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Abstract: In this paper the notion of ∗-Weyl curvature tensor on real hypersurfaces in non-flat
complex space forms is introduced. It is related to the ∗-Ricci tensor of a real hypersurface. The aim
of this paper is to provide two classification theorems concerning real hypersurfaces in non-flat
complex space forms in terms of ∗-Weyl curvature tensor. More precisely, Hopf hypersurfaces of
dimension greater or equal to three in non-flat complex space forms with vanishing ∗-Weyl curvature
tensor are classified. Next, all three dimensional real hypersurfaces in non-flat complex space
forms, whose ∗-Weyl curvature tensor vanishes identically are classified. The used methods are based
on tools from differential geometry and solving systems of differential equations.
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1. Introduction

A Kahler manifold Ñ is a complex manifold of complex dimension n and real dimension 2n,
which is equipped with

• a complex structure J defined J : TÑ → Ñ, where TÑ is the tangent space of Ñ, satisfying
relations J2 = −Id and ∇̃J = 0, i.e., J is parallel with respect to the Levi-Civita connection ∇̃ of Ñ

• and a Riemanian metric G that is compatible with J, i.e., G(JX, JY) = G(X, Y) for all tangent X,
Y on Ñ.

The pair (J, G) is called Kahler structure. A Kahler manifold of constant holomorphic sectional
curvature c is called complex space form. Complete and simply connected complex space forms
depending on the value of holomorphic sectional curvature c are analytically isometric to complex
projective space CPn if c > 0, to complex hyperbolic space CHn if c < 0 or to complex Euclidean space
Cn if c = 0. This paper focuses on complex space forms with c 6= 0 denoted by Mn(c) and called
non-flat complex space forms. Furthermore, c = 4 in the case of CPn and c = −4 in the case of CHn.

A submanifold M in a non-flat complex space form Mn(c) of real codimension equal to 1 is called
real hypersurface. Let N be a locally defined unit normal vector on M. The Kahler structure (J, G)
of the ambient space Mn(c) induces on M an almost contact metric structure (φ, ξ, η, g) defined in the
following way

• ξ = −JN is the structure vector field,
• φ is a skew-symmetric tensor field of type (1,1) called structure tensor field and defined to be the

tangential component of JX = φX + η(X)N, for all tangent vectors X to M,
• η is a 1-form and is given by the relation η(X) = g(X, ξ) for all tangent vectors X to M,
• g is the induced Riemannian metric on M.
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A big class of real hypersurfaces in Mn(c) are Hopf hypersurfaces, which are real hypersurfaces
whose structure vector field ξ is an eigenvector of the shape operator A of M, i.e.,

Aξ = αξ, (1)

where α = g(Aξ, ξ) and is called Hopf principal curvature.
Takagi classified homogeneous real hypersurfaces in complex projective space CPn, n ≥ 2.

The real hypersurfaces are divided into six types:

• type (A) which are either geodesic hyperspheres of radius r, 0 < r < π
2 , or tubes of radius r,

with 0 < r < π
2 over totally geodesic CPk,1 ≤ k ≤ n− 2,

• type (B) which are tubes of radius r, 0 < r < π
4 , over the complex quadric Qn−1,

• type (C) which are tubes over the Serge embedding of CP1 ×CPm, with 2m + 1 = n and n ≥ 5,
• type (D) which are tubes over the Plücker embedding of the Grassmann manifold G2,5 and n = 9,
• type (E) which are tubes over the canonical embedding of the Hermitian symmetric space

SO(10)/U(5) and n = 15, where SO(n) is a subgroup of O(n) of dimension n, which consists of
all the orthogonal matrices with determinant equal 1. (see [1–3]).

