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Abstract: In this paper, we propose to investigate the truncated-exponential-based Apostol-type
polynomials and derive their various properties. In particular, we establish the operational
correspondence between this new family of polynomials and the familiar Apostol-type polynomials.
We also obtain some implicit summation formulas and symmetric identities by using their generating
functions. The results, which we have derived here, provide generalizations of the corresponding
known formulas including identities involving generalized Hermite-Bernoulli polynomials.
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1. Introduction

Operational techniques involving differential operators, which is a consequence of the
monomiality principle, provide efficient tools in the theory of conventional polynomial systems
and their various generalizations. Steffensen [1] suggested the concept of poweroid, which happens
to be behind the idea of monomiality. The principle of monomiality was subsequently reformulated
and developed by Dattoli [2]. The strategy underlining this viewpoint is apparently simple, but the
outcomes are remarkably deep.

In the theory of the monomiality principle, a polynomial set pn(x) (n ∈ N; x ∈ C) is
quasi-monomial if there exist two operators M̂ and P̂, which are named the multiplicative and the
derivative operators, respectively, are defined as follows:

M̂{pn(x)} = pn+1(x) and P̂{pn(x)} = npn−1(x),

together with the initial condition given by

p0(x) = 1. (1)

Symmetry 2019, 11, 538; doi:10.3390/sym11040538 www.mdpi.com/journal/symmetry

http://www.mdpi.com/journal/symmetry
http://www.mdpi.com
https://orcid.org/0000-0002-9277-8092
https://orcid.org/0000-0002-3950-6864
http://www.mdpi.com/2073-8994/11/4/538?type=check_update&version=1
http://dx.doi.org/10.3390/sym11040538
http://www.mdpi.com/journal/symmetry


Symmetry 2019, 11, 538 2 of 20

The operators M̂ and P̂ satisfy the following commutation relation:

[M̂, P̂] = 1̂. (2)

Thus, clearly, these operators display a Weyl group structure.
The properties of the polynomials pn(x) can be deduced from those of the operators M̂ and

P̂. If M̂ and P̂ possess a differential character, then the polynomials pn(x) satisfy the following
differential equation:

M̂P̂{pn(x)} = npn(x). (3)

The polynomial family pn(x) can be explicitly constructed through the action of M̂n on p0(x)
as follows:

pn(x) = M̂n{p0(x)}. (4)

Just as in (1), we shall always assume that p0(x) = 1. In view of the above identity (4), the exponential
generating function of pn(x) can be written in the form:

exp(tM̂){1} =
∞

∑
n=0

pn(x)
tn

n!
(|t| < ∞) . (5)

We now introduce the truncated-exponential polynomials en(x) (see [3]) defined by the
following series:

en(x) =
n

∑
k=0

xk

k!
, (6)

that is, by the first n + 1 terms of the Taylor-Maclaurin series for the exponential function ex.
These truncated-exponential polynomials play an important rôle in many problems in optics and
quantum mechanics. However, their properties are apparently as widespread as they should be.
The truncated-exponential polynomials en(x) have been used to evaluate several overlapping integrals
associated with the optical mode evolution or for characterizing the structure of the flattened beams.
Their usefulness has led to the possibility of appropriately extending their definition. Actually,
Dattoli et al. [4] systematically studied the properties of these polynomials.

The definition (6) does lead us to most (if not all) of the properties of the polynomials en(x). We
note the following representation:

en(x) =
1
n!

∫ ∞

0
e−ξ (x + ξ)n dξ, (7)

which follows readily from the classical gamma-function representation (see, for details, [3]).
Consequently, we have the following generating function for the truncated-exponential polynomials
en(x) (see [4]):

ext

1− t
=

∞

∑
n=0

en(x) tn. (8)

The definition (6) of en(x) can thus be extended to a family of potentially useful
truncated-exponential polynomials as follows (see [4]):

[2]en(x) =
[ n

2 ]

∑
k=0

xn−2k

(n− 2k)!
, (9)

which obviously possesses a generating function in the form (see [4]):

ext

1− t2 =
∞

∑
n=0

[2]en(x)tn. (10)
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We also recall the higher-order truncated-exponential polynomials [r]en(x), which are defined by
the following series (see [4]):

[r]en(x) =
[ n

2 ]

∑
k=0

xn−rk

(n− rk)!
(11)

and specified by the following generating function (see [4]):

ext

1− tr =
∞

∑
n=0

[r]en(x)tn. (12)

The special two-variable case of the polynomials in (11) (that is, the case when r = 2) are important
for applications. Moreover, these polynomials help us derive several potentially useful identities in a
simple way and in investigating other novel families of polynomial systems. Actually, Equation (12)
enables us to give a new family of polynomials as has been given in Theorem 1.

A 2-variable extension of the truncated-exponential polynomials is given by (see [4])

[2]en(x, y) =
[ n

2 ]

∑
k=0

ykxn−2k

(n− 2k)!
(13)

and possesses the following generating function (see [4]):

ext

1− yt2 =
∞

∑
n=0

[2]en(x, y)tn. (14)

With a view to introducing a mixed family of polynomials related to the familiar Sheffer sequence,
we first consider the 2-variable truncated-exponential polynomials (2VTEP) e(r)n (x, y) of order r, which
are expressed explicitly by (see [5])

e(r)n (x, y) =
[ n

2 ]

∑
k=0

ykxn−rk

(n− rk)!
(15)

and which are generated by
ext

1− ytr =
∞

∑
n=0

e(r)n (x, y)
tn

n!
. (16)

From (8), (10), (12), (14) and (16), we can deduce several special cases of the 2VTEP e(r)n (x, y), For
example, we have

e(2)n (x, y) = [2]en(x, y) e(1)n (x, 1) = [r]en(x) e(2)n (x, 1) = [2]en(x) and e(1)n (x, 1) = en(x). (17)

