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Abstract: The concept of statistically deferred-weighted summability was recently studied by
Srivastava et al. (Math. Methods Appl. Sci. 41 (2018), 671–683). The present work is concerned
with the deferred-weighted summability mean in various aspects defined over a modular space
associated with a generalized double sequence of functions. In fact, herein we introduce the idea of
relatively modular deferred-weighted statistical convergence and statistically as well as relatively
modular deferred-weighted summability for a double sequence of functions. With these concepts
and notions in view, we establish a theorem presenting a connection between them. Moreover, based
upon our methods, we prove an approximation theorem of the Korovkin type for a double sequence
of functions on a modular space and demonstrate that our theorem effectively extends and improves
most (if not all) of the previously existing results. Finally, an illustrative example is provided here by
the generalized bivariate Bernstein–Kantorovich operators of double sequences of functions in order
to demonstrate that our established theorem is stronger than its traditional and statistical versions.

Keywords: statistical convergence; P-convergent; statistically and relatively modular deferred-
weighted summability; relatively modular deferred-weighted statistical convergence; Korovkin-type
approximation theorem; modular space; convex space; N -quasi convex modular; N -quasi
semi-convex modular

MSC: 40A05; 41A36; 40G15

1. Introduction, Preliminaries, and Motivation

The gradual evolution on sequence spaces results in the development of statistical convergence.
It is more general than the ordinary convergence in the sense that the ordinary convergence of a
sequence requires that almost all elements are to satisfy the convergence condition, that is, every
element of the sequence needs to be in some neighborhood (arbitrarily small) of the limit. However,
such restriction is relaxed in statistical convergence, where set having a few elements that are not in the
neighborhood of the limit is discarded subject to the condition that the natural density of the set is zero,
and at the same time the condition of convergence is valid for the other majority of the elements. In the
year 1951, Fast [1] and Steinhaus [2] independently studied the term statistical convergence for single
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real sequences; it is a generalization of the concept of ordinary convergence. Actually, a root of the
notion of statistical convergence can be detected by Zygmund (see [3], p. 181), where he used the term
“almost convergence”, which turned out to be equivalent to the concept of statistical convergence. We
also find such concepts in random graph theory (see [4,5]) in the sense that almost convergence means
convergence with probability 1, whereas in statistical convergence the probability is not necessarily
1. Mathematically, a sequence of random variables {Xn} is statistically convergent (converges in
probability) to a random variable X if limn→∞ P(|Xn− X| = ε) = 0, for all ε > 0 (arbitrarily small);
and almost convergent to X if P(limn→∞ Xn = X) = 1.

For different results concerning statistical versions of convergence as well as of the summability
of single sequences, we refer to References [1,2,6].

Let N be the set of natural numbers and letH ⊆ N. Also let

Hn = {k : k 5 n, and k ∈ H}

and suppose that |Hn| is the cardinality ofHn. Then, the natural density ofH is defined by

δ(H) = lim
n→∞

|Hn|
n

= lim
n→∞

1
n
{k : k 5 n and k ∈ H},

provided that the limit exists.
A sequence (xn) is statistically convergent to ` if for every ε > 0,

Hε = {k : k ∈ N and |xk − `| = ε}

has zero natural (asymptotic) density (see [1,2]). That is, for every ε > 0,

δ(Hε) = lim
n→∞

|Hε|
n

= lim
n→∞

1
n
|{k : k 5 n and |xk − `| = ε}| = 0.

Here, we write
stat lim

n→∞
xn = `.

As an extension of statistical versions of convergence, the idea of weighted statistical convergence
of single sequences was presented by Karakaya and Chishti [7], and it has been further generalized by
various authors (see [8–12]). Moreover, the concept of deferred weighted statistical convergence was
studied and introduced by Srivastava et al. [13] (see also [14–19]).

In the year 1900, Pringsheim [20] studied the convergence of double sequences. Recall that a
double sequence (xm,n) is convergent (or P-convergent) to a number ` if for given ε > 0 there exists
n0 ∈ N such that |xm,n − `| < ε, whenever m, n = n0 and is written as P lim xm,n = `. Likewise,
(xm,n) is bounded if there exists a positive number K such that |xm,n| 5 K. In contrast to the case
of single sequences, here we note that a convergent double sequence is not necessarily bounded.
We further recall that, a double sequence (xm,n) is non-increasing in Pringsheim’s sense if xm+1,n 5 xm,n

and xm,n+1 5 xm,n.
Let H ⊂ N×N be the set of integers and let H(i, j) = {(m, n) : m 5 i and n 5 j}. The double

natural density ofH denoted by δ(H) is given by

δ(H) = P lim
i,j

1
ij
|H(i, j)|,

provided the limit exists. A double sequence (xm,n) of real numbers is statistically convergent to ` in
the Pringsheim sense if, for each ε > 0

δ(Hε(i, j)) = 0,
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where
δ(Hε(i, j)) =

1
ij
{(m, n) : m 5 i, n 5 j and |xm,n − `| = ε}.

Here, we write
stat2 lim

m,n
xm,n = `.

Note that every P-convergent double sequence is stat2-convergent to the same limit, but the
converse is not necessarily true.

Example 1. Suppose we consider a double sequence x = (xm,n) as

xm,n =


√

nm (m = k2, n = l2; ∀ k, l ∈ N),

1
nm otherwise.

It is trivially seen that, in the ordinary sense (xm,n) is not P-convergent; however, 0 is its statistical limit.

Let I = [0, ∞) ⊆ R, and let the Lebesgue measure v be defined over I . Let I2 = [0, ∞)× [0, ∞)

and suppose that X(I2) is the space of all measurable real-valued functions defined over I2 equipped
with the equality almost everywhere. Also, let C(I2) be the space of all continuous real-valued
functions and suppose that C∞(I2) is the space of all functions that are infinitely differentiable on
I2. We recall here that a functional ω : X(I2)→ [0, ∞) is a modular on X(I2) such that it satisfies the
following conditions:

(i) ω( f ) = 0 if and only if f = 0, almost everywhere in I (∀ f ∈ I ′),
(ii) ω(α f + βg) 5 ω( f ) + ω(g), ∀ f , g ∈ X(I2) and for any α, β = 0 with α + β = 1,
(iii) ω(− f ) = ω( f ), for each f ∈ X(I2), and
(iv) ω is continuous on [0, ∞).