The above real hypersurfaces are Hopf ones with constant principal curvatures (see [4]).
In the case of the ambient space being the complex hyperbolic CHn, Montiel in [5] studied

real hypersurfaces with two constant principal curvatures. Additionally, he proved that such real
hypersurfaces are Hopf ones. Berndt in [6] classified Hopf hypersurfaces with constant principal
curvatures in CHn, n ≥ 2. The following list includes the Hopf hypersurfaces with constant
principal curvatures.

• type (A) which are either horospheres, or geodesic hyperspheres, or tubes over totally geodesic
complex hyperbolic hyperplane, or tubes over totally geodesic CHk, 1 ≤ k ≤ n− 2,

• type (B) which are tubes over totally geodesic real hyperbolic space RH2 (type (B)).

All of them are homogeneous ones, but in contrast to the case of complex projective space, it is
proved that there are also non-Hopf hypersurfaces in CHn which are homogeneous.

Let M̃ be a Riemannian manifold of dimension m and g its Riemannian metric. Then the Weyl
curvature tensor W(X, Y)Z of M̃ is given by

W(X, Y)Z = R(X, Y)Z +
1

m− 2
[g(SX, Z)Y− g(SY, Z)X + g(X, Z)SY− g(Y, Z)SX]

− ρ

(m− 1)(m− 2)
[g(X, Z)Y− g(Y, Z)X], for all X, Y, Z tangent to M,

with R being the Riemannian curvature tensor, S being the Ricci tensor and ρ being the scalar curvature
of M̃. If m = 3 then W(X, Y)Z = 0 and if m ≥ 4 then M̃ is locally conformal flat if and only if
W(X, Y)Z = 0. The condition of locally conformal flat holds for three dimensional Riemannian
manifolds if and only if the Cotton tensor of M̃, which is given by

C(X, Y) = (∇XS)Y− (∇YS)X− 1
2(m− 2)

[(∇Xρ)Y− (∇Xρ)Y],

vanishes identically.
The Weyl curvature tensor of real hypersurfaces M in Mn(c) satisfies the relation

W(X, Y)Z = R(X, Y)Z +
1

2n− 3
[g(SX, Z)Y− g(SY, Z)X + g(X, Z)SY− g(Y, Z)SX]

− ρ

2(n− 1)(2n− 3)
[g(X, Z)Y− g(Y, Z)X],
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for all X, Y, Z tangent to M, where R is the Riemannian curvature tensor, S is the Ricci tensor, ρ is
the scalar curvature of M and g is the induced Riemannian metric on M. In [7] the non-existence
of real hypersurfaces in Mn(c) with harmonic Weyl curvature tensor, i.e., δW = 0 with δ denoting
the codifferential of the exterior differential d is proved. Moreover, in [8] the classification of real
hypersurfaces in CPn with ξ-parallel Weyl curvature tensor, i.e., ∇ξW = 0 is provided. Finally, in [9]
real hypersurfaces in CHn, n ≥ 3 satisfying the previous geometric condition are classified.

In 1959 Tachibana defined ∗-Ricci tensor S∗ on almost Hermitian manifold. In [10] Hamada gave
the definition of ∗-Ricci tensor S∗ on real hypersurfaces in Mn(c) in the following way

g(S∗X, Y) =
1
2

trace(Z → R(X, ϕY)ϕZ),

for all X, Y tangent to M and trace is the sum of elements of the main diagonal of the matrix,
which corresponds to the above endomorphism. He also presented ∗- Einstein, i.e., g(S∗X, Y) =

λg(X, Y), where λ is a constant multiple of g(X, Y) and provided classification of ∗-Einstein
hypersurfaces. Ivey and Ryan in [11] extended the Hamada’s work and studied the equivalence
of ∗- Einstein condition with other geometric conditions such as the pseudo-Einstein and the
pseudo-Ryan condition.