As it is shown in [6,7], the 2VTEP e(r)n (x, y) are quasi-monomial (see also [1,2]) with respect to
multiplicative and derivative operators given by

M̂e(r) = (x + ry∂yy∂r−1
x ) (18)

and
P̂e(r) = ∂x, (19)

where
∂x =

∂

∂x
and ∂y =

∂

∂y
.
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Thus, if we apply the monomiality principle as well as the Equations (18) and (19), we have

M̂e(r){e
(r)
n (x, y)} = e(r)n+1(x, y) (20)

and
P̂e(r){e

(r)
n (x, y)} = ne(r)n−1(x, y), (21)

respectively.
The 2VTEP e(r)n (x, y) are quasi-monomial, so their properties can be derived from those of the

multiplicative and derivative operators M̂e(r) and P̂e(r) , respectively. We thus find that

M̂e(r) P̂e(r){e
(r)
n (x, y)} = ne(r)n (x, y), (22)

which satisfies a differential equation for e(r)n (x, y) as follows:

(r∂x + ry∂yy∂r
x − n)e(r)n (x, y) = 0. (23)

Again, since e(r)0 (x, y) = 1, the 2VTEP e(r)n (x, y) can be explicitly constructed as follows:

e(r)n (x, y) = M̂n
e(r){e

(r)
0 (x, y)} = M̂n

e(r){1}. (24)

Equation (24) yields the following generating function of the 2VTEP e(r)n (x, y):

exp(M̂e(r) t){1} =
∞

∑
n=0

e(r)n (x, y)
tn

n!
(|t| < ∞) . (25)

We can easily verify the following relation between M̂e(r) and P̂e(r) :

[P̂e(r) , M̂e(r) ] = 1̂. (26)

Denoting the classical Bernoulli, Euler and Genocchi polynomials by Bn(x), En(x) and Gn(x),
respectively, we now recall their familiar generalizations B(α)

n (x), E(α)
n (x) and G(α)

n (x) of order α, which
are generated by (see, for details, [8–14]; see also [15] as well as the references cited therein):(

t
et − 1

)α

ext =
∞

∑
n=0

B(α)
n (x)

tn

n!
(|t| < 2π; 1α := 1), (27)

(
2

et + 1

)α

ext =
∞

∑
n=0

E(α)
n (x)

tn

n!
(|t| < π; 1α := 1) (28)

and (
2t

et + 1

)α

ext =
∞

∑
n=0

G(α)
n (x)

tn

n!
(|t| < π; α ∈ N0). (29)

Obviously, we have

B(1)
n (x) =: Bn (x) , E(1)

n (x) =: En(x) and G(1)
n (x) =: Gn(x). (30)

It is also known that

B(1)
n (0) =: Bn, E(1)

n (0) =: En and G(1)
n (0) =: Gn (31)

for the Bernoulli, Euler, and Genocchi numbers Bn, En and Gn, respectively.
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The Apostol-Bernoulli polynomials B(α)
n (x; λ) of order α was introduced by Luo and Srivastava

(see [16,17]). Subsequently, the Apostol-Euler polynomials E(α)
n (x; λ) and the Apostol-Genocchi

polynomials G(α)
n (x; λ) of order α were analogously studied by Luo (see [18–20]; see also [21–27]).

Definition 1. The Apostol-Bernoulli polynomials B(α)
n (x) of order α are defined by(

t
λet − 1

)α

=
∞

∑
n=0

B(α)
n (x; λ)

tn

n!
(32)

( |t|< 2π when λ = 1; |t|< |log λ| when λ 6= 1; 1α := 1)

with
B(α)

n (x) = B(α)
n (x; 1) and B(α)

n (λ) = B(α)
n (0; λ), (33)

where B(α)
n (λ) denotes the Apostol-Bernoulli numbers of order α.

Definition 2. The Apostol-Euler polynomials E(α)
n (x) of order α are defined by(

2
λet + 1

)α

=
∞

∑
n=0

E(α)
n (x; λ)

tn

n!
(34)

(|t|< π when λ = 1; |t| < |log(−λ)| < π when λ 6= 1; 1α := 1)

with
E(α)

n (x) = E(α)
n (x; 1) and E(α)

n (λ) = E(α)
n (0; λ), (35)

where E(α)
n (λ) denotes the Apostol-Euler numbers of order α.

Definition 3. The Apostol-Genocchi polynomials G(α)
n (x) of order α are defined by(

2t
λet + 1

)α

=
∞

∑
n=0

G(α)
n (x; λ)

tn

n!
(36)

(|t|< π when λ = 1; |t| < |log(−λ)| when λ 6= 1; 1α := 1) (37)

with
G(α)

n (x) = G(α)
n (x; 1) and G(α)

n (λ) = G(α)
n (0; λ), (38)

where G(α)
n (λ) denotes the Apostol-Genocchi numbers of order α.

Remark 1. Whenever λ = 1 in (32) and λ = −1 in (36), the order α of the Apostol-Bernoulli polynomials
B(α)

n (x; λ) and the order α of the Apostol-Genocchi polynomials G(α)
n (x; λ) should obviously be constrained to

take on nonnegative integer values (see, for details, [14]). A similar remark would apply also to the order α in all
other analogous situations considered in this paper.

Among other authors, Özden (see [28,29]), Özden et al. ([30]) and Özarslan (see [31,32]) introduced
and studied the unification of the above-defined Apostol-type polynomials. In particular, Özden ([29])
defined the unified polynomials Y(α)

n,β (x; k, a, b) of higher order by
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(
21−ktk

βbet − ab

)α

ext =
∞

∑
n=0

Y(α)
n,β (x; k, a, b)

tn

n!
(39)(

|t| < 2π when β = a; |t| <
∣∣∣∣b log

(
β

a

)∣∣∣∣ when β 6= a; 1α := 1; k ∈ N0; a, b ∈ R \ {0}; α, β ∈ C
)

.

