such that each frame has
N = 441 data points and a total of W = 434, 313 frames are considered. The log-energy spectral
density (step 3) is obtained using a standard FFT algorithm, which obtains a spectrum with N = 441
values. The mel-scaling (step 4) employs a set of M = 23 filters, and hence the mel-FBE spectrum is
characterised by this number of values (M = 23). In step 5, two different approaches for obtaining the
cepstrum are used and compared: DFT and DCT. The results are then analysed for a different number
of cepstral coefficients (1 ≤ C ≤ M).

In order to carry out a more systematic study of the spectrum approximation error, let us call
Ei(n) the original mel-FBE spectrum of the i-th frame (the result of step 4), where n is the filter
index (equivalent to the frequency in mel scale). Let us also call Hi(m) the spectrum of Ei(n), that is,
the cepstrum as obtained in step 5, where m is the cepstral index (equivalent to the quefrency in
mel scale). It can be written that Hi(m) = F [Ei(n)], where F represents either the DFT or the DCT
Fourier expansions.

After reducing the number of cepstral coefficients to a value of C ≤ M, the resulting approximate
cepstrum (step 6) will be called H̃i(m), where the tilde (˜) above the H represents an approximation.
Using these C values in the corresponding Fourier expansion leads to an approximation of the
mel-FBE, that is, Ẽi(n) = F−1

[
H̃i(m)

]
. The approximation error for the i-th frame is therefore

εi(n) = Ei(n)− Ẽi(n), that is, a different error for each value of n, the filter index (or frequency in
mel-scale). An error measure for the overall spectrum of the i-th frame can be obtained using the Root
Mean Square Error (RMSEi) defined as:

RMSEi ≡

√√√√ 1
M

M−1

∑
n=0

[εi(n)]
2 =

√√√√ 1
M

M−1

∑
n=0

[
Ei(n)− Ẽi(n)

]2
. (11)

In this paper, an arbitrary selected single frame is first considered, mainly for illustration purposes.
Its time-domain representation is depicted in Figure 8A while its spectrum is plotted in Figure 8B.
Some other examples can be found in [32].
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Additionally, in order to compare the performance of the 2 competing algorithms obtaining the
cepstrum, an overall metric for the whole dataset is considered and defined as the mean RMSE for
every frame, that is,

RMSE ≡ 1
W

W

∑
i=1

RMSEi =
1

W

W

∑
i=1

√√√√ 1
M

M−1

∑
n=0

[εi(n)]
2. (12)
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3. Results

Let us first consider a single frame, arbitrarily selected from the whole sound dataset. Although
these results are limited to that specific sound frame, very similar results are obtained if a different
frame is selected. Moreover, at the end of this section, the overall sound dataset is considered.

For the case of the single frame, the mel-FBE spectrum obtained in step 4 is depicted in Figure 9.
This is the f (x) function whose spectrum (cepstrum in this case) must be computed in step 5.
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Figure 9. Mel Filter Bank Energy (mel-FBE) spectrum for an arbitrarily selected frame of an anuran call.

For this frame, let us consider whether it is better to use either a DFT or a DCT. The decision
depends on whether the function f (x) can be considered as a fragment of a periodic repetition of:
(A) the fragment, as shown in Figure 10A, or (B) the function and its symmetric, as shown in Figure 10B.
In the first case, the DFT should be more appropriate, while in the second case the DCT would obtain
better results.
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Figure 10. Periodic repetition of the mel-FBE spectrum (A); and the mel-FBE spectrum and its
symmetric (B).

However, the mel-FBE is nothing but a rescaled and compressed way of presenting a spectrum.
On the other hand, it is a well-known fact that the spectrum of a real signal is symmetric with
respect to the vertical axis [43]. And finally, it is also known that the spectrum of a sampled signal
is periodic [45]. For this reason, the repetition of the fragment of Figure 9 corresponds to Figure 10B
and, therefore, using the DCT to compute its trans-spectrum (or cepstrum) should obtain better results.
This hypothesis is verified in the following paragraphs for the selected frame, and, later in this section,
it is verified for the whole dataset.
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The number of coefficients obtained by applying either DCT or DFT is M = 23, that is, they have
the same number of values that define the mel-FBE. The resulting cepstrum for the selected frame is
shown in Figure 11.
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Figure 11. Cepstral representation of the mel-FBE spectrum (cepstrum).