Also, we further recall that a modular ω is

• N -Quasi convex if there exists a constant N = 1 satisfying

ω(α f + βg) 5 N αω(N f ) +N βω(N g)

for every f , g ∈ X(I2), α, β = 0 such that α + β = 1. Also, in particular, for N = 1, ω is simply
called convex; and

• N -Quasi semi-convex if there exists a constant N = 1 such that

ω(λ f ) 5 Nλω(N f )

holds for all f ∈ X(I2) and λ ∈ (0, 1].

Also, it is trivial that everyN -Quasi semi-convex modular isN -Quasi convex. The above concepts
were initially studied by Bardaro et al. [21,22].

We now appraise some suitable subspaces of vector space X(I2) under the modular ω as follows:

Lω(I2) = { f ∈ X(I2) : lim
λ→0+

ω(λ f ) = 0}

and
Eω(I2) = { f ∈ Lω(I2) : ω(λ f ) < +∞, ∀ λ > 0}.
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Here, Lω(I2) is known as the modular space generated by ω and Eω(I2) is known as the space
of the finite elements of Lω(I2). Also, it is trivial that whenever ω is N -Quasi semi-convex,

{ f ∈ X(I2) : ω(λ f ) < +∞, ∀ λ > 0}

coincides with Lω(I2). Moreover, for a convex modular ω in X(I2), the F-norm is given by the formula:

‖ f ‖ω = inf
{

λ > 0 : ω

(
f
λ

)
5 1

}
.

The notion of modular was introduced in [23] and also widely discussed in [22].
In the year 1910, Moore [24] introduced the idea of the relatively uniform convergence of a

sequence of functions. Later, along similar lines it was modified by Chittenden [25] for a sequence of
functions defined over a closed interval I = [a, b] ⊆ R.

We recall here the definition of uniform convergence relative to a scale function as follows.
A sequence of functions ( fn) defined over [a, b] is relatively uniformly convergent to a limit function

f if there exists a non-zero scale function σ defined over [a, b], such that for each ε > 0 there exists an
integer nε and for every n > nε, ∣∣∣∣ fn(x)− f (x)

σ(x)

∣∣∣∣ 5 ε

holds uniformly for all x ∈ [a, b] ⊆ R.
Now, to see the importance of relatively uniform convergence (ordinary and statistical) over

classical uniform convergence, we present the following example.

Example 2. For all n ∈ N, we define fn : [0, 1]→ R by

fn(x) =


nx

1+n2x2 (0 < x 5 1),

0 (x = 0).

It is not difficult to see that the sequence ( fn) of functions is neither classically nor statistically uniformly
convergent in [0, 1]; however, it is convergent uniformly to f = 0 relative to a scale function

σ(x) =


1
x (0 < x 5 1)

0 (x = 0)

on [0, 1]. Here, we write
fn ⇒ f = 0 ([0, 1]; σ) .

In the middle of the twentieth century, H. Bohman [26] and P. P. Korovkin [27] established some
approximation results by using positive linear operators. Later, some Korovkin-type approximation
results with different settings were extended to several functional spaces, such as Banach space and
Musielak–Orlicz space etc. Bardaro, Musielak, and Vinti [22] studied generalized nonlinear integral
operators in connection with some approximation results over a modular space. Furthermore, Bardaro
and Mantellini [28] proved some approximation theorems defined over a modular space by positive
linear operators. They also established a conventional Korovkin-type theorem in a multivariate
modular function space (see [21]). In the year 2015, Orhan and Demirci [29] established a result on
statistical approximation by double sequences of positive linear operators on modular space. Demirci
and Burçak [30] introduced the idea of A-statistical relative modular convergence of positive linear
operators. Moreover, Demirci and Orhan [31] established some results on statistically relatively
approximation on modular spaces. Recently, Srivastava et al. [13] established some approximation
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results on Banach space by using deferred weighted statistical convergence. Subsequently, they also
introduced deferred weighted equi-statistical convergence to prove some approximation theorems
(see [17]). Very recently, Md. Nasiruzzaman et al. [32] proved Dunkl-type generalization of
Szász-Kantorovich operators via post-quantum calculus, and consequently, Srivastava et al. [33]
established the construction of Stancu-type Bernstein operators based on Bézier bases with shape
parameter λ.

Motivated essentially by the above-mentioned results, in this paper we introduce the idea of
relatively modular deferred-weighted statistical convergence and statistically as well as relatively
modular deferred-weighted summability for double sequences of functions. We also establish
an inclusion relation between them. Moreover, based upon our proposed methods, we prove a
Korovkin-type approximation theorem for a double sequence of functions defined over a modular
space and demonstrate that our result is a non-trivial generalization of some well-established results.

2. Relatively Modular Deferred-Weighted Mean

Let (an) and (bn) be sequences of non-negative integers satisfying the conditions: (i) an < bn

(n ∈ N) and (ii) lim
n→∞

bn = ∞. Note that (i) and (ii) are the regularity conditions for the proposed

deferred weighted mean (see Agnew [34]). Now, for the double sequence ( fm,n) of functions, we define
the deferred weighted summability mean (ND( fm,n)) as

ND( fm,n) =
1

TmSn

bm ,bn

∑
u,v=an+1

tusv fu,v(x), (1)

where (sn) and (tn) are the sequences of non-negative real numbers satisfying

Sn =
bn

∑
v=an+1

sv and Tm =
bm

∑
u=an+1

tv.

Definition 1. A double sequence ( fm,n) of functions belonging to Lω(I2) is relatively modular deferred
weighted (ND( fm,n))-summable to a function f on Lω(I2) if and only if there exists a non-negative scale
function σ ∈ X(I2) such that

P lim
m,n→∞

ω

(
λ

(
ND( fm,n)− f

σ

))
= 0 for some λ0 > 0.

Here, we write

ND lim
m,n

∥∥∥∥ fm,n − f
σ

∥∥∥∥
ω

= 0 for some λ0 > 0.

Definition 2. A double sequence ( fm,n) of functions belonging to Lω(I2) is relatively F-norm (locally convex)
deferred weighted summable (or relatively strong deferred weighted summable) to f if and only if

P lim
m,n→∞

ω

(
λ

(
ND( fm,n)− f

σ

))
= 0 for some λ > 0.

Here, we write

F ND lim
m,n

∥∥∥∥ fm,n − f
σ

∥∥∥∥
ω

= 0 for some λ0 > 0.