By putting x = 0 in (39), we can readily obtain the corresponding unification Y(α)
n,β (k, a, b) of the

Apostol-type polynomials, which is generated by(
21−ktk

βbet − ab

)α

=
∞

∑
n=0

Y(α)
n,β (k, a, b)

tn

n!
. (40)

In fact, from Equations (32), (34), (36) and (39), we have

Y(α)
n,λ (x; 1, 1, 1) = B(α)

n (x; λ), (41)

Y(α)
n,λ (x; 0,−1, 1) = E(α)

n (x; λ) (42)

and

Y(α)
n,λ

(
x; 1,−1

2
, 1
)
= G(α)

n (x; λ). (43)

Definition 4. For an arbitrary real or complex parameter λ, the number Sk(n, λ) is given by Zhang and Yang
(see [19])

∞

∑
k=0

Sk(n, λ)
tk

k!
=

λe(n+1)t − 1
λet − 1

, (44)

which, for λ = 1, yields
Sk(n, 1) =: Sk(n).

Our main objective in this article is to first appropriately combine the 2-variable
truncated-exponential polynomials and the Apostol-type polynomials by means of operational
techniques. This leads us to the truncated-exponential-based Apostol-type polynomials. By framing
these polynomials within the context of the monomiality principle, we then establish their potentially
useful properties. We also derive some other properties and investigate several implicit summation
formulas for this general family of polynomials by making use of several different analytical techniques
on their generating functions. We choose to point out some relevant connections between the
truncated-exponential polynomials and the Apostol-type polynomials and thereby derive extensions
of several symmetric identities.

2. Two-Variable Truncated-Exponential-Based Apostol-Type Polynomials

We now start with the following theorem arising from the generating functions for
the truncated-exponential-based Apostol-type polynomials (TEATP), which are denoted by

e(r)Y
(α)
n,β (x, y; k, a, b).

Theorem 1. The generating function for the 2-variable truncated-exponential-based Apostol-type polynomials

e(r)Y
(α)
n,β (x, y; k, a, b) is given by

∞

∑
n=0

(
e(r)Y

(α)
n,β (x, y; k, a, b)

) tn

n!
=

(
21−ktk

βbet − ab

)α

ext
(

1
1− ytr

)
. (45)
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Proof. Replacing x in the left-hand side and the right-hand side of (39) by the multiplicative operator
M̂(r)

e of the 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b), we have

(
21−ktk

βbet − ab

)α

exp(M̂(r)
e t){1} =

∞

∑
n=0

Y(α)
n,β (M̂(r)

e ; k, a, b)
tn

n!

(
|t| <

∣∣∣∣b log
(

β

a

)∣∣∣∣ ). (46)

Using Equation (25) in the left-hand side and Equation (18) in the right-hand side of Equation (46), we
see that (

21−ktk

βbet − ab

)α ∞

∑
n=0

e(r)n (x, y)
tn

n!
=

∞

∑
n=0

Y(α)
n,β

(
x +

φ
′
(y, ∂x)

φ(y, ∂x)
; k, a, b

)
tn

n!
. (47)

Now, using Equation (16) in the left-hand side and denoting the resulting 2-variable
truncated-exponential-based Apostol-type polynomials (2VTEATP) in the right-hand side by

e(r)Y
(α)
n,β (x, y; k, a, b), we have

e(r)Y
(α)
n,β (x, y; k, a, b) = Y(α)

n,β (M̂(r)
e ; k, a, b) = Y(α)

n,β

(
x +

φ
′
(y, ∂x)

φ(y, ∂x)
; k, a, b

)
, (48)

which yields the assertion (45) of Theorem 1.

Remark 2. Equation (48) gives the operational representation involving the unified Apostol-type polynomials
Y(α)

n,β (x, y; k, a, b) and 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b).

To frame the 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b) within the context of monomiality principle, we state

the following result.

Theorem 2. The 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b) are quasi-monomial with respect to the following multiplicative

and derivative operators:

M̂e(r)Y = x + ry∂yy∂r−1
x +

αk(βbet − ab)− αβb∂xe∂x

∂x(βbet − ab)
(49)

and
P̂e(r)Y = ∂x. (50)

Proof. Let us consider the following expression:

∂x

{
ext 1

1− ytr } = t{ext 1
1− ytr

}
. (51)

Differentiating both sides of Equation (45) partially with respect to t, we see that(
x + ry∂yy∂r−1

x +
αk(βbet − ab)− αβbtet

t(βbet − ab)

)(
21−ktk

βbet − ab

)α
ext

1− ytr

=
∞

∑
n=0

e(r)Y
(α)
n+1,β(x, y; k, a, b)

tn

n!
. (52)

Since
φ(y, t) =

1
1− ytr
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is an invertible series of t, therefore,
φ
′
(y, ∂x)

φ(y, ∂x)

possesses a power-series expansion in t. Thus, using (51), Equation (52) becomes(
x + ry∂yy∂r−1

x +
αk(βbe∂x − ab)− αβb∂xe∂x

∂x(βbet − ab)

)(
21−ktk

βbet − ab

)α
ext

1− ytr

=
∞

∑
n=0

e(r)Y
(α)
n+1,β(x, y; k, a, b)

tn

n!
. (53)

Again, by using the generating function (45) in left-hand side of Equation (53) and rearranging the
resulting summation, we have

∞

∑
n=0

(
x + ry∂yy∂r−1

x +
αk(βbe∂x − ab)− αβb∂xe∂x

∂x(βbet − ab)

){
e(r)Y

(α)
n,β (x, y; k, a, b)

} tn

n!

