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Abstract: In our study, we will extend the domain of influence in order to cover the thermoelasticity
of initially stressed bodies with voids. In what follows, we prove that, for a finite time t > 0,
the displacement field ui, the dipolar displacement field ϕjk, the temperature θ and the change in
volume fraction φ generate no disturbance outside a bounded domain B.
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1. Introduction

We must outline that our bodies are included in the thermoelasticity of bodies with voids. As we
know, Nunziato and Cowin, in the paper [1], have initiated the approach of the bodies with vacuous
pores (or voids). In this theory, the authors introduce an additional degree of freedom in order to
develop the mechanical behavior of a body in which the skeletal material is elastic and interstices are
voids of material. There are many modern applications of this theory, of which we just mention the
manufactured porous materials and the geological materials like soils and rocks. In the linear case,
this theory of bodies with pores was approached by Cowin and Nunziato in the study [2]. In this paper,
the authors demonstrated a result of the uniqueness regarding the solution for the mixed problem
and obtained a result of weak stability for the respective solutions. See also [3]. The equations of the
thermoelasticity of bodies with pores were obtained by Iesan in work [4]. Other results regarding the
contributions of voids of material in the theory of micropolar body with pores can be found in the
papers [5,6]. Lately, the number of papers devoted to various aspects of microstructure has greatly
increased (see [7–23], so that our work can be considered a continuation in this respect. In our present
study, we extend the previous results in order to cover the thermoelasticity of initially stressed material
with voids. Thus, after we put down the main equations, the initial conditions and the boundary data
of the mixed value problem in this context, we define the so-called domain of influence, denoted by Bt,
which corresponds to the data at time t and it is associated with the mixed problem. As in previous
studies (see for instance [5,24,25]), we will use a specific method in order to prove a theorem regarding
the domain of influence.

Our basic result asserts that the solutions of the mixed initial-boundary value problem, in the
context of the theory of thermoelasticity of bodies with voids, decay to zero outside Bt, for any finite
variable t > 0.
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2. Basic Equations

In our paper, we will consider some elastic bodies. We suppose that such anisotropic body is
situated in regular domain B, include in R3, that is, the three-dimensional Euclidian space. The border
of this domain is a smooth surface, denoted by ∂B. The closure of B is usual denoted by B̄.

A fix system of Cartesian axes Oxi, (i = 1, 2, 3) is used and the Cartesian notation is used for
vectors and tensors. For the time derivative of a function, it is used a superposed dot. For the partial
derivatives of a function with respect its spatial variables, we will use a comma which is followed by a
subscript. partial derivatives with respect to the spatial coordinates. In the case of the repeated indices,
the Einstein summation rule is used.

In addition, if there is no possibility of confusion, then dependence of function with regards to
its spatial or time variables will be omitted. The evolution of body with dipolar structure will be
described with the help of the following specific variables:

ui(x, t), ϕij(x, t), (x, t) ∈ B× [0, t0). (1)

Here, we denoted by ui the components of the displacement vector field and by ϕij the components
of the dipolar displacement tensor field.

Using the above variables ui(x, t), ϕij(x, t), we will introduce the components of the tensors of
strain, namely εij, kij and γi, as follows:

2εij = uj,i + ui,j, γij = uj,i − ϕij, χijk = ϕij,k. (2)

Being in the context of linear theory, it is natural to consider that internal energy density is a
quadratic form with the following expression:

$0e =
1
2

Aijmnεijεmn + Gijmnεijγmn + Fijmnrεijχmnr

+
1
2

Bijmnγijγmn + Dijmnrγijχmnr +
1
2

Cijkmnrχijkχmnr +

+uj,kPkiεij − ϕjkQkiγij + uj,r Nirkχijk +

+dijmεijφ,m + eijmγijφ,m + fijkmχijkφ,m + (3)

+aijεijφ + bijγijφ + cijkχijkφ +
1
2

Aijφ,iφ,j −

+diφφ,i + aiθφ,i + ξφ2 −mθφ +
1
2

aθ2 +

−αijεijθ − βijγijθ − δijkχijkθ +
1
2

kijθ,iθ,j.