Motivated by the revious results and work we define ∗-Weyl curvature tensor of real hypersurfaces
in the following way

W∗(X, Y)Z = R(X, Y)Z +
1

2n− 3
[g(S∗X, Z)Y− g(S∗Y, Z)X + g(X, Z)S∗Y− g(Y, Z)S∗X]

− ρ∗

2(n− 1)(2n− 3)
[g(X, Z)Y− g(Y, Z)X], (2)

for all X, Y, Z tangent to M and S∗ is the ∗-Ricci tensor and ρ∗ is the ∗-scalar curvature corresponding
to S∗ of M.

First it is examined if there are real hypersurfaces of dimension equal to or greater than three with
vanishing ∗-Weyl curvature tensor. The following Theorem is proved

Theorem 1. Let M be a Hopf hypersurface in Mn(c), n ≥ 2, with vanishing ∗-Weyl curvature tensor. Then M
is an open subset of a real hypersurface of type (A) or of a Hopf hypersurface with Aξ = 0.

Next it is examined if there are three-dimensional real hypersurface in M2(c) with vanishing
∗-Weyl curvature tensor and the following Theorem is obtained

Theorem 2. Every real hypersurface M in M2(c) with vanishing ∗-Weyl curvature tensor is a Hopf
hypersurface. Furthermore, M is an open subset of a real hypersurface of type (A) or of a Hopf hypersurface with
Aξ = 0.

The paper has the following outline: In Section 2 relations and Theorems concerning real
hypersurfaces in non-flat complex space forms are provided. In Section 3 Theorems 1 and 2 are
proved. Section 4 concerns discussion on the new tensor and ideas of further research and Section 5
includes the conclusions of the paper.

2. Preliminaries

The manifolds, vector fields, etc., are considered of class C∞. We consider M to be a connected
real hypersurface without boundary in Mn(c) equipped with a Kahler structure (J, G) and ∇ is the
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Levi-Civita connection of Mn(c) and N a locally unit normal vector field on M. Then the shape
operator A of M with respect to N is given by

∇X N = −AX.

and the Levi-Civita connection ∇ of the induced metric g on M satisfies

∇XY = ∇XY + g(AX, Y)N.

As mentioned in the Introduction, on M an almost contact metric structure (φ, ξ, η, g) is defined
and the following relations are satisfied (see [12])

φ2X = −X + η(X)ξ, η(ξ) = 1, g(φX, φY) = g(X, Y)− η(X)η(Y) (3)

for all tangent vectors X, Y to M. Relation (3) implies

φξ = 0, η(X) = g(X, ξ).

Due to the fact that the complex structure J is parallel, i.e., ∇J = 0 we have

(∇Xφ)Y = η(Y)AX− g(AX, Y)ξ and ∇Xξ = φAX (4)

for all X, Y tangent to M. Moreover, the ambient space is of holomorphic sectional curvature c and this
results in the Gauss and Codazzi equations becoming respectively

R(X, Y)Z = c
4 [g(Y, Z)X− g(X, Z)Y + g(φY, Z)φX− g(φX, Z)φY

−2g(φX, Y)φZ] + g(AY, Z)AX− g(AX, Z)AY,
(5)

and

(∇X A)Y− (∇Y A)X =
c
4
[η(X)φY− η(Y)φX− 2g(φX, Y)ξ], (6)

for all tangent vectors X, Y, Z to M, where R is the Riemannian curvature tensor of M.
Let P be a point of M, then the tangent space TP M is decomposed into

TP M = span{ξ} ⊕D,

where D = ker η = {X ∈ TP M : η(X) = 0} and is called (maximal) holomorphic distribution (if n ≥ 3).
The following Theorem concerns the shape operator of M and is proved by Maeda [13] in the case

of CPn, n ≥ 2, and by Ki and Suh [14] in the case of CHn, n ≥ 2 (also Corollary 2.3 in [15]).