=
∞

∑
n=0

e(r)Y
(α)
n+1,β(x, y; k, a, b)

tn

n!
. (54)

Comparing the coefficients of tn

n! in the Equation (54), we get(
x + ry∂yy∂r−1

x +
αk(βbe∂x − ab)− αβb∂xe∂x

∂x(βbet − ab)

){
e(r)Y

(α)
n,β (x, y; k, a, b)

}
= e(r)Y

(α)
n+1,β(x, y; k, a, b), (55)

which, in view of the monomiality principle exhibited in Equation (20) for e(r)Y
(α)
n,β (x, y; k, a, b), yields

the assertion (49) of Theorem 2.
We now prove the assertion (50) of Theorem 2. For this purpose, we start with the following

identity arising from Equations (45) and (51):

∂x

{
∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

}
=

∞

∑
n=1

e(r)Y
(α)
n−1,β(x, y; k, a, b)

tn

(n− 1)!
. (56)

Rearranging the summation in the left-hand side of Equation (56), and then equating the coefficients of
the same powers of t in both sides of the resulting equation, we find that

∂x

{
e(r)Y

(α)
n,β (x, y; k, a, b)

}
= e(r)Y

(α)
n−1,β(x, y; k, a, b) (n ∈ N) , (57)

which, in view of the monomiality principle exhibited in Equation (21) for e(r)Y
(α)
n,β (x, y; k, a, b)), yields

the assertion (50) of Theorem 2. Our demonstration of Theorem 2 is thus completed.

We note that the properties of quasi-monomials can be derived by means of the actions of
the multiplicative and derivative operators. We derive the differential equation for the 2VTEATP

e(r)Y
(α)
n,β (x, y; k, a, b) in the following theorem.

Theorem 3. The 2VTEATP e(r)Y
(α)
n,β (x, y; k, a, b) satisfies the following differential equation:(

x∂x + ry∂yy∂r
x +

αk(βbet − ab)− αβb∂xe∂x

(βbet − ab)
− n

){
e(r)Y

(α)
n,β (x, y; k, a, b)

}
= 0, (58)
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Proof. Theorem 3 can be easily proved by combining (49) and (50) with the monomiality principle
exhibited in (22).

Remark 3. When r = 2, the 2VTEP e(r)(x, y) of order r reduces to the 2VTEP [2]en(x, y). Therefore, if we
set r = 2 in Equation (45), we get the following generating function for the 2-variable truncated-exponential
Apostol-type polynomials (2VTEATP) [2]e(r)Y

(α)
n,β (x, y; k, a, b) :

(
21−ktk

βbet − ab

)α

ext
(

1
1− yt2

)
=

∞

∑
n=0

[2]e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!
. (59)

The series definition and other results for the 2VTEATP [2]e(r)Y
(α)
n,β (x, y; k, a, b) can be obtained by taking r = 2

in Theorems 1 and 2. Table 1 shown the special cases of the 2VTEATP .e(r)Yn(x, y; k, a, b).

Remark 4. For the case y = 1, the polynomials [2]en(x, 1) reduce to the truncated-exponential polynomials

[2]en(x). Therefore, by taking y = 1 in Equation (59), we get the following generating function for the

truncated-exponential Apostol-type polynomials (TEATP) [2]e(r)Y
(α)
n,β (x; k, a, b) :

(
21−ktk

βbet − ab

)α

ext
(

1
1− t2

)
=

∞

∑
n=0

[2]e(r)Y
(α)
n,β (x; k, a, b)

tn

n!
. (60)

Table 1. Some special cases of the 2VTEATP .e(r)Yn(x, y; k, a, b).

S. No. Values of the Parameter Relation between the Name of the Resultant Generating Functions
2VTEATP e(r)Yn(x, y; k, a, b) Special Polynomials and the Resultant of

and Its Special Case Special Polynomials

I. k = a = b = 1, β = λ e(r)Yn(x, y; 1, 1, λ)=e(r) B
(α)
n (x, y; λ) 2-variable truncated-exponential-based

(
t

λet−1

)α
ext
(

1
1−ytr

)
Apostol-Bernoulli polynomial =

∞
∑

n=0
e(r) B

(α)
n (x, y; λ) tn

n!

II. k + 1 = −a = b = 1, β = λ e(r)Yn(x, y; 0,−1, 1, λ) =e(r) E
(α)
n (x, y; λ) 2-variable truncated-exponential-based

(
2

λet+1

)α
ext
(

1
1−ytr

)
Apostol-Euler polynomial =

∞
∑

n=0
e(r) E

(α)
n (x, y; λ) tn

n!

III. k = −2a = b = 1, 2β = λ e(r)Yn(x, y; 1,− 1
2 , 1, λ)=e(r) G

(α)
n (x, y; λ) 2-variable truncated-exponential-based

(
2t

λet+1

)α
ext
(

1
1−ytr

)
Apostol-Genocchi polynomial =

∞
∑

n=0
e(r) G

(α)
n (x, y; λ) tn

n!

In the case when λ = 1, the results obtained above for the 2VTEABP e(r)B
(α)
n (x, y; λ),

2VTEAEP e(r)E
(α)
n (x, y; λ) and 2VTEAGP e(r)G

(α)
n (x, y; λ) give the corresponding results for the

2-variable truncated-exponential Bernoulli polynomials (2VTEBP) (of order α) e(r)B
(α)
n (x, y), 2-variable

truncated-exponential Euler polynomials (2VTEBP) (of order α) e(r)E
(α)
n (x, y) and 2-variable

truncated-exponential Genocchi polynomials (2VTGBP) (of order α) e(r)G
(α)
n (x, y) [6]. Again for α = 1,

we get the corresponding results for the 2-variable truncated-exponential Bernoulli polynomials
(2VTEBP) e(r)Bn(x, y), 2-variable truncated-exponential Euler polynomials (2VTEEP) e(r)En(x, y) and
2-variable truncated-exponential Genocchi polynomials (2VTEGP) e(r)Gn(x, y).