We will use a procedure similar to that used by Nunziato and Cowin in [3]. Thus, taking into
account that

τij =
∂e

∂εij
, ηij =

∂e
∂γij

, µijk =
∂e

∂χijk
,

hi =
∂e

∂φ,i
, g = − ∂e

∂φ
, η =

∂e
∂θ

, qi =
∂e

∂θ,i
, (4)
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we obtain the following constitutive equations

τij = uj,kPki + Aijmnεmn + Gijmnγmn + Fmnrijχmnr +

+aijφ + Dijkφ,k − αijθ,

ηij = −ϕjkQik + ϕjk,r Nrik + Gijmnεmn + Bijmnγmn +

+Dijmnrχmnr + bijφ + eijkφ,k − βijθ,

µijk = uj,r Nrik + Fijkmnεmn + Dmnijkγmn + Cijkmnrχmnr + (5)

+cijkφ + fijkmφ,m − δijkθ,

hi = dmniεmn + emniγmn + fmnriχmnr + diφ + Aijφ,j − aiθ,

g = −aijεij − bijγij − cijkχijk − ξφ− diφ,i + mθ,

η = αijεij + βijγij + δijkχijk −mφ + aiφ,i + aθ,

qi = kijθ,j.

The main equations that govern the thermoelasticity of initially stressed materials with pores are
(see [5]):

- the motion equations: (
τij + ηij

)
,j + $ fi = $üi,

µijk,i + ηjk + uj,iQik + ϕkiQji − (6)

−ϕkr,i Nijr + $gjk = Ikr ϕ̈jr;

- the equation for the equilibrium of the forces:

hi,i + g + $l = $κφ̈, (7)

- the equation of energy:

$T0η̇ = qi,i + $r. (8)

We complete the above equations with:
- the kinetic relations

εij =
1
2
(
uj,i + ui,j

)
, γij = uj,i − ϕij,

χijk = ϕjk,i, θ = T − T0, φ = ϕ− ϕ0. (9)

The meaning of the notations that we used in Equations (3)–(8) is as follows: $—the density
of mass, which is a constant; η—the entropy per unit mass; T0—the temperature of the material in
its undeformed state; Iij—the tensor of microinertia; κ—the variable inertia the equilibrated forces;
ui—the vector of the vector of moving; ϕjk—the tensor for dipolar moving; ϕ—the function for the
volume fraction that in the undeformed state has the value ϕ0; φ—a measure for change in volume,
regarding the undeformed state; θ—the variation of the temperature, regarding the temperature T0

from the reference state; εij, γij, χijk—the strain tensors; τij, ηij, µijk—the the stress tensors; hi—the
components of the vector for equilibrated stress; qi—the vector for the flux of the heat; fi—the body
forces; gjk—the dipolar charges; r—the measure of the supply heat; g—a measure for balancing of
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intrinsic force; L—a measure for balancing of extrinsic force; Aijmn, Bijmn, ..., kij—the functions what
characterize the elastic properties of the material. These satisfy the following symmetry relations:

Aijmn = Amnij = Ajimn, Bijmn = Bmnij, aij = aji,

dijk = djik, gij = gji, Cijkmnr = Cmnrijk, Fijkmn = Fijknm, (10)

Gijmn = Gijnm, Pij = Pji, kij = k ji.

In the above relations (1) and (3), the quantities Pij, Qij and Nijk are prescribed functions which
satisfy the following equations: (

Pij + Qij
)

,j = 0, Nijk,i + Qjk = 0.

Based on the inequality of the entropy production, we can deduce that

kijθ,iθ,j ≥ 0. (11)

In order to complete our mixed initial-boundary value problem, we add to the basic Equations
(2)–(7), the following prescribed initial data

ui(x, 0) = u0
i (x), u̇i(x, 0) = u1

i (x), ϕjk(x, 0) = ϕ0
jk(x), ϕ̇jk(x, 0) = ϕ1

jk(x),

θ(x, 0) = θ0(x), φ(x, 0) = φ0(x), φ̇(x, 0) = φ1(x), x ∈ B̄. (12)

We also consider the given conditions to the limit

ui = ūi on ∂B1 × [0, t0), ti ≡
(
τij + ηij

)
nj = t̄i on ∂Bc

1 × [0, t0),

ϕjk = ϕ̄jk on ∂B2 × [0, t0), mjk ≡ µijkni = m̄jk on ∂Bc
2 × [0, t0), (13)