The ability to compress information of the Fourier transforms (either in the DFT or DCT version)
lies in the fact that it is not necessary to consider the full set of the M coefficients of the Fourier
expansion to obtain a good approximation of the original function. In Figure 12, the original mel-FBE
spectrum is depicted for the example frame, and those spectra recovered using C ≤ M cepstral
coefficients obtained using DCT.
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Figure 12. Mel-FBE spectrum for an arbitrarily selected frame of an anuran call. Original spectrum and
recovered spectra using a different number of Discrete Cosine Transform (DCT) cepstral coefficients.

Additionally, as expected, the DCT achieves approximations to the original spectrum that are,
in general, significantly better than those obtained for the DFT with the same number of coefficients.
In Figure 13, the original mel-FBE spectrum is depicted for the example frame, and those spectra
recovered using C = 11 cepstral coefficients obtained using DFT and DCT.
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Figure 13. Mel-FBE spectrum for an arbitrarily selected frame of an anuran call. Original spectrum
and recovered spectrum using C = 11 coefficients obtained using Discrete Fourier Transform (DFT)
and DCT.

In order to quantify the error of recovering the selected mel-FBE spectrum using C ≤ M cepstral
coefficients, the Root Mean Square Error (RMSE) is computed in accordance with Equation (11).
The value of RMSE as a function of the number C of cepstral coefficients used for the recovery of the
spectrum is depicted in Figure 14, both for DFT and DCT.
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Figure 14. Root Mean Square Error recovering the original mel-FBE spectrum when a different number
of C cepstral coefficients are used. The cepstral coefficients are obtained applying either DFT or DCT.

This analysis can be extended to include the computation of the RMSE for the whole dataset in
accordance with Equation (12). The value of RMSE as a function of the number C of cepstral coefficients
used for the recovery of the spectrum is depicted in Figure 15 for DFT and DCT separately.
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Figure 15. Root Mean Square Error for the whole dataset when either DFT or DCT is employed.

4. Discussion

Let us first consider the RMSEi for a single frame as depicted in Figure 14. Let us now regard the
case where, for instance, the number of values required to describe the mel-FBE spectrum (M = 23) is
halved, and hence the number of cepstral coefficients used for the recovering an approximation of the
spectrum is C = 11 (in accordance with Equations (6) and (10)).

In this case, it can be observed that RMSEi is 0.34 for DFT, and 0.30 for DCT. On the other hand,
as depicted in Figure 9, the values of the mel-FBE spectrum lie within the range [−6,−3], with a mean
value of −5.02. This means that the relative error of the spectrum representation is only 6.84% for DFT
(5.36% for DCT) when the number of values employed for that representation are halved.

Let us now focus on the RMSE when the DFT is used (green line), either for a single frame
(Figure 14) or for the whole dataset (Figure 15). In both cases, it can be observed that RMSE has values
only for an odd number of cepstral coefficients. This fact can be explained by recalling that, according
to Equation (6), every DFT cepstral coefficient ĉk is a complex number for 1 ≤ k ≤ M− 1 and a real
number for k = 0. On the other hand, according to Equation (10), the DCT cepstral coefficients ĉk are
real numbers for every value of k. Additionally, it has to be considered that DFT cepstrum is symmetric
(green line in Figure 11). Therefore, for k > 0, it can be written that ĉk = ĉM−k+1 and, therefore, only
one of these 2 terms have to be kept for recovery purposes. These circumstances jointly explain the
odd number of DFT cepstral coefficients.

To clarify this idea, let us consider an example where M = 23 and C = 5. The DCT cepstrum
is then described using ĉ0, ĉ1, ĉ2, ĉ3 and ĉ4, that is, 5 real numbers which can be employed to
approximately recover the mel-FBE spectrum. On the other hand, the DFT cepstrum is described using
ĉ0, which is a real number, and ĉ1 and ĉ2, which are complex numbers, that is, although 3 terms are
used, a total of 5 values (coefficients) are required. However, to approximately recover the mel-FBE
spectrum, the terms ĉ0, ĉ1, ĉ2, ĉ23 and ĉ22 can be used since ĉ1 = ĉ23 and ĉ2 = ĉ22.

As regards the results obtained for the whole dataset (Figure 15), it can be seen that DCT is better
at describing the mel-FBE spectra than is its DFT counterpart. This improvement (decrease of the
RMSE), can be measured by defining ∆RMSE ≡ RMSEDFT − RMSEDCT (Figure 16A) or its relative
value ∆RMSE(%) ≡ 100·∆RMSE/RMSEDFT (Figure 16B). For example, for C = 11, the RMSE is
reduced from 0.209 (DFT) to 0.146, which involves an improvement of approximately 30%. For the
degenerated cases where C = 1 and C = M, there is no improvement. In the first case, only ĉ0 is used
which, according to Equations (6) and (10), is the mean value of the mel-FBE spectrum, that is, the DFT
and DCT recovering methods have the same error. On the other hand, if C = M then no reduction
on the number of coefficients is achieved, and both equations exactly recover the original spectrum
(no error).