3. Implicit Formulas Involving the 2-Variable Truncated-Exponential Based
Apostol-Type Polynomials

In this section, we employ the definition of the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) that help in proving the generalizations of the previous

works of Khan et al. [33] and Pathan and Khan (see [34–36]). For the derivation of implicit formulas
involving the 2-variable truncated-exponential-based Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b),

the same considerations as developed for the ordinary Hermite and related polynomials in the works
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by Khan et al. [33] and Pathan et al. (see [34–36]) apply as well. We first prove the following results
involving the 2-variable truncated-exponential-based Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b).

Theorem 4. The following implicit summation formulas for the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
q+l,β(z, y; k, a, b) =

q

∑
n=0

l

∑
p=0

(
q
n

)(
l
p

)
(z− x)n+p

e(r)Y
(α)
q+l−n−p,β(x, y; k, a, b). (61)

Proof. We replace t by t + u and rewrite (45) as follows:(
21−k(t + u)k

βbet+u − ab

)α (
1

1− y(t + u)r

)
= e−x(t+u)

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(x, y; k, a, b)

tq

q!
ul

l!
. (62)

Replacing x by z in the Equation (62) and equating the resulting equation to the above equation, we get

e(z−x)(t+u)
∞

∑
q,l=0

e(r)Y
(α)
q+l,β(x, y; k, a, b)

tq

q!
ul

l!
=

∞

∑
q,l=0

e(r)Y
(α)
n,β (z, y; k, a, b)

tq

q!
ul

l!
. (63)

Upon expanding the exponential function (63), we get

∞

∑
N=0

[(z− x)(t + u)]N

N!

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(x, y; k, a, b)

tq

q!
ul

l!
=

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(z, y; k, a, b)

tq

q!
ul

l!
, (64)

which, by appealing to the following series manipulation formula:

∞

∑
N=0

f (N)
(x + y)N

N!
=

∞

∑
m,n=0

f (m + n)
xm

m!
yn

n!
(65)

in the left-hand side of (64), becomes

∞

∑
n,p=0

(z− x)n+ptnup

n! p!

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(x, y; k, a, b)

tq

q!
ul

l!
=

∞

∑
q,l=0

e(r)Y
(α)
q+l,β(z, y; k, a, b)

tq

q!
ul

l!
. (66)

Now, replacing q by q− n and l by l − p, and using a lemma in [37] in the left-hand side of (66), we get

∞

∑
q,l=0

q

∑
n=0

l

∑
p=0

(z− x)n+p

n! p! e(r)Y
(α)
q+l−n−p,β(x, y; k, a, b)

tq

(q− n)!
ul

(l − p)!

=
∞

∑
q,l=0

e(r)Y
(α)
q+l,β(z, y; k, a, b)

tq

q!
ul

l!
. (67)

Finally, on equating the coefficients of the like powers of t and u in the equation (67), we get the
required result (61) asserted by Theorem 4.

If we set
k = a = b = 1 and β = λ

in Theorem 4, we get the following corollary.
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Corollary 1. The following implicit summation formula for the truncated-exponential-based Bernoulli
polynomials e(r)B

(α)
n (x, y; λ) holds true:

e(r)B
(α)
q+l(z, y; λ) =

q

∑
n=0

l

∑
p=0

(
q
n

)(
l
p

)
(z− x)n+p

e(r)B
(α)
q+l−p−n(x, y; λ). (68)

For
k + 1 = −a = b = 1 and β = λ

in Theorem 4, we get the following corollary.

Corollary 2. The following implicit summation formula for the truncated-exponential-based Euler polynomials

e(r)E
(α)
n (x, y; λ) holds true:

e(r)E
(α)
q+l(z, y; λ) =

q

∑
n=0

l

∑
p=0

(
q
n

)(
l
p

)
(z− x)n+p

e(r)E
(α)
q+l−p−n(x, y; λ). (69)

Letting
k = −2a = b = 1 and 2β = λ

in Theorem 4, we get the following corollary.

Corollary 3. The following implicit summation formulas for the truncated-exponential-based Genocchi
polynomials e(r)G

(α)
n (x, y; λ) holds true:

e(r)G
(α)
q+l(z, y; λ) =

q

∑
n=0

l

∑
p=0

(
q
n

)(
l
p

)
(z− x)n+p

e(r)G
(α)
q+l−p−n(x, y; λ). (70)

Theorem 5. The following implicit summation formula involving the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
n,β (x, y; k, a, b) =

n

∑
s=0

(
n
s

)
Y(α)

n−s,β(k, a, b)e(r)s (x, y). (71)

Proof. By the definition (45), we have(
21−ktk

βbet − ab

)α

ext
(

1
1− ytr

)
=

∞

∑
n=0

Y(α)
n,β (k, a, b)

tn

n!

∞

∑
s=0

e(r)s (x, y)
ts

s!
. (72)

Now, replacing n by n− s in the right-hand side of the Equation (72) and comparing the coefficients of
t, we get the result (71) asserted by Theorem 5.

If we set
k = a = b = 1 and β = λ

in Theorem 5, we get the following corollary.

Corollary 4. The following implicit summation formula for the 2-variable truncated-exponential-based
Bernoulli polynomials e(r)B

(α)
n (x, y; λ) holds true:

e(r)B
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
B(α)

n−s(λ)e
(r)
s (x, y). (73)
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For
k + 1 = −a = b = 1 and β = λ

in Theorem 5, we get the following corollary.