It can be promptly seen that, Definitions 1 and 2 are identical if and only if the modular ω fairly
holds the ∆2-condition, that is, there exists a constantM > 0 such that ω(2 f ) 5Mω( f ) for every
f ∈ X(I2). Precisely, relatively strong summability of the double sequence ( fm,n) to f is identical to
the condition
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P lim
m,n

ω

(
2nλ

(
ND( fm,n)− f

σ

))
= 0,

∀ n ∈ N and some λ > 0. Thus, if ( fm,n) is relatively modular deferred weighted
(ND( fm,n))-summable to f , then by Definition 1 there exists a λ > 0 such that

P lim
m,n→∞

ω

(
λ

(
ND( fm,n)− f

σ

))
= 0.

Clearly, under ∆2-condition, we have

ω

(
2nλ

(
ND( fm,n)− f

σ

))
5Mnω

(
λ

(
ND( fm,n)− f

σ

))
.

This implies that

P lim
m,n

ω

(
2nλ

(
ND( fm,n)− f

σ

))
= 0.

Definition 3. A double sequence ( fm,n) of functions belonging to Lω(I2) is relatively modular
deferred-weighted (ND( fm,n)) statistically convergent to a function f ∈ Lω(I2) if there exists a non-zero scale
function σ ∈ X(I2) such that, for every ε > 0, the following set:

P lim
m,n

1
TmSn

{
(u, v) : u 5 Tm, v 5 Sm and ω

(
λ0

(
tusv| fu,v − f |

σ

))
= ε

}
for some λ0 > 0

has zero relatively deferred-weighted density, that is,

P lim
m,n

1
TmSn

∣∣∣∣{(u, v) : u 5 Tm, v 5 Sm and ω

(
λ0

(
tusv| fu,v − f |

σ

))
= ε

}∣∣∣∣ = 0 for some λ0 > 0.

Here, we write

statND lim
m,n

∥∥∥∥ fm,n − f
σ

∥∥∥∥
ω

= 0.

Moreover, ( fm,n) is relatively F-norm (locally convex) deferred-weighted (ND( fm,n)) statistically
convergent (or relatively strong deferred-weighted (ND( fm,n)) statistically convergent) to a function f ∈ X(I2)

if and only if

P lim
m,n

1
TmSn

∣∣∣∣{(u, v) : u 5 Tm, v 5 Sm and ω

(
λ0

(
tusv| fu,v − f |

σ

))
= ε

}∣∣∣∣ = 0 for some λ > 0,

where σ ∈ X(I2) is a non-zero scale function and ε > 0.
Here, we write

F statND lim
m,n

∥∥∥∥ fm,n − f
σ

∥∥∥∥
ω

= 0.

Definition 4. A double sequence ( fm,n) of functions belonging to Lω(I2) is statistically and relatively modular
deferred-weighted (ND( fm,n))-summable to a function f ∈ Lω(I2) if there exists a non-zero scale function
σ ∈ X(I2) such that, for every ε > 0, the following set:

P lim
m,n

1
m, n

{
(u, v) : u 5 m, v 5 m and ω

(
λ0

(
ND( fm,n)− f

σ

))
= ε

}
for some λ0 > 0

has zero relatively deferred-weighted density, that is,

P lim
m,n

1
mn

∣∣∣∣{(u, v) : u 5 m, v 5 n and ω

(
λ0

(
ND( fm,n)− f

σ

))
= ε

}∣∣∣∣ = 0 for some λ0 > 0.
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Here, we write

NDstat lim
m,n

∥∥∥∥ fm,n − f
σ

∥∥∥∥
ω

= 0.

Furthermore, ( fm,n) is statistically and relatively F-norm (locally convex) deferred-weighted
(ND( fm,n))-summable (or statistically and relatively strong deferred-weighted (ND( fm,n))-summable) to
a function f ∈ X(I2) if and only if

P lim
m,n

1
m, n

∣∣∣∣{(u, v) : u 5 m, v 5 n and ω

(
λ0

(
ND( fm,n)− f

σ

))
= ε

}∣∣∣∣ = 0 for some λ > 0,

where σ ∈ X(I2) is a non-zero scale function and ε > 0.
Here, we write

F NDstat lim
m,n

∥∥∥∥ fm,n − f
σ

∥∥∥∥
ω

= 0.

Remark 1. If we put an = 0, bn = n, bm = m, and tm = sn = 1 in Definition 3, then it reduces to relatively
modular statistical convergence (see [31]).

Next, for our present study on a modular space we have the assumptions as follows:

• If ω( f ) 5 ω(g) for | f | 5 |g|, then ω is monotone;
• If χ ∈ Lω(I2) with µ(A) < ∞, where A is a measurable subset of I2, then ω is finite;
• If ω is finite and for each ε > 0, λ > 0, there exists a δ > 0 and ω(λχB) < ε for any measurable

subset B ⊂ I2 such that µ(B) < δ, then ω is absolutely finite;
• If χI2 ∈ Ew(I2), then ω is strongly finite;
• If for each ε > 0 there exists a δ > 0 such that ω(α f χB) < ε (α > 0), where B is a measurable subset

of I2 with µ(B) < δ and for each f ∈ X(I2) with ω( f ) < +∞, then ω is absolutely continuous.

It is clearly observed from the above assumptions that if a modular ω is finite and monotone, then
C(I2) ⊂ Lω(I2). Also, if ω is strongly finite and monotone, then C(I2) ⊂ Eω(I2). Furthermore, if ω

is absolutely continuous, monotone, and absolutely finite, then C∞(I2) = Lω(I2), where the closure
C∞(I2) is compact over the modular space.

Now we establish the following theorem by demonstrating an inclusion relation between relatively
deferred-weighted statistical convergence and statistically as well as relatively deferred-weighted
summability over a modular space.

Theorem 1. Let ω be a strongly finite, monotone, and N -Quasi convex modular on Lω(I2). If a double
sequence ( fm,n) of functions belonging to Lω(I2) is bounded and relatively modular deferred-weighted
statistically convergent to a function f ∈ Lω(I2), then it is statistically and relatively modular deferred
weighted summable to the function f , but not conversely.

Proof. Assume that ( fm,n) ∈ Lω(I2) ∩ `∞. Let us set

Hε =

{
(u, v) : u 5 m, v 5 n and ω

(
λ0

(
fu,v − f

σ

))
= ε for some λ0 > 0

}
and

Hc
ε =

{
(u, v) : u 5 m, v 5 n and ω

(
λ0

(
fu,v − f

σ

))
> ε for some λ0 > 0

}
.