φ = φ̄ on ∂B3 × [0, t0), h ≡ hini = h̄ on ∂Bc
3 × [0, t0),

θ = θ̄ on ∂B4 × [0, t0), q ≡ qini = q̄ on ∂Bc
4 × [0, t0).

n = (ni) is the unit normal to the surface∂B, outward oriented. In addition, we denoted by ∂B1, ∂B2, ∂B3

and ∂B4 the subsets of ∂B, considered together with their corresponding complements ∂Bc
1, ∂Bc

2, ∂Bc
3

and ∂Bc
4. The time t0 can be infinite. The functions u0

i , u1
i , ϕ0

jk, ϕ1
jk, θ0, φ0, φ1, ūi, t̄i, ϕ̄jk, µ̄jk, φ̄, θ̄, q̄,

h̄ are prescribed and regular in all points where are defined.
By introducing the geometric Equation (7) and the constitutive Equation (6) into Equations (2), (3)

and (5), we obtain the following system of equations:

$üi =
[
uj,kPki − ϕjk,r Nrik +

(
Aijmn + Gijmn

)
εmn +

(
Gmnij + Bijmn

)
γmn+

+
(

Fmnrij + Dijmnr
)

χmnr +
(
aij + bij

)
φ +

(
dijk + eijk

)
φ,k −

(
αij + βij

)
θ)
]

,j
+ $ fi,

Ikr ϕ̈jr=
(

uj,r Nirk+Fijkmnεmn+Dmnijkγmn+Cijkmnrχmnr+cijkφ+ fijkmφ,m−δijkθ
)

,i
(14)

−ϕjiQki+ϕji,r Nrki+Gjkmnεmn+Bjkmnγmn+Djkmnrχmnr+bjkφ+ejkiφ,i−β jkθ+$gjk,

$κφ̈ =
(
dmniεmn + emniγmn + fmnriχmnr + diφ + Aijφ,j − aiθ

)
,i + $l −

−aijεij − bijγij − cijkχijk − ξφ− diφ,i + mθ,

aθ̇ =
1

$T0
(kijθ,j),i +

1
T0

r− αij ε̇ij − βijγ̇ij − δijkχ̇ijk −mφ̇− aiφ̇,i. (15)
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We can define the solution of our mixed initial boundary value problem in the context of the
theory of thermoelasticity of initially stressed bodies with voids in the cylinder Ω0 = B× [0, t0) as
being the array (ui, ϕjk, θ, φ) that verify all equations of the system (14)–(15) for any (x, t) ∈ Ω0, and
satisfy the initial data (12) and also the conditions to the limit (13).

3. Main Result

First of all, we start by introducing the definition of the concept of a domain of influence. Then, we
will prove an inequality which will underpin the influence theorem. This inequality is a counterpart of
that demonstrated in the study [5]. The main result of our work is a theorem regarding the existence of
a domain of influence in the context of thermoelasticity of porous materials.

In order to obtain our results, we need to impose the following hypotheses on the properties of
the bodies:

(i) $ > 0, κ > 0, Iij > 0, T0 > 0, a > 0;
(ii)

Aijmnxijxmn + 2Gijmnxijymn + Bijmnyijymn + 2Fmnrijxijzmnr +

+2Dijmnryijzmnr + Cijkmnrzijkzmnr + Pkixjkxji − 2Qikxjiyjk +

+Nrikxjizjkr + 2aijxijω + 2bijyijω + 2cijkzijkω + 2dijkxijωk +

+2eijkyijωk + 2 fijkmzijωm + 2diωiω + ξω2 + Aijωiωj ≥
≥ α(xijxij + yijyij + zijkzijk + ωiωi + ω2), (16)

for all xij = xji, yji, zijk, ωi, ω;

(iii) kijηiηj ≥ γηiηi, for all ηi.

These hypotheses are not considered as very restrictive, as they are commonly imposed
in mechanics of continuum media. As an example, the hypothesis iii is deduced from the corollary (9)
and this can be obtained from the entropy production inequality.

By analogy with the step function of Heaviside, we will consider a smooth non-decreasing
function Ue(z) as follows:

Ue(z) =

{
0, i f z ∈ (−∞, 0],
1, i f z ∈ [α, ∞),

for a sufficiently small e > 0.