Corollary 5. The following implicit summation formula for the 2-variable truncated-exponential-based Euler
polynomials e(r)E

(α)
n (x, y; λ) holds true:

e(r)E
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
E(α)

n−s(λ)e
(r)
s (x, y). (74)

Letting
k = −2a = b = 1 and 2β = λ

in Theorem 5, we get the following corollary.

Corollary 6. The following implicit summation formula for the 2-variable truncated-exponential-based Genocchi
polynomials e(r)G

(α)
n (x, y; λ) holds true:

e(r)G
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
G(α)

n−s(λ)e
(r)
s (x, y). (75)

Theorem 6. The following implicit summation formula involving the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
n,β (x + z, y; k, a, b) =

n

∑
s=0

(
n
s

)
e(r)Y

(α)
n−s,β(x, y; k, a, b)zs. (76)

Proof. We first replace x by x + z in (45). Then, by using (16), we rewrite the generating function (45)
as follows: (

21−ktk

βbet − ab

)α

e(x+z)t
(

1
1− ytr

)
=

∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

∞

∑
s=0

(zt)s

s!

=
∞

∑
n=0

e(r)Y
(α)
n,β (x + z, y; k, a, b)

tn

n!
. (77)

Furthermore, upon replacing n by n− s in l.h.s and comparing the coefficients of tn, we complete the
proof of Theorem 6.

For
k = a = b = 1 and β = λ

in Theorem 6, we get the following corollary.

Corollary 7. The following implicit summation formula for the 2-variable truncated-exponential-based
Bernoulli polynomials e(r)B

(α)
n (x, y; λ) holds true:

e(r)B
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
e(r)B

(α)
n−s(x, y; λ)Hs(z, u). (78)

Upon setting
k + 1 = −a = b = 1 and β = λ

in Theorem 6, we get the following corollary.
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Corollary 8. The following implicit summation formula for the 2-variable truncated-exponential-based Euler
polynomials e(r)E

(α)
n (x, y; λ) holds true:

e(r)E
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
e(r)E

(α)
n−s(x, y; λ)Hs(z, u). (79)

Letting
k = −2a = b = 1 and 2β = λ

in Theorem 6, we get the following corollary.

Corollary 9. The following implicit summation formula for the 2-variable truncated-exponential-based Genocchi
polynomials e(r)G

(α)
n (x, y; λ) holds true:

e(r)G
(α)
n (x + z, y + u; λ) =

n

∑
s=0

(
n
s

)
e(r)G

(α)
n−s(x, y; λ)Hs(z, u). (80)

Theorem 7. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
n,β (x, y; k, a, b) =

n

∑
r=0

(
n
r

)
Y(α)

n−r,β(x− z; k, a, b)e(r)(z, y). (81)

Proof. Let us rewrite Equation (45) as follows:(
21−ktk

βbet − ab

)α

e(x−z+z)t
(

1
1− ytr

)
=

∞

∑
n=0

Y(α)
n,β (x− z; k, a, b)

tn

n!

∞

∑
r=0

e(r)(z, y)
tr

r!
. (82)

Replacing n by n− r and using (45), and then equating the coefficients of the of tn, we complete the
proof of Theorem 7.

For
k = a = b = 1 and β = λ

in Theorem 7, we get the following corollary.

Corollary 10. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type Bernoulli polynomials e(r)B

(α)
n (x, y; λ) holds true:

e(r)B
(α)
n (x, y; λ) =

n

∑
r=0

(
n
r

)
B(α)

n−r(x− z; λ)e(r)(z, y). (83)

Letting
k + 1 = −a = b = 1 and β = λ

in Theorem 7, we get the following corollary.

Corollary 11. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type Euler polynomials e(r)E

(α)
n (x, y; λ) holds true:

e(r)E
(α)
n (x, y; λ) =

n

∑
r=0

(
n
r

)
E(α)

n−r(x− z; λ)e(r)(z, y). (84)
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If we set
k = −2a = b = 1 and 2β = λ

in Theorem 7, we get the following corollary.

Corollary 12. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type Genocchi polynomials e(r)G

(α)
n (x, y; λ) holds true:

e(r)G
(α)
n (x, y; λ) =

n

∑
r=0

(
n
r

)
G(α)

n−r(x− z; λ)e(r)(z, y). (85)

Theorem 8. The following implicit summation formula for the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) holds true:

e(r)Y
(α)
n,β (x + 1, y; k, a, b) =

n

∑
m=0

(
n
m

)
e(r)Y

(α)
n−m,β(x, y; k, a, b). (86)

Proof. Using the generating function (45), we find that

∞

∑
n=0

(
e(r)Y

(α)
n,β (x + 1, y; k, a, b)− e(r)Y

(α)
n,β (x, y; k, a, b)

) tn

n!

=

(
21−ktk

βbet − ab

)α (
1

1− ytr

)
(et − 1)

=
∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

(
∞

∑
r=0

tm

m!
− 1

)

=
∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

∞

∑
r=0

tm

m!
−

∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!

=
∞

∑
n=0

[
n

∑
r=0

(
n
r

)
e(r)Y

(α)
n−m,β(x, y; k, a, b)− e(r)Y

(α)
n,β (x, y; k, a, b)

]
tn

n!
.

which, upon equating the coefficients of tn, yields the assertion (86) of Theorem 8.

Remark 5. Several corollaries and consequences of Theorem 11 can be deduced by using many of the
aforementioned specializations of the various parameters involved in Theorem 8.

4. General Symmetry Identities

In this section, we give general symmetry identities for the 2-variable truncated-exponential-based
Apostol-type polynomials e(r)Y

(α)
n,β (x, y; k, a, b) by applying the generating functions (39) and (45).