From the regularity condition of our proposed mean, we have

P lim
u,v

1
TmSn

bm ,bn

∑
u,v=an+1

tusv = 0. (2)
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Thus, we obtain

ω

(
λ0

(
ND

(
fm,n − f

σ

)))
= ω

(
λ0

(
1

TmSn

bm ,bn

∑
u,v=an+1

tusv

(
fu,v − f

σ

)))

5 ω

(
λ0

TmSn

bm ,bn

∑
u,v=an+1,
(u,v)∈Hε

tusv

∣∣∣∣ fu,v − f
σ

∣∣∣∣+ λ0

TmSn

bm ,∞

∑
u=0,v=bn+1,
(u,v)∈Hε

tusv

∣∣∣∣ fu,v − f
σ

∣∣∣∣
+

λ0

TmSn

∞,bn

∑
u=bm+1,v=0,
(u,v)∈Hε

tusv

∣∣∣∣ fu,v − f
σ

∣∣∣∣+ λ0

TmSn

∞,∞

∑
u=bm+1,v=bn+1,

(u,v)∈Hε

tusv

∣∣∣∣ fu,v − f
σ

∣∣∣∣
+ ω

(
λ0

TmSn

bm ,bn

∑
u,v=an+1,
(u,v)∈Hc

ε

tusv

∣∣∣∣ fu,v − f
σ

∣∣∣∣+ λ0

TmSn

bm ,∞

∑
u=0,v=bn+1,
(u,v)∈Hc

ε

tusv

∣∣∣∣ fu,v − f
σ

∣∣∣∣
+

λ0

TmSn

∞,bn

∑
u=bm+1,v=0;
(u,v)∈Hc

ε

tusv

∣∣∣∣ fu,v − f
σ

∣∣∣∣+ λ0

TmSn

∞,∞

∑
u=bm+1,v=bn+1

(u,v)∈Hc
ε

tusv

∣∣∣∣ fu,v − f
σ

∣∣∣∣
+K

∣∣∣∣∣ 1
TmSn

∞,∞

∑
u,v=an+1

tusv − 1

∣∣∣∣∣
)

,

where

K = sup
x,y

∣∣∣∣ f (x, y)
σ

∣∣∣∣ .

Further, ω being N -Quasi convex modular, monotone, and strongly finite on Lω(I2),
it follows that

ω

(
λ0

(
ND

(
fm,n − f

σ

)))
5 3ω

9λ0|Hε|G
TmSn

bm ,bn

∑
u,v=an+1,
(u,v)∈Hε

tusv



+ εω

9λ0|Hε|
TmSn

bm ,bn

∑
u,v=an+1,
(u,v)∈Hε

tusv

+ ω

(
9λ0Gbmbn

TmSn

bm ,bn

∑
u,v=an+1

tusv

)

+ ω

(
9λ0Gbm

TmSn

bm ,∞

∑
u=0,v=an+1

tusv

)
+ ω

(
9λ0Gbn

TmSn

∞,bm

∑
u=an+1,v=0

tusv

)

+ εω

(
9λ0

TmSn

∞,∞

∑
u,v=an+1

tusv

)
+ ω

(
9λ0K
TmSn

∞,∞

∑
u,v=an+1

tusv − 1

)
,

where G = max
∣∣∣ fu,v− f (x,y)

σ

∣∣∣, ∀ u, v ∈ N and (x, y) ∈ I2. In the last inequality, considering P limit as
m, n→ ∞ under the regularity conditions of deferred weighted mean and by using (2), we obtain

P lim
m,n

ω

(
λ0

(
ND( fm,n)− f

σ

))
= 0.

This implies that ( fm,n) is relatively modular deferred weighted ND( fm,n)-summable to a function
f . Hence,

P lim
m,n

1
m, n

∣∣∣∣{(u, v) : u 5 m, v 5 m and ω

(
λ0

(
ND( fm,n)− f

σ

))
= ε

}∣∣∣∣ = 0 for some λ0 > 0.



Symmetry 2019, 11, 448 9 of 20

Next, to see that the converse part of the theorem is not necessarily true, we consider the
following example.

Example 3. Suppose that I = [0, 1] and let ϕ : [0, ∞) → [0, ∞) be a continuous function with ϕ(0) = 0,
ϕ(u) > 0 for u > 0 and limu→∞ ϕ(u) = ∞. Let f ∈ X(I2) be a measurable real-valued function, and
consider the functional ωϕ on X(I2) defined by

ωϕ( f ) =
∫ 1

0

∫ 1

0
ϕ(| fm,n(x, y)|)dxdy ( f ∈ X(I2).

ϕ being convex, ωϕ is modular convex on X(I2), which satisfies the above assumptions. Consider Lω
ϕ (I2) as

the Orlicz space produced by ϕ of the form:

Lω
ϕ (I2) = { f ∈ X(I2) : ωϕ(λ( f )) < +∞ for some λ > 0}.

For all m, n ∈ N, we consider a double sequence of functions fm,n : [0, 1]× [0, 1]→ R defined by

fm,n(x, y) =


1, (m, n) ∈ U× U and (x, y) ∈ (0, 1

m ]× (0, 1
n ],

0, {(m, n) ∈ V×V and (x, y) ∈ ( 1
m , 0]× ( 1

n , 1];
(m, n) ∈ U×V or (m, n) ∈ V× U or (x, y) ∈ (0, 0)},

where the set of all odd and even numbers are U and V, respectively.
We have

ωλ(ND( fm,n)) = ω

(
λ0

SmTn

bm ,bn

∑
u,v=an+1

tusv

)
,

and this implies

ωλ(ND( fm,n)) = λ0



∫ 1/bm
0

∫ 1/bn
0 dxdy, (m, n) ∈ U× U and (x, y) ∈ (0, 1

m ]× (0, 1
n ],

0, {(m, n) ∈ V×V and (x, y) ∈ ( 1
m , 0]× ( 1

n , 1];

(m, n) ∈ U×V or (m, n) ∈ V× U or (x, y) ∈ (0, 0)}.

Clearly, ( fm,n) is relatively modular deferred weighted summable to f = 0, with respect to a non-zero scale
function σ(x, y) such that

σ(x, y) =


1, (x, y) = (0, 0)

1
xy , (x, y) ∈ (0, 1]× (0, 1].