We now fix two constants R > 0 and t > 0 and use d = |x− x0|, in order to define, with the help
of the above function Ue, the following useful function

V : B× [0, t]→ R, V(x, s) = Ue

(
R− d

v
+ t− s

)
. (17)

x0 is an arbitrary point fixed in B. Here, v > 0 is a constant which have the amplitude of speed, which
will be determined later.

Using a sphere S(x0,R) of the form

S(x0,R) = {x ∈ R3 : |x− x0| < R}, (18)

we define the set A by
A =

⋃
α∈[0,t]

S [x0, R + v(t− α)] .
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It is easy to see that V(x, s) is a regular function in all points of B× [0, t], which decay to zero outside
set A.

We now prove an inequality which is useful in what follows.

Proposition 1. If the ordered array (ui, ϕij, φ, θ) satisfies the system of Equations (14) and (15) and verifies
Equations (12) and (13), then the following inequality takes place:

[
$u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + $κφ̇2 + aθ2 + Aijmnεijεmn+

+2Gijmnεijγmn + Bijmnγijγmn + 2Fmnrijεijχmnr +

+2Dijmnrγijχmnr + Cijkmnrχijkχmnr + 2aijεijφ +

+2bijγijφ + 2cijkχijkφ + 2dijkεijφ,k + 2eijkγijφ,k + (19)

+2 fijkmχijkφ,k + 2diφφ,i + 2Aijφ,iφ,j + ξφ2
]
≥

≥
[
$u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + $κφ̇2 + aθ2+

+εijεij + γijγij + χijkχijk + φ2 + φ,iφ,i

]
for all (x, s) ∈ B× [0, t].

Proof. This result can be immediately deduced by taking into account the above assumptions i and
ii.

Let us define a function P(x, s) by

P =
1
2

[
$u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + $κφ̇2 + aθ2 + Aijmnεijεmn+

+2Gijmnεijγmn + Bijmnγijγmn + 2Fmnrijεijχmnr +

+2Dijmnrγijχmnr + Cijkmnrχijkχmnr + Pkiuj,kuj,i − (20)

−2Qikuj,i ϕjk + 2Nrikuj,i ϕjk,r + 2aijεijφ + 2bijγijφ +

+2cijkχijkφ + 2dijkεijφ,k + 2eijkγijφ,k +

+2 fijkmχijkφ,k + 2diφφ,i + Aijφ,iφ,j + ξφ2
]

.

From definition (20), we can deduce that P, as a function of (t, s) is, in fact, the potential density energy.

In the following, we also use the function K(x, s) defined by

K =
1
2

[
$u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + $κφ̇2 + aθ2+

+εijεij + γijγij + χijkχijk + φ2 + φ,iφ,i

]
. (21)

Clearly, this function is kinetic energy.
If we take into account the hypotheses i and ii, from Equations (20) and (21), we are led to the conclusion

P(x, τ) ≥ K(x, τ), ∀(x, τ) ∈ B× [0, t]. (22)

In the following theorem, we will prove an inequality, which is helpful to obtain our main result.
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Theorem 1. If (ui, ϕij, θ, φ) is a solution of the system of Equations (14) and (15) that verifies (12) and (13),
then the next inequality is satisfied for any (x, τ) in the cylinder B× [0, t]:

∫
D[x0,R]

P(x, t)dv +
1
T0

∫ t

0

∫
D[x0,R+c(t−s)]

kijθ,iθ,jdv ≤
∫

D[x0,R+ct]
P(x, 0)dv +

+
∫ t

0

∫
D[x0,R+c(t−s)]

$

[
fiu̇i + gjk ϕ̇jk + lφ̇ +

1
T0

rθ

]
dvds + (23)

+
∫ t

0

∫
∂D[x0,R+c(t−s)]

[
t̄iu̇i + µ̄jk ϕ̇jk + h̄φ̇ +

1
T0

q̄θ

]
dSds,

for any R > 0, t > 0 and x0 ∈ B.
Here, D(x0, R) = {α ∈ B : |α− x0| < R}, ∂D(x0, R) = {α ∈ ∂B : |α− x0| < R}.