Symmetry 2019, 11, 405 13 of 19
Symmetry 2019, 11, x FOR PEER REVIEW 13 of 18 

 

 
Figure 16. Improvement of DCT over DFT describing mel-FBE spectra. (A): Δ𝑅𝑀𝑆𝐸. (B): 

Δ𝑅𝑀𝑆𝐸 %). 

The above results concern the mean improvement of DCT over DFT for every frame in the 
dataset. In a more in-depth analysis, let us also compute its probability density function (pdf). The 
results are depicted in Figure 17. In panel A, the pdf is shown for several values of the number of 
cepstral coefficients (𝐶). In panel B, the value of the pdf is colour-coded as a function of the 
improvement (Δ𝐸𝑟𝑟𝑜𝑟) and of the number of cepstral coefficients (𝐶). It can be observed that only a 
negligible number of the frames present a significant negative improvement, thereby demonstrating 
that DCT is superior to DFT.  

 
Figure 17. Improvement of DCT over DFT in describing mel-FBE spectra. A: Probability density 
function for several values of the number of cepstral coefficients. B: Probability density function for 
each value of the number of cepstral coefficients. 

The higher performance of DCT over DFT is due to the fact that the mel-FBE spectra are a 
special type of function derived from symmetric sound spectra. Consequently, if DCT and DFT were 
compared in the task of recovering arbitrary functions, they would each present equal performance. 
To demonstrate this claim, one million 𝑀-value arbitrary functions are randomly generated (𝑀 =23), and DFT and DCT are then employed to recover the original function with a reduced set of 𝐶 
coefficients to measure the errors of that recovery. Finally, the improvement of DCT over DFT is 
computed. The results are depicted in Figure 18 where it can be observed that positive and negative 
improvements are symmetrically distributed around a zero-mean improvement. Therefore, it can be 
concluded that DCT and DFT have similar performance in describing arbitrary functions. 

1 3 5 7 9 11 13 15 17 19 21 23
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

Number of cepstral coefficients

ΔR
M

S
E

A

1 3 5 7 9 11 13 15 17 19 21 23
0

10

20

30

40

50

60

Number of cepstral coefficients

ΔR
M

S
E

 (%
)

B

-0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4
0

2

4

6

8

10

12

14

Δ Error

P
ro

ba
bi

lit
y 

D
en

si
ty

 F
un

ct
io

n

A

 

 
5
9
13
17
21

Number of cepstral coefficients

Δ 
E

rro
r

B

 

 

1 3 5 7 9 11 13 15 17 19 21 23
-0.4

-0.3

-0.2

-0.1

0   

0.1 

0.2 

0.3 

0.4 

1

2

3

4

5

6

7

8

9

10

11

Figure 16. Improvement of DCT over DFT describing mel-FBE spectra. (A): ∆RMSE. (B): ∆RMSE(%).

The above results concern the mean improvement of DCT over DFT for every frame in the dataset.
In a more in-depth analysis, let us also compute its probability density function (pdf). The results
are depicted in Figure 17. In panel A, the pdf is shown for several values of the number of cepstral
coefficients (C). In panel B, the value of the pdf is colour-coded as a function of the improvement
(∆Error) and of the number of cepstral coefficients (C). It can be observed that only a negligible
number of the frames present a significant negative improvement, thereby demonstrating that DCT is
superior to DFT.
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Figure 17. Improvement of DCT over DFT in describing mel-FBE spectra. (A): Probability density
function for several values of the number of cepstral coefficients. (B): Probability density function for
each value of the number of cepstral coefficients.

The higher performance of DCT over DFT is due to the fact that the mel-FBE spectra are a
special type of function derived from symmetric sound spectra. Consequently, if DCT and DFT were
compared in the task of recovering arbitrary functions, they would each present equal performance.
To demonstrate this claim, one million M-value arbitrary functions are randomly generated (M = 23),
and DFT and DCT are then employed to recover the original function with a reduced set of C coefficients
to measure the errors of that recovery. Finally, the improvement of DCT over DFT is computed.
The results are depicted in Figure 18 where it can be observed that positive and negative improvements
are symmetrically distributed around a zero-mean improvement. Therefore, it can be concluded that
DCT and DFT have similar performance in describing arbitrary functions.
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Figure 18. Improvement of DCT over DFT in describing arbitrary function. (A): Probability density
function for several values of the number of cepstral coefficients. (B): Probability density function for
each value of the number of cepstral coefficients.