That is,

P lim
m,n

ω

(
λ0

(
ND( fm,n)− f

σ

))
= 0 for some λ0 > 0.

Thus, we have

P lim
m,n

1
m, n

∣∣∣∣{(u, v) : u 5 m, v 5 m and ω

(
λ0

(
ND( fm,n)− f

σ

))
= ε

}∣∣∣∣ = 0 for some λ0 > 0.

On the other hand, it is not relatively modular deferred-weighted statistically convergent to the function
f = 0, that is,
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P lim
m,n

1
TmSn

∣∣∣∣{(u, v) : u 5 Tm, v 5 Sm and ω

(
λ0

(
tusv| fu,v − f |

σ

))
= ε

}∣∣∣∣ 6= 0 for some λ0 > 0.

3. A Korovkin-Type Theorem in Modular Space

In this section, we extend here the result of Demirci and Orhan [31] by using the idea of the
statistically and relatively modular deferred-weighted summability of a double sequence of positive
linear operators defined over a modular space.

Let ω be a finite modular and monotone over X(I2). Suppose E is a set such that C∞(I2) ⊂ E ⊂
Lω(I2). We can construct such a subset E when ω is monotone and finite. We also assume L = {Lm,n}
as the sequence of positive linear operators from E in to X(I2), and there exists a subset XL ⊂ E
containing C∞(I2). Let σ ∈ X(I2) be an unbounded function with |σ(x, y)| 6= 0, and R is a positive
constant such that

NDstat lim sup
m,n

ω

(
λ

(
Υm,n( f )

σ

))
5 Rω(λ f ) (3)

holds for each f ∈ XL, λ > 0 and

Υm,n( f ; x, y) =
1

TmSn

bm ,bn

∑
u,v=an+1

tusvTm,n( f ; x, y).

We denote here the value of Lm,n( f ) at a point (x, y) ∈ I2 by Lm,n( f (x∗, y∗); x, y), or briefly by
Lm,n( f ; x, y). We now prove the following theorem.

Theorem 2. Let (an) and (bn) be the sequences of non-negative integers and let ω be anN -Quasi semi-convex
modular, absolutely continuous, strongly finite, and monotone on X(I2). Assume that L = {Lm,n} is a double
sequence of positive linear operators from E in to X(I2) that satisfy the assumption (3) for every f ∈ XL
and suppose that σi(x, y) is an unbounded function such that |σi(x, y)| = ui > 0 (i = 0, 1, 2, 3). Assume
further that

NDstat lim
m,n

∥∥∥∥Lm,n( fi; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for each λ > 0 and i = 0, 1, 2, 3, (4)

where
f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y and f3(x, y) = x2 + y2.

Then, for every f ∈ Lω(I2) and g ∈ C∞(I2) with f − g ∈ XL,

NDstat lim
m,n

∥∥∥∥Lm,n( f ; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for every λ0 > 0, (5)

where σ(x, y) = max{|σi(x, y)| : i = 0, 1, 2, 3}.

Proof. First we claim that,

NDstat lim
m,n

∥∥∥∥Lm,n(g; x, y)− g(x, y)
σ

∥∥∥∥
ω

= 0 for every λ0 > 0. (6)

In order to justify our claim, we assume that g ∈ C(I2)∩ E. Since g is continuous on I2, for given
ε > 0, there exists a number δ > 0 such that for every (x∗, y∗), (x, y) ∈ I2 with |x∗ − x| < δ and
|y∗ − y| < δ, we have

|g(x∗, y∗)− g(x, y)| < ε. (7)
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Also, for all (x∗, y∗), (x, y) ∈ I2 with |x∗ − x| > δ and |x∗ − x| > δ, we have

|g(x∗, y∗)− g(x, y)| < 2A
δ2

(
[ϕ1(x∗, x)]2 + [ϕ2(y∗, y)]2

)
, (8)

where
ϕ1(x∗, x) = (x∗ − x), ϕ2(y∗, y) = (y∗ − y), and A = sup

x,y∈I2
|g(x, y)|.

From Equations (7) and (8), we obtain

|g(x∗, y∗)− g(x, y)| < ε +
2A
δ2

(
[ϕ1(x∗, x)]2 + [ϕ2(y∗, y)]2

)
.

This implies that

−ε− 2A
δ2

(
[ϕ1(x∗, x)]2 + [ϕ2(y∗, y)]2

)
< g(x∗, y∗)− g(x, y) < ε +

2A
δ2

(
[ϕ1(x∗, x)]2 + [ϕ2(y∗, y)]2

)
. (9)

Now Lm,n(g0; x, y) being linear and monotone, by applying the operator Lm,n(g0; x, y) to this
inequality (9), we fairly have

Lm,n(g0; x, y)
(
−ε− 2A

δ2

(
[ϕ1(x∗, x)]2 + [ϕ2(y∗, y)]2

))
< Lm,n(g0; x, y)(g(x∗, y∗)− g(x, y))

< Lm,n(g0; x, y)
(

ε +
2A
δ2

(
[ϕ1(x∗, x)]2 + [ϕ2(y∗, y)]2

))
. (10)

Note that x, y is fixed, and so also g(x, y) is a constant number. This implies that

−εLm,n(g0; x, y)− 2A
δ2 Lm,n

(
[ϕ1(x∗, x)]2 + [ϕ2(y∗, y)]2; x, y

)
< Lm,n(g; x, y)− g(x, y)Lm,n(g0; x, y)

< εLm,n(g0; x, y) +
2A
δ2 Lm,n([ϕ1(x∗, x)]2 + [ϕ2(y∗, y)]2; x, y). (11)

However,

Lm,n(g; x, y)− g(x, y) = [Lm,n(g; x, y)− g(x, y)Lm,n(g0; x, y)] + g(x, y)[Lm,n(g0; x, y)− g0(x, y)]. (12)

Now, using (11) and (12), we have

|Lm,n(g; x, y)− g(x, y)| 5
∣∣∣∣εLm,n(g0; x, y) +

2A
δ2 Lm,n

(
[ϕ1(x∗, x)]2 + [ϕ2(y∗, y)]2; x, y

)∣∣∣∣
+A[Lm,n(g0; x, y)− g0(x, y)]. (13)

Next,

|Lm,n(g; x, y)− g(x, y)| = ε + (ε +A)[Lm,n(g0; x, y)− g0(x, y)]− 4A
δ2 |g1(x, y)|[Lm,n(g1; x, y)− g1(x, y)]

+
2A
δ2 [Lm,n(g3; x, y)− g3(x, y)]− 4A

δ2 |g2(x, y)|[Lm,n(g2; x, y)− g2(x, y)]

+
2A
δ2 |g3(x, y)|[Lm,n(g0; x, y)− g0(x, y)].