Proof. If we multiply the both members of Equation (14)1 by Vu̇i, we obtain

1
2

V
d
dt
($u̇iu̇i) = $V fiu̇i +

[
V
(
τij + ηij

)
u̇i
]

,j −V,j
(
τij + ηij

)
u̇i −

−V
(

Aijmnεmn + Gijmnγmn + Fijmnrχmn + aijφ + dijkφ,k − αijθ
)

u̇i,j. (24)

Analogously, we multiply both sides of Equation(14)2 by V ϕ̇jk, so that we get the equality

1
2

V
d
dt
(Ikr ϕ̇jr ϕ̇jk) = $Vmjk ϕ̇jk + (Vµijk ϕ̇jk),i −V,iµijk ϕ̇jk −

−V
(

Fijkmnεmn + Dmnijkγmn + Cijkmnrχmnr + cijkφ + fijkmφ,m − δijk

)
ϕ̇jk,i. (25)

Furthermore, multiplying both sides of (14)3 by Vφ̇, we obtain the identity

1
2

V
d
dt
($κφ̇2) = $Vlφ̇ + (Vhiφ̇),i −V,ihiφ̇−

−V(Aijφ,jφ̇,i + dmniεmnφ̇,i + emniγmnφ̇,i + fmnriχmnrφ̇,i + diφφ̇,i − aiθφ̇,i)− (26)

−V(aijεijφ̇ + bijγijφ̇ + cijkχijkφ̇ + ξφφ̇ + diφ,iφ̇−mθφ̇).

At last, by multiplying both sides of (14)4 by Vθ, we will obtain

1
2

G
d
dt
(aθ2) =

1
T0

Grθ +
1

$T0

[
(Gθqi),i − G,iθqi

]
−

− 1
$T0

Gkijθ,iθ,j − G
(

αijθε̇ij + βijθγ̇ij + δijkθχ̇ij + mθφ̇ + aiθφ̇,i

)
. (27)
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Now, by summing up, term by term, Equations (24)–(27), it is easy to deduce the identity

1
2

V
d
dt
($u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + $κφ̇2 + aθ2) =

= $V fiu̇i + $Vgjk ϕ̇jk + $Vlφ̇ +
1
T0

Vrθ +

+V
[(

τij + ηij
)

u̇j + µijk ϕ̇jk + hiφ̇ +
1

$T0
θqi

]
,i
−

−V
[
Aijmnεmn ε̇ij + Gijmn

(
εmnγ̇ij + ε̇mnγij

)
+

+Bijmnγmnγ̇ij + Fmnrij
(
εijχ̇mnr + ε̇ijχmnr

)
+

+Dijmnr
(
γijχ̇mnr + γ̇ijχmnr

)
+ Cijkmnrχijkχ̇mnr + (28)

+aij
(
ε̇ijφ+εijφ̇

)
+bij

(
γ̇ijφ+γijφ̇

)
+cijk

(
χ̇ijkφ+χijkφ̇

)
+

+dijk
(
εijφ̇,k + ε̇ijφ,k

)
+ eijk

(
γijφ̇,k + γ̇ijφ,k

)
+

+ fijkm

(
χijkφ̇,m + χ̇ijkφ,m

)
+ di (φφ̇,i + φ̇φ,i) +

+Aijφ,iφ̇,j + ξφφ̇
]
−V,j

(
τij + ηij

)
u̇i −V,iµijk ϕ̇jk −

−V,ihiφ̇−
1

$T0
V,iqiθ −

1
$T0

Vkijθ,iθ,j.

It is not difficult to notice that relation (28) can be rewritten in the following equivalent form:

1
2

G
d
dt

(
$u̇iu̇i + Ikr ϕ̇jr ϕ̇jk + $κφ̇2 + aθ2+

+Aijmnεmnεij + 2Gijmnγmnεij + Bijmnγmnγij +

+2Fmnrijεijχmnr + 2Dijmnrγijχmnr + Cijkmnrχijkχmnr +

+2aijεijφ + 2bijγijφ + 2cijχijφ + 2dijkεijφ,k +

+2eijkγijφ,k + 2 fijkmχijkφ,m + 2diφφ,i + Aijφ,iφ,j + (29)

+2aiθφ,i − 2mθφ + aθ2 + ξφ2
)
=

= $V
(

fiu̇i + gjk ϕ̇jk + $lφ̇ +
1
T0

rθ

)
+

+V
[(

τij + ηij
)

u̇i + µijk ϕ̇jk + hjφ̇ +
1

$T0
θqj

]
,j
−

−V,j
(
τij + ηij

)
u̇i −V,iµijk ϕ̇jk −V,ihiφ̇−V,i

1
$T0

θqi −
1

$T0
kijθ,iθ,j.