The results extend some known identities of Özarslan (see [31,32]), Khan [38], and Pathan and Khan
(see [34–36]).

Theorem 9. Let α, k ∈ N0, a, b ∈ R \ {0}, β ∈ C, x, y ∈ R and n ∈ N0. Then the following symmetry
identity holds true:

n

∑
m=0

(
n
m

)
dmcn−m

e(r)Y
(α)
n−m,β(dx, dry; k, a, b) e(r)Y

(α)
m,β(cX, crY; k, a, b)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)Y
(α)
n−m,β(cx, cry; k, a, b)e(r)Y

(α)
m,β(dX, drY; k, a, b). (87)
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Proof. Let us first consider the following expression:

g(t) =

(
ckdk22(1−k)t2k

(βbect − ab)(βbedt − ab)

)α

ecdxt
(

1
1− y(cdt)r

)
ecdXt

(
1

1−Y(cdt)r

)
,

which shows that the function g(t) is symmetric in the parameters a and b. Then, by expanding g(t)
into series in two different ways, we get

g(t) =
∞

∑
n=0

e(r)Y
(α)
n,β (dx, dry; k, a, b)

(ct)n

n!

∞

∑
m=0

e(r)Y
(α)
m,β(cX, crY; k, a, b)

(dt)m

m!

=
∞

∑
n=0

n

∑
m=0

(
n
m

)
dmcn−m

e(r)Y
(α)
n−m,β(dx, dry; k, a, b) e(r)Y

(α)
m,β(cX, crY; k, a, b)tn (88)

and

g(t) =
∞

∑
n=0

e(r)Y
(α)
n,β (cx, cry; k, a, b)

(dt)n

n!

∞

∑
m=0

e(r)Y
(α)
m,β(dX, drY; k, a, b)

(ct)m

m!

=
∞

∑
n=0

n

∑
m=0

(
n
m

)
cmdn−m

e(r)Y
(α)
n−m,β(cx, cry; k, a, b) e(r)Y

(α)
m,β(dX, drY; k, a, b)tn. (89)

Comparing the coefficients of tn on the right-hand sides of Equations (88) and (89), we arrive at the
desired result (87).

For
k = a = b = 1 and β = λ

in Theorem 9, we get the following corollary.

Corollary 13. For all c, d, r ∈ N, n ∈ N0 and λ ∈ C, the following symmetry identity for the 2-variable
truncated-exponential-based Apostol-type Bernoulli polynomials holds true:

n

∑
m=0

(
n
m

)
dmcn−m

e(r)B
(α)
n−m(dx, dry; λ) e(r)B

(α)
m (cX, crY; λ)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)B
(α)
n−m(cx, cry; λ) e(r)B

(α)
m (dX, drY; λ). (90)

Putting
k + 1 = −a = b = 1 and β = λ

in Theorem 9, we get the following corollary.

Corollary 14. For all r ∈ N, n ∈ N0 and λ ∈ C, the following symmetry identity for the 2-variable
truncated-exponential-based Apostol-type Euler polynomials holds true:

n

∑
m=0

(
n
m

)
dmcn−m

e(r)E
(α)
n−m(dx, dry; λ) e(r)E

(α)
m (cX, crY; λ)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)E
(α)
n−m(cx, cry; λ) e(r)E

(α)
m (dX, drY; λ). (91)

If we set
k = −2a = b = 1 and 2β = λ

in Theorem 9, we get the following corollary.
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Corollary 15. For all r ∈ N, n ∈ N0 and λ ∈ C, the following symmetry identity for the 2-variable
truncated-exponential-based Apostol-type Genocchi polynomials holds true:

n

∑
m=0

(
n
m

)
dmcn−m

e(r)G
(α)
n−m(dx, dry; λ) e(r)G

(α)
m (cX, crY; λ)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)G
(α)
n−m(cx, cry; λ) e(r)G

(α)
m (dX, drY; λ). (92)

Theorem 10. Let α, k ∈ N0, a, b ∈ R \ {0}, β ∈ C, x, y ∈ R and n ∈ N0. Then the following symmetry
identity holds true:

n

∑
m=0

(
n
m

) c−1

∑
i=0

d−1

∑
j=0

cn−mdm
e(r)Y

(α)
n−m,β

(
dx +

d
c

i + j, dry; k, a, b
)

e(r)Y
(α)
m,β(cX, crY; k, a, b)

=
n

∑
m=0

(
n
m

) d−1

∑
i=0

c−1

∑
j=0

dn−mcm
e(r)Y

(α)
n−m,β

(
cx +

c
d

i + j, cry; k, a, b
)

e(r)Y
(α)
m,β(dX, drY; k, a, b). (93)

Proof. Let us first consider the following application:

g(t) =

(
ckdk22(1−k)t2k

(βbect − ab)(βbedt − ab)

)α

ecdxt
(

1
1− y(cdt)r

)
(ecdt − 1)2

(ect − 1)(edt − 1)
ecdXt

(
1

1−Y(cdt)r

)

=

(
2(1−k)cktk

βbect − ab

)α

ecdxt
(

1
1− y(cdt)r

)(
ecdt − 1
ect − 1

)(
2(1−k)dktk

βbedt − ab

)α

· ecdXt
(

1
1−Y(cdt)r

)(
1

ecdt − 1
edt − 1

)
=

(
2(1−k)cktk

(βbect − ab

)α

ecdxt
(

1
1− y(cdt)r

) c−1

∑
i=0

edti

(
2(1−k)dktk

βbedt − ab

)α

· ecdXt
(

1
1−Y(cdt)r

)
ecdyt

d−1

∑
j=0

ectj

=
∞

∑
n=0

[
n

∑
m=0

(
n
m

) c−1

∑
i=0

d−1

∑
j=0

cn−mdm
e(r)

·Y(α)
n−m,β

(
dx +

d
c

i + j, dry; k, a, b
)

e(r)Y
(α)
m,β(cX, crY; k, a, b)

]
tn. (94)

On the other hand, we have

g(t) =
∞

∑
n=0

(
n

∑
m=0

(
n
m

) d−1

∑
i=0

c−1

∑
j=0

dn−mcm

· e(r)Y
(α)
n−m,β

(
cx +

c
d

i + j, cry; k, a, b
)

e(r)Y
(α)
m,β(dX, drY; k, a, b)

)
tn. (95)

By comparing the coefficients of tn on the right-hand sides of (94) and (95), we arrive at the desired
result (93) asserted by Theorem 10.