Since the choice of ε is arbitrarily small, we can easily write
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|Lm,n(g; x, y)− g(x, y)| 5 ε +

(
ε +

2A
δ2 +A

)
|Lm,n(g0; x, y)− g0(x, y)|

+
4A
δ2 |g1(x, y)||Lm,n(g1; x, y)− g1(x, y)|+ 2A

δ2 |Lm,n(g3; x, y)− g3(x, y)| (14)

− 4A
δ2 |g2(x, y)||Lm,n(g2; x, y)− g2(x, y)|.

Now multiplying 1
σ(x,y) to both sides of (14), we have, for any λ > 0

λ

∣∣∣∣Lm,n(g; x, y)− g(x, y)
σ(x, y)

∣∣∣∣ 5 λε

σ(x, y)
+ λB

{ ∣∣∣∣Lm,n(g0; x, y)− g0(x, y)
σ(x, y)

∣∣∣∣
+

∣∣∣∣Lm,n(g1; x, y)− g1(x, y)
σ(x, y)

∣∣∣∣+ ∣∣∣∣Lm,n(g3; x, y)− g3(x, y)
σ(x, y)

∣∣∣∣ (15)

−
∣∣∣∣Lm,n(g2; x, y)− g2(x, y)

σ(x, y)

∣∣∣∣
}

,

where B = max
(

ε + 2A
δ2 +A, 4A

δ2 , 2A
δ2

)
and g1(x, y), g2(x, y) are constants for ∀ (x, y).

Next, applying the modular ω to the above inequality, also ω being N -Quasi semi-convex,
strongly finite, monotone, and σ(x, y) = max{|σi(x, y) (i = 0, 1, 2, 3)|}, we have

ω

(
λ

(
Lm,n(g; x, y)− g(x, y)

σ(x, y)

))
5 ω

(
5λε

σ(x, y)

)
+ ω

(
5λB

(
Lm,n(g0; x, y)− g0(x, y)

σ0(x, y)

))
+ ω

(
5λB

(
Lm,n(g1; x, y)− g1(x, y)

σ1(x, y)

))
+ ω

(
5λB

(
Lm,n(g3; x, y)− g3(x, y)

σ2(x, y)

))
(16)

−ω

(
5λB

(
Lm,n(g2; x, y)− g2(x, y)

σ3(x, y)

))
.

Now, replacing Lm,n( f ; x, y) by

1
SmTn

bm ,bn

∑
u,v=an+1

sutvTu,v(g; x, y) = Υm,n( f ; x, y)

and then by Ψ( f ; x, y) in (16), for a given κ > 0 there exists ε > 0, such that ω
(

5λε
σ

)
< κ. Then,

by setting

Ψ =

{
(m, n) : ω

(
λ

(
Υm,n(g)− g

σ

))
= κ

}
and for i = 0, 1, 2,

Ψi =

(m, n) : ω

(
λ

(
Υm,n(gi)− g

σi

))
=

κ −ω
(

5λε
σ

)
4B

 ,

we obtain

Ψ 5
3

∑
i=0

Ψi.
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Clearly,

‖Ψ‖ω

mn
5

3

∑
i=0

‖Ψi‖ω

mn
. (17)

Now, by the assumption under (4) as well as by Definition 4, the right-hand side of (17) tends to
zero as m, n→ ∞. Clearly, we get

lim
m,n→∞

‖Ψ‖ω

mn
= 0 (κ > 0),

which justifies our claim (6). Hence, the implication (6) is fairly obvious for each g ∈ C∞(I2).
Now let f ∈ Lω(I2) such that f − g ∈ XL for every g ∈ C∞(I2). Also, ω is absolutely continuous,

monotone, strongly and absolutely finite on X(I2). Thus, it is trivial that the space C∞(I2) is modularly
dense in Lω(I2). That is, there exists a sequence (gi,j) ∈ C∞(I2) provided that ω(3λ∗0 g) < +∞ and

P lim
i,j

ω(3λ∗0(gi,j − f )) = 0 for some λ∗0 . (18)

This implies that for each ε > 0 there exist two positive integers ī and j̄ such that

ω(3λ∗0(gi,j − f )) < ε whenever i = ī and j = j̄.

Further, since the operators Υm,n are positive and linear, we have that

λ∗0 |Υm,n( f ; x, y)− f (x, y)| 5 λ∗0 |Υm,n( f − gī, j̄; x, y)|+ λ∗0 |Υm,n(gī, j̄; x, y)− gī, j̄(x, y)|

+ λ∗0 |gī, j̄(x, y)− f (x, y)|

holds true for each m, n ∈ N and x, y ∈ I . Applying the monotonicity of modular ω and further
multiplying 1

σ(x,y) to both sides of the above inequality, we have

ω

(
λ∗0

(
Υm,n( f ; x, y)− f (x, y)

σ

))
5 ω

(
3λ∗0

(
Υm,n( f − gī, j̄)

σ

))

+ ω

(
3λ∗0

(
Υm,n(gī, j̄)− gī, j̄

σ

))
+ ω

(
3λ∗0

(
gī, j̄ − f

σ

))
.

Thus, for |σ(x, y)| = M > 0 (M = max{Mi : i = 0, 1, 2, 3}), we can write

ω

(
λ∗0

(
Υm,n( f )− f

σ

))
5 ω

(
3λ∗0

(
Υm,n( f − gī, j̄)

σ

))

+ ω

(
3λ∗0

(
Υm,n(gī, j̄)− gī, j̄

σ

))
+ ω

(
3λ∗0
M

(
gī, j̄ − f

))
. (19)

Then, it follows from (18) and (19) that

ω

(
λ∗0

(
Υm,n( f )− f

σ

))
5 ε + ω

(
3λ∗0

(
Υm,n( f − gī, j̄)

σ

))
+ ω

(
3λ∗0

(
Υm,n(gī, j̄)− gī, j̄

σ

))
. (20)

Now, taking statistical limit superior as m, n → ∞ on both sides of (20) and also using (3),
we deduce that
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P lim sup
m,n

ω

(
λ∗0

(
Υm,n( f )− f

σ

))
5 ε + Rω

(
3λ∗0( f − gī, j̄)

)
+ P lim sup

m,n
ω

(
3λ∗0

(
Υm,n(gī, j̄)− gī, j̄

σ

))
.