From the above results, it is clear that DCT offers superior performance featuring mel-FBE spectra
and, therefore offers superior performance featuring sounds. When the purpose of these features
is to be used as input to some kind of classifier, then DCT offers an additional advantage. It is a
well-established result that classifiers obtain better results if their input features are low-correlated.
The reason is clear: a classification algorithm that includes a new feature that is highly correlated with
previous features adds almost no new information and, therefore, almost no classification improvement
should be expected. Let us therefore examine the correlation between coefficients obtained by DFT
and those by DCT.

Let us call µu the mean value of the u-th coefficient ĉui describing the i-th frame, obtained by

µu =
1

W

W

∑
i=1

ĉui, (13)

where W is the total number of frames in the dataset. The variance σ2
u of the u-th coefficient can be

obtained by

σ2
u =

1
W − 1

W

∑
i=1

(ĉui − µu)
2. (14)

The correlation ρuv between the u-th and the v-th coefficient for the whole dataset is therefore given by

ρuv =
1

W − 1

W

∑
i=1

ĉui − µu

σu
· ĉvi − µv

σv
. (15)

In Figure 19, the absolute values of the correlation are shown, whereby the values for the case
M = 23 are colour-coded. The correlations corresponding to the DFT are shown in panel A and those
corresponding to DCT in panel B. In the DFT case, each ĉui factor is a complex number, and hence the
total number of values is 46, whereby the first 23 coefficients represent the real parts and the last 23 the
imaginary parts. By simply considering the colours in that figure, it is clear that DCT coefficients are
less correlated.
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Figure 19. Correlation between cepstral coefficients describing mel-FBE spectra for DFT (panel A) and
DCT (panel B).

An alternative way to present this result is by using a histogram of the values of the correlation
coefficients, as depicted in Figure 20. Those corresponding to DCT are more frequent for the low values
of correlation, that is, DCT-obtained features are less correlated than those obtained using DFT. Hence,
classifiers of a more efficient nature should be expected from using DCT.
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Figure 20. Histogram of the correlation among cepstral coefficients describing mel-FBE spectra for DFT
and DCT.

When the MFCC features are used as input of a later classification algorithm, the lower correlation
of DCT-obtained features should yield to a better classification performance. The results obtained
classifying anuran calls [35] do confirm a slight advantage for the DCT as it is reflected in Table 1.
This table has been produced taking the best result (geometric mean of sensitivity and specificity)
obtained through a set of ten classification procedures: minimum distance, maximum likelihood,
decision trees, k-nearest neighbors, support vector machine, logistic regression, neural networks,
discriminant function, Bayesian classifiers and hidden Markov models.

Table 1. Classification performance metrics for DCT and DFT.

Cepstral Transform ACC PRC F1

DFT 94.27% 74.46% 77.67%
DCT 94.85% 76.76% 78.93%

Let us finally consider the computing efforts required for these two algorithms which mainly
depend on the number of samples defining the mel-FBE spectra. Fast versions of DFT and DCT
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algorithms have been tested on a conventional desktop personal computer. The results are depicted
in Figure 21. It can be seen that DCT is about one order of magnitude slower than DFT. Although
this fact is certainly a drawback of DCT it has a limited impact on conventional MFCC extraction
process because the number of values describing the mel-FBE spectra is usually very low (about 20).
Additional studies on processing times for anuran sounds classification can be found in [34].
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5. Conclusions

In this article, it has been shown that DCT outperforms DFT in the task of representing sound
spectra. It has also been shown that this improvement is due to the symmetry of the spectrum and not
to any intrinsic advantage of DCT.

In representing the mel-FBE spectra required to obtain the MFCC features of anuran calls,
DCT errors are approximately 30% lower than DFT errors. This type of spectra is therefore much better
represented using DCT.

Additionally, it has been shown than MFCC features obtained using DCT are remarkably less
correlated than those obtained using DFT. This result will make DCT-based MFCC features more
powerful in later classification algorithms.

Although only one specific dataset has been analysed herein, the advantage of DCT can easily be
extrapolated to include any sound since this advantage is based on the symmetry of the spectrum of
the sound
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