Taking into account the expression of the potential energy P from (30), identity (29) can be restated
in the form

1
2

VṖ +
1

$T0
kijθ,iθ,j =

= V
(

$ fiu̇i + $gjk ϕ̇jk + $lφ̇ +
1
T0

$rθ

)
+ (30)

+V
[(

τij + ηij
)

u̇j + µijk ϕ̇jk + hiφ̇ +
1

$T0
θqi

]
,i
−

−V,i

[(
τij + ηij

)
u̇j + µijk ϕ̇jk + hiφ̇ +

1
$T0

θqi

]
.
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By integrating, over B× [0, t], both sides of identity (30) so that, by using the divergence theorem
and the conditions to the limit (13), we are led to the following equality:

∫
B

VP(x, t)dv +
1

$T0

∫ t

0

∫
B

Vkijθ,iθ,jdvds =
∫

B
VP(x, 0)dv +

+
∫ t

0

∫
∂B

V
(

t̄iu̇i + µ̄jk ϕ̇jk + h̄φ̇ +
1

$T0
q̄θ

)
dvds + (31)

+
∫ t

0

∫
B

$V
(

fiu̇i + gjk ϕ̇jk + lφ̇ +
1
T0

rθ

)
dvds +

+
∫ t

0

∫
B

V̇P(x, s)dvds−
∫ t

0

∫
B

V,i

[(
τij + ηij

)
u̇j + µijk ϕ̇jk + hiφ̇ +

1
$T0

qiθ

]
dvds.

Now, we consider the definition (17) of the function V in order to the identity:

∣∣∣∣−V,j
(
τij + ηij

)
u̇i −V,iµijk ϕ̇jk −V,ihiφ̇−

1
$T0

V,iqiθ

∣∣∣∣ =
=

∣∣∣∣1cU ′e xj

r
(
τij + ηij

)
u̇i +

1
c
U ′e

xi
r

µijk ϕ̇jk +
1
c
U ′e

xi
r

hiφ̇ +
1

c$T0
U ′e

xi
r

qiθ

∣∣∣∣ = (32)

=

∣∣∣∣1cU ′e 1
r
[(

Aijmnεmnxj + Gijmnγmnxj + Fijmnrχmnrxj+

+
(
aij + bij

)
φxj +

(
dijk + eijk

)
φ,kxj −

(
αij + βij

)
θxj

]
u̇i +

+
(

Fjkmnrεmnxr + Djkmnrγmnxr + Cijkmnrχmnrxi

)
ϕ̇jk +

+
(

Dmniεmnxi + Emniγmnxi + Aijφ,jxi + diφxi − aiθxi
)

φ̇ +
1

$T0
kijθ,jθxi

]∣∣∣∣ ,

where we used the notation:
U ′e =

dUe

dr
.

For the terms on the right-hand side of identity (32), we will use the arithmetic-geometric mean
inequality in the form

ab ≤ 1
2

(
a2

m2 + b2m2
)

(33)

such that if we choose some suitable parameters m, we can find v (from the definition of Ue) to satisfy
the inequality ∣∣∣∣−V,j

(
τij + ηij

)
u̇i −V,jµijk ϕ̇jk −V,ihiφ̇−

1
T0

V,iqiθ

∣∣∣∣ ≤ U ′e K(x, s). (34)

In addition, we obtain the inequality

∫ t

0

∫
B

V̇P(x, s)dvds−

−
∫ t

0

∫
B

(
V,j
(
τij + ηij

)
u̇i + V,jµijk ϕ̇jk + V,ihiφ̇ +

1
T0

V,iqiθ

)
dvds ≤ (35)

≤
∫ t

0

∫
B
U ′e (x, τ)[K(x, τ)− P(x, τ)]dvdτ ≤ 0.
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Considering inequality (35), we are led to the conclusion that identity (31) receives the following
form: ∫

B
VP(x, t)dV +

1
T0

∫ t

0

∫
B

Vkijθ,iθ,jdvds ≤
∫

B
VP(x, 0)dv +

+
∫ t

0

∫
B

$V
(

fiu̇i + gjk ϕ̇jk + lφ̇ +
1

$2T0
rθ

)
dvds + (36)

+
∫ t

0

∫
∂B

V
(

t̄iu̇i + µ̄jk ϕ