Theorem 3. Let M be a Hopf hypersurface in Mn(c), n ≥ 2. Then

(i) α is constant.
(ii) If W is a vector field which belongs to D such that AW = λW, then

(λ− α

2
)A(φW) = (

λα

2
+

c
4
)(φW). (7)

(iii) If the vector field W satisfies AW = λW and A(φW) = ν(φW) then

λν =
α

2
(λ + ν) +

c
4

. (8)
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We consider M a three dimensional real hypersurface in M2(c) and P a point of M such that
in the neighborhood of P relation Aξ 6= αξ holds. Let U be a unit vector lying in the span{Aξ, ξ}
satisfying relation g(U, ξ) = 0. Then, we can consider the standard non-Hopf local orthonormal frame
{U, φU, ξ} in the neighborhood of P (see [16] p. 445). Therefore, the shape operator A is given by

Aξ = αξ + βU, AU = γU + δ(φU) + βξ and A(φU) = δU + µ(φU). (9)

The following Lemma holds for three dimensional non-Hopf real hypersurfaces in M2(c)

Lemma 1. Let M be a non-Hopf real hypersurface in M2(c). The following relations hold on M

∇Uξ = −δU + γ(φU), ∇φUξ = −µU + δ(φU), ∇ξξ = β(φU),

∇UU = κ1(φU) + δξ, ∇φUU = κ2(φU) + µξ, ∇ξU = κ3(φU),

∇U(φU) = −κ1U − γξ, ∇φU(φU) = −κ2U − δξ, ∇ξ(φU) = −κ3U − βξ,

where α, β, γ, δ, µ, κ1, κ2, κ3 are smooth functions on M and β 6= 0.

Lemma 1 is proved in page 92 [17].
The Codazzi Equation (6) for X ∈ {U, φU} and Y = ξ owing to Lemma 1 results in the

following relations

ξδ = αγ + βκ1 + δ2 + µκ3 +
c
4
− γµ− γκ3 − β2 (10)

(ϕU)α = αβ + βκ3 − 3βµ (11)

(ϕU)β = αγ + βκ1 + 2δ2 +
c
2
− 2γµ + αµ (12)

and for X = U and Y = φU

Uδ− (φU)γ = µκ1 − κ1γ− βγ− 2δκ2 − 2βµ. (13)

In the case of three dimensional Hopf hypersurfaces we consider a point P of M and we define in
the neighborhood of P a local orthonormal frame as follows: since M is a Hopf hypersurface the shape
operator A restricted to the holomorphic distribution D has distinct eigenvalues. Thus, we choose
a vector W as one of the eigenvectors fields. Moreover, due to the fact that M is three dimensional,
the shape operator satisfies the following relations:

Aξ = αξ, AW = λW and A(φW) = ν(φW), (14)

and Thereom 3 holds.
Finally, the following Theorem concerns the classification of real hypersurfaces in Mn(c), n ≥ 2,

whose shape operator A satisfies a commuting condition. It is proved by Okumura in the case of CPn

(see [18]) and by Montiel and Romero in the case of CHn (see [19]).

Theorem 4. Let M be a real hypersurface of Mn(c), n ≥ 2. Then Aφ = φA, if and only if M is an open subset
of a homogeneous real hypersurface of type (A).

We mention that type (A2) hypersurfaces do not occur in the case of three dimensional real
hypersurface in M2(c).
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3. Proof of Theorems 1 and 2

The ∗-Ricci tensor of a real hypersurface M in a non-flat complex space form is given by

S∗X = −[ cn
2

φ2X + φA(φ(AX))], (15)

for all X tangent to M.
Let M be a Hopf hypersurface in Mn(c), n ≥ 2, with vanishing ∗-Weyl curvature tensor, i.e.,

W∗(X, Y)Z = 0. (16)

Since M is a Hopf hypersurface ξ is an eigenvector of the shape operator relation (1) holds and
relation (15) for X = ξ yields S∗ξ = 0. Next, we consider W a unit vector field which belongs to the
(maximal) holomorphic distribution such that relation AW = λW holds at some point P ∈ M and
relation (7) is satisfied. We have two cases:

Case I: α2 + c 6= 0.