Remark 6. Several corollaries and consequences of Theorem 11 can be derived by making use of many of the
aforementioned specializations of the various parameters involved in Theorem 10.
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Theorem 11. For each pair of integers a and b and all integers n ∈ N0, the following identity holds true:

n

∑
m=0

(
n
m

) c−1

∑
i=0

d−1

∑
j=0

cn−mdm
e(r)Y

(α)
n−m,β

(
dx +

d
c

i, dry; k, a, b
)

e(r)Y
(α)
m,β(cX +

c
d

j, crY; k, a, b)

=
n

∑
m=0

(
n
m

) d−1

∑
i=0

c−1

∑
j=0

dn−mcm
e(r)Y

(α)
n−m,β

(
cx +

c
d

i, cry; k, a, b
)

· e(r)Y
(α)
m,β(dX +

d
c

j, drY; k, a, b). (96)

Proof. The proof of Theorem 11 is analogous to that of Theorem 10, so we omit the details involved in
the proof of Theorem 11.

Remark 7. Several corollaries and consequences of Theorem 11 can be derived by applying many of the
aforementioned specializations of the various parameters involved in Theorem 11.

We conclude our present investigation by proving the following symmetric identity involving the
number Sk(n, λ), which is defined by (44).

Theorem 12. For all positive integers a and b, and for n ∈ N0, the following symmetric identity holds true:

n

∑
m=0

(
n
m

)
cn−mdm

e(r)Y
(α)
n−m,β (dx, dry; k, a, b)

m

∑
i=0

(
m
i

)
Si

(
c− 1;

(
β

a

)b
)

e(r)Y
(α)
m−i,β(cX, crY; k, a, b)

=
n

∑
m=0

(
n
m

)
cmdn−m

e(r)Y
(α)
n−m,β (cx, cry; k, a, b)

m

∑
i=0

(
m
i

)
Si

(
d− 1;

(
β

a

)b
)

· e(r)Y
(α)
m−i,β(dX, drY; k, a, b). (97)

Proof. We first consider the function g(t) given by

g(t) =
(22(1−k)ckdkt2k)α(βbecdt − ab)

(βbect − ab)α(βbedt − ab)α+1 ecdxt
(

1
1− y(cdt)r

)
ecdXt

(
1

1−Y(cdt)r

)
=

(
2(1−k)cktk

βbect − ab

)α

ecdxt
(

1
1− y(cdt)r

)(
βbecdt − ab

βbedt − ab

)(
2(1−k)dktk

βbedt − ab

)α

ecdXt
(

1
1−Y(cdt)r

)

=

(
∞

∑
n=0

e(r)Y
(α)
n,β (dx, dry; k, a, b)

(ct)n

n!

)[
∞

∑
n=0

Sn

(
c− 1;

(
β

a

)b
)

(dt)n

n!

]

·
(

∞

∑
n=0

e(r)Y
(α)
n,β (cX, crY; k, a, b)

(dt)n

n!

)
.

Using similar arguments as above, we get

g(t) =

(
∞

∑
n=0

e(r)Y
(α)
n,β (cx, cry; k, a, b)

(dt)n

n!

)[
∞

∑
n=0

Sn

(
d− 1;

(
β

a

)b
)

(ct)n

n!

]

·
(

∞

∑
n=0

e(r)Y
(α)
n,β (dX, drY; k, a, b)

(ct)n

n!

)
. (98)

Finally, after a suitable manipulation with the summation index in (98) followed by a comparison
of the coefficients of tn, the proof of Theorem 12 is completed.
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5. Conclusions

Özden ([29]) defined the unified polynomials Y(α)
n,β (x; k, a, b) of order α by means of the following

generating function (see also Remark 1 above):

(
21−ktk

βbet − ab

)α

ext =
∞

∑
n=0

Y(α)
n,β (x; k, a, b)

tn

n!(
|t| < 2π when β = a; |t| <

∣∣∣∣b log(
β

a
)

∣∣∣∣ when β 6= a; 1α := 1; k ∈ N0; a, b ∈ R \ {0}; α, β ∈ C
)

.

Basing our investigation upon this generating function, we have introduced generating function for
the 2-variable truncated-exponential-based Apostol-type polynomials denoted by e(r)Y

(α)
n,β (x, y; k, a, b)

as follows:
∞

∑
n=0

e(r)Y
(α)
n,β (x, y; k, a, b)

tn

n!
=

(
21−ktk

βbet − ab

)α

ext
(

1
1− ytr

)
,

which we have found to be instrumental in deriving quasi-monomiality with respect to the following
multiplicative and derivative operators:

M̂e(r)Y = x + ry∂yy∂r−1
x +

αk(βbet − ab)− αβb∂xe∂x

∂x(βbet − ab)

and
P̂e(r)Y = ∂x.

We have also presented a further investigation to obtain some implicit summation formulas and
symmetric identities by means of their generating functions.

In our next investigation, we propose to study an appropriate combination of the operational
approach with that involving integral transforms with a view to studying integral representations
related to the truncated-exponential-based Apostol-type polynomials which we have introduced and
studied in this article.
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