Thus, it implies that

P lim sup
m,n

ω

(
λ∗0

(
Υm,n( f )− f

σ

))
5 ε + εR + P lim sup

m,n
ω

(
3λ∗0

(
Υm,n(gī, j̄)− gī, j̄

σ

))
. (21)

Next, by (4), for some λ∗0 > 0, we obtain

P lim sup
m,n

ω

(
3λ∗0

(
Υm,n(gī, j̄)− gī, j̄

σ

))
= 0. (22)

Clearly from (21) and (22), we get

P lim sup
m,n

ω

(
λ∗0

(
Υm,n( f )− f

σ

))
5 ε(1 + R).

Since ε > 0 is arbitrarily small, the right-hand side of the above inequality tends to zero. Hence,

P lim sup
m,n

ω

(
λ∗0

(
Υm,n( f )− f

σ

))
= 0,

which completes the proof.

Next, one can get the following theorem as an immediate consequence of Theorem 2 in which the
modular ω satisfies the ∆2-condition.

Theorem 3. Let (Lm,n), (an), (bn), σ and ω be the same as in Theorem 2. If the modular ω satisfies the
∆2-condition, then the following assertions are identical:

(a) NDstat limm,n

∥∥∥Lm,n( fi ;x,y)− f (x,y)
σ

∥∥∥
ω
= 0 for each λ > 0 and i = 0, 1, 2, 3;

(b) NDstat limm,n

∥∥∥Lm,n( f ;x,y)− f (x,y)
σ

∥∥∥
ω
= 0 for each λ > 0 such that any function f ∈ Lω(I2) provided

that f − g ∈ XL for each g ∈ C∞(I2).

Next, by using the definitions of relatively modular deferred-weighted statistical convergence
given in Definition 3 and statistically as well as relatively modular deferred-weighted summability
given in Definition 4, we present the following corollaries in view of Theorem 2.

Let an = 0 and bn = n, bm = m, then Equation (3) reduces to

statN lim sup
m,n

ω

(
λ

(
Lm,n( f )

σ

))
5 Rω(λ f ) (23)

for each f ∈ XL and λ > 0, where R is a constant.
Moreover, if we replace statN limit by Nstat limit, then Equation (3) reduces to

Nstat lim sup
m,n

ω

(
λ

(
Ωm,n( f )

σ

))
5 Rω(λ f ). (24)

Corollary 1. Let ω be an N -Quasi semi-convex modular, strongly finite, monotone, and absolutely continuous
on X(I2). Also, let (Lm,n) be a double sequence of positive linear operators from E in to X(I2) satisfying the
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assumption (23) for every XL and σi(x, y) be an unbounded function such that |σi(x, y)| = ui > 0 (i =
0, 1, 2, 3). Suppose that

statN lim
m,n

∥∥∥∥Lm,n( fi; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for each λ > 0 and i = 0, 1, 2, 3,

where
f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y and f3(x, y) = x2 + y2.

Then, for every f ∈ Lω(I2) and g ∈ C∞(I2) with f − g ∈ XL,

statN lim
m,n

∥∥∥∥Lm,n( f ; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for each λ0 > 0,

where
σ(x, y) = max{|σi(x, y)| : i = 0, 1, 2, 3}. (25)

Corollary 2. Let ω be an N -Quasi semi-convex modular, absolutely continuous, monotone, and strongly finite
on X(I2). Also, let Ωm,n be a double sequence of positive linear operators from E in to X(I2) satisfying the
assumption (24) for every XL and σi(x, y) be an unbounded function such that |σi(x, y)| = ui > 0 (i =
0, 1, 2, 3). Suppose that

Nstat lim
m,n

∥∥∥∥Ωm,n( fi; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for each λ > 0 and i = 0, 1, 2, 3,

where
f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y and f3(x, y) = x2 + y2.

Then, for every f ∈ Lω(I2) and g ∈ C∞(I2) with f − g ∈ XL,

Nstat lim
m,n

∥∥∥∥Ωm,n( f ; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for every λ0 > 0,

where σ is given by (25).

Note that for an = 0, bn = n, bm = m, and sm = 1 = tn, Equation (3) reduces to

stat lim sup
m,n

ω
(
λ
(
L∗m,n( f )

))
5 Rω(λ f ) (26)

for each f ∈ XL and λ > 0, where R is a positive constant.
Also, if we replace statistically convergent limit by the statistically summability limit, then

Equation (3) reduces to

stat lim sup
m,n

ω (λ (Λm,n( f ))) 5 Rω(λ f ). (27)

Now, we present the following corollaries in view of Theorem 2 as the generalization of the earlier
results of Demirci and Orhan [31].

Corollary 3. Let ω be an N -Quasi semi-convex modular, absolutely continuous, monotone, and strongly finite
on X(I2). Also, let (L∗m,n) be a double sequence of positive linear operators from E in to X(I2) satisfying the
assumption (26) for every XL and σi(x, y) be an unbounded function such that |σi(x, y)| = ui > 0 (i =
0, 1, 2, 3). Suppose that
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stat lim
m,n

∥∥∥∥L∗m,n( fi; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for every λ > 0 and i = 0, 1, 2, 3,

where
f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y and f3(x, y) = x2 + y2.

Then, for every f ∈ Lω(I2) and g ∈ C∞(I2) with f − g ∈ XL,

stat lim
m,n

∥∥∥∥L∗m,n( f ; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for every λ0 > 0,

where σ is given by (25).

Corollary 4. Let ω be an N -Quasi semi-convex modular, monotone, absolutely continuous, and strongly finite
on X(I2). Also, let (Λm,n) be a double sequence of positive linear operators from E in to X(I2) satisfying
the assumption (27) for every XL and σi(x, y) be an unbounded function such that |σi(x, y)| = ui > 0 (i =
0, 1, 2, 3). Suppose that

stat lim
m,n

∥∥∥∥Λm,n( fi; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for every λ > 0 and i = 0, 1, 2, 3,

where
f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y and f3(x, y) = x2 + y2.