In this case λ 6= α
2 so relation (7) implies AφW = νφW and relation (8) holds.

Relation (16) for Z = ξ taking into account (2) implies

R(X, Y)ξ +
1

2n− 3
[g(S∗X, ξ)Y− g(S∗Y, ξ)X + η(X)S∗Y− η(Y)S∗X]

− ρ∗

2(n− 1)(2n− 3)
[η(X)Y− η(Y)X] = 0, (17)

for all X, Y tangent to M.
The inner product of relation (17) for X = W and Y = ξ with W because of (3), (5), (15), S∗ξ = 0,

AW = λW and A(φW) = ν(φW) yields

(
c
4
+ αλ)− 1

2n− 3
(

cn
2

+ λν) +
ρ∗

2(n− 1)(2n− 3)
= 0. (18)

Furthermore, the inner product of relation (17) for X = φW and Y = ξ with φW due
to (3), (5) and (15), S∗ξ = 0, AW = λW and A(φW) = ν(φW) implies

(
c
4
+ αν)− 1

2n− 3
(

cn
2

+ λν) +
ρ∗

2(n− 1)(2n− 3)
= 0. (19)

Combination of relations (18) and (19) results in

α(λ− ν) = 0.

So, either α = 0 and M is an open subset of a Hopf hypersurface with Aξ = 0 or λ = ν which implies
that Aφ = φA and because of Theorem 4 M is an open subset of a real hypersurface of type (A).

Case II: α2 + c = 0.

This case occurs only when the ambient space is the complex hyperbolic space CHn. Thus,
α2 − 4 = 0 and this results in α = 2. We consider W a unit vector field, which belongs to the (maximal)
holomorphi distribution such that relation AW = λW holds at some point P ∈M. Therefore, relation (7)
due to α = 2 and c = −4 implies

(λ− 1)A(φW) = (λ− 1)(φW).
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First we suppose that λ 6= 1. Then the above relation implies A(φW) = φW. So, the inner product
of relation (17) for X = W and Y = ξ with W because of (3), (5) and (15) for X = ξ which implies
S∗ξ = 0, AW = λW and A(φW) = φW results in

(2λ− 1)− 1
2n− 3

(λ− 2n) +
ρ∗

2(n− 1)(2n− 3)
= 0. (20)

Moreover, the inner product of relation (17) for X = φW and Y = ξ with φW due to (3), (5), (15),
S∗ξ = 0, AW = λW and A(φW) = φW implies

1− 1
2n− 3

(λ− 2n) +
ρ∗

2(n− 1)(2n− 3)
= 0. (21)

Combination of relations (20) and (21) yields λ = 1, which is a contradiction.
Therefore, we have λ = 1 for any vector field W ∈ D and M is an open subset of a horosphere,

which is a real hypersurface of type (A) and this completes the proof of Theorem 1.

Remark 1. Examples of Hopf hypersurfaces with α = 0 are the following:

• A geodesic hypersphere of radius r = π
4 in CPn has α = 0.

• In [20,21] there are examples of Hopf hypersurfaces with Aξ = 0, which do not have constant principal
curvatures, i.e., the eigenvalues of the shape operator corresponding to the (maximal) holomorphic
distribution are not constant.

Next we examine non-Hopf three-dimensional real hypersurfaces M in M2(c) whose *-Weyl
tensor vanishes identically, i.e., relation (16) holds. We consider N the open subset of M such that

N = {P ∈ M : β 6= 0, in a neighborhood of P},

and {U, φU, ξ} be the local orthonormal frame in the neighborhood of a point P defined as in Section 2.
Relation (2) for Z = ξ and due to n = 2 implies

R(X, Y)ξ + g(S∗X, ξ)Y− g(S∗Y, ξ)X + η(X)S∗Y− η(Y)S∗X− ρ∗

2
[η(X)Y− η(Y)X], (22)

for all X, Y tangent to M. The inner product of relation (22) for X = U and Y = ξ with ϕU and U
taking into account relations (9), (5) and (15) yields respectively

αδ = 0 and αγ + δ2 +
ρ∗

2
=

3c
4

+ β2 + γµ. (23)

Moreover, the inner product of relation (22) for X = ϕU and Y = ξ with ϕU because of
relations (9), (5) and (15) and the second of (23) results in

αµ = αγ− β2. (24)

Suppose that δ 6= 0 then the first of (23) gives α = 0. Substitution of the latter in (24) results in
β = 0, which is a contradiction. Thus, relation δ = 0 holds.

Relation (22) for X = U and Y = ϕU because of (5) implies µ = 0. So, relation (24) results in
β2 = αγ. Differentiating the latter with respect to ϕU taking into account relations (10)–(13) results in
c = 0.

So N is empty and the following Proposition has been proved.

Proposition 1. Every real hypersurface in M2(c) whose ∗-Weyl curvature tensor vanishes identically is a
Hopf hypersurface.
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The above proposition with Theorem 1 for the case of n = 2 completes the proof of Theorem 2.

4. Discussion

In literature it is known that there are no Einstein real hypersurfaces in non-flat complex space
forms, i.e., real hypersurfaces whose Ricci tensor satisfies relation S = αg, where α is constant (see [15]).
Therefore, new notions such as η-Einstein, i.e., the Ricci tensor satisfies relation S = α + η⊗ ξ or ∗-Ricci
Einstein, i.e., the ∗-Ricci tensor satisfies S∗ = ρ∗g, with ρ∗ being constant, are introduced and the real
hypersurfaces are studied with respect to the previous relations (see [10,11,15]). Thus, the next step is
to introduce new tensors on real hypersurfaces in non-flat complex space forms related to the ∗-Ricci
tensor, since there are results concerning notions and tensors related to the Ricci tensor. In this paper,
we introduced the ∗-Weyl curvature tensor and studied real hypersurfaces in non-flat complex space
forms in terms of it. Further work can be done in this direction. So, at this point some ideas for further
research are mentioned:

1. it is worthwhile to study if there are non-Hopf real hypersurfaces of dimension greater than three
in non-flat complex space forms with vanishing ∗-Weyl curvature tensor,

2. the ∗-Weyl curvature tensor could also be defined on real hypersurfaces in other symmetric
Hermitian space forms such as the complex two-plane Grassmannians or the complex hyperbolic
two-plane Grassmannians and it could be examined if there are real hypersurfaces with vanishing
∗-Weyl curvature tensor.

Overall, real hypersurfaces in non-flat complex space forms can be potentially applied to finding
solutions of nonlinear dynamical differential equations. Ideas for research in this direction can be
derived methods based on Lie algebra. For a first idea in this direction one could have a look in works
(1) A Lie algebra approach to susceptible-infected-susceptible epidemics (see [22]), (2) Lie algebraic
discussion for affinity based information diffusion in social networks (see [23]).

5. Conclusions

In this section we conclude the work which is presented in this paper.

• We introduced a new type of tensor on real hypersurfaces in non-flat complex space forms by
defining the ∗-Weyl curvature tensor on them. The new tensor is related to the ∗-Ricci tensor of a
real hypersurface.

• We initiated the study of real hypersurfaces in non-flat complex space forms in terms of this
new tensor. The first geometric condition is that of the vanishing ∗-Weyl curvature tensor.
The motivation for choosing this geometric condition is the existing results for Riemannian
manifolds in terms of the Weyl curvature tensor. Thus, we proved two classifications Theorems.
The first Theorem concerns Hopf hypersurfaces in non-flat complex space forms of dimension
greater or equal to three with vanishing ∗-Weyl curvature tensor. The second Theorem
provides a complete classification for three dimensional real hypersurfaces with vanishing ∗-Weyl
curvature tensor.
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