Then, for every f ∈ Lω(I2) and g ∈ C∞(I2) with f − g ∈ XL,

stat lim
m,n

∥∥∥∥Λm,n( f ; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for every λ0 > 0,

where σ is given by (25).

4. Application of Korovkin-Type Theorem

In this section, by presenting a further example, we demonstrate that our proposed Korovkin-type
approximation results in modular space are stronger than most (if not all) of the previously existing
results in view of the corollaries provided in this paper.

Let I = [0, 1] and ϕ, ωϕ, and Lω
ϕ (I2) be as given in Example 3. Also, recall the bivariate

Bernstein–Kantorovich operators (see [35]), B = {Bm,n} on the space Lω
ϕ (I2) given by

Bm,n( f ; x, y) =
m,n

∑
i,j=0

p(m,n)
i,j (x, y)(m + 1)(n + 1)×

∫ i+1
m+1

i
m+1

∫ j+1
n+1

j
n+1

f (s, t)dsdt (28)

for x, y ∈ I and

p(m,n)
i,j (x, y) =

(
m
i

)(
n
j

)
xiyj(1− x)m−i(1− y)n−j.

Also, we have

m,n

∑
i,j=0

p(m,n)
i,j (x, y) = 1. (29)

Clearly, we observe that
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Bm,n(1; x, y) = 1,

Bm,n(s; x, y) =
mx

m + 1
+

1
2(m + 1)

,

Bm,n(t; x, y) =
ny

n + 1
+

1
2(n + 1)

and

Bm,n(t2 + s2; x, y) =
m(m− 1)x2

(m + 1)2 +
2mx

(m + 1)2

+
1

3(m + 1)2
n(n− 1)y2

(n + 1)2 +
2ny

(n + 1)2 +
1

3(n + 1)2 .

It is further observed that Bm,n : Lω
ϕ (I2)→ Lω

ϕ (I2). Recall [28] (Lemma 5.1) and [29] (Example 1).
Now because of (29), we have from Jensen inequality, for each f ∈ Lω

ϕ (I2) and m, n ∈ N, there exists a
constant M such that

ωϕ

(
Bm,n( f ; x, y)

σ

)
5 Mωϕ( f ).

We now present an illustrative example for the validity of the operators (Lm,n) for our Theorem 2.

Example 4. Let Lm,n : Lω(I2)→ Lω(I2) be defined by

Lm,n( f ; x, y) = (1 + fm,n)Bm,n( f ; x, y), (30)

where ( fm,n) is a sequence defined as in Example 3. Then, we have

Lm,n(1; x, y) = 1 + fm,n(x, y),

Lm,n(1; x, y) = 1 + fm,n(x, y) ·
[

mx
m + 1

+
1

2(m + 1)

]
,

Lm,n(1; x, y) = 1 + fm,n(x, y) ·
[

ny
n + 1

+
1

2(n + 1)

]
and

Lm,n(1; x, y) = 1 + fm,n(x, y)

·
[

m(m− 1)x2

(m + 1)2 +
2mx

(m + 1)

2
+

1
3(m + 1)2

n(n− 1)y2

(n + 1)2 +
2ny

(n + 1)2 +
1

3(n + 1)2

]
.

We thus obtain

NDstat lim
m,n

∥∥∥∥Lm,n(1; x, y)− 1
σ

∥∥∥∥
ω

= 0,

NDstat lim
m,n

∥∥∥∥Lm,n(s; x, y)− s
σ

∥∥∥∥
ω

= 0,

NDstat lim
m,n

∥∥∥∥Lm,n(t; x, y)− t
σ

∥∥∥∥
ω

= 0,

NDstat lim
m,n

∥∥∥∥Lm,n(s2 + t2; x, y)− s2 + t2

σ

∥∥∥∥
ω

= 0.
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This means that the operators Lm,n( f ; x, y) fulfil the conditions (4). Hence, by Theorem 2 we have

NDstat lim
m,n

∥∥∥∥Lm,n( f ; x, y)− f (x, y)
σ

∥∥∥∥
ω

= 0 for every λ0 > 0.

However, since ( fm,n) is not relatively modular weighted statistically convergent, the result of
Demirci and Orhan ([31], p. 1173, Theorem 1) is not fairly true under the operators defined by us
in (30). Furthermore, since ( fm,n) is statistically and relatively modular deferred-weighted summable,
we therefore conclude that our Theorem 2 works for the operators which we have considered here.

5. Concluding Remarks and Observations

In the concluding section of our study, we put forth various supplementary remarks and
observations concerning several outcomes which we have established here.

Remark 2. Let ( fm,n)m,n∈N be a sequence of functions given in Example 3. Then, since

NDstat lim
m→∞

fm,n = 0 on [0, 1]× [0, 1],

we have

NDstat lim
m→∞

‖Lm,n( fi; x, y)− fi(x, y)‖ω = 0 (i = 0, 1, 2, 3). (31)

Thus, we can write (by Theorem 2)

NDstat lim
m→∞

‖Lm( f ; x, y)− f (x, y)‖ω = 0, (i = 0, 1, 2, 3), (32)

where
f0(x, y) = 1, f1(x, y) = x, f2(x, y) = y and f3(x, y) = x2 + y2.

Moreover, as ( fm,m) is not classically convergent it therefore does not converge uniformly in modular
space. Thus, the traditional Korovkin-type approximation theorem will not work here under the operators defined
in (30). Therefore, this application evidently demonstrates that our Theorem 2 is a non-trivial extension of the
conventional Korovkin-type approximation theorem (see [27]).

Remark 3. Let ( fm,n)m,n∈N be a sequence as considered in Example 3. Then, since

NDstat lim
m→∞

fm,n = 0 on [0, 1]× [0, 1],

(31) fairly holds true. Now under condition (31) and by applying Theorem 2, we have that the condition (32)
holds true. Moreover, since ( fm,n) is not relatively modular statistically Cesàro summable, Theorem 1 of Demirci
and Orhan (see [31], p. 1173, Theorem 1) does not hold fairly true under the operators considered in (30). Hence,
our Theorem 2 is a non-trivial generalization of Theorem 1 of Demirci and Orhan (see [31], p. 1173, Theorem 1)
(see also [29]). Based on the above facts, we conclude here that our proposed method has effectively worked for
the operators considered in (30), and therefore it is stronger than the traditional and statistical versions of the
Korovkin-type approximation theorems established earlier in References [27,29,31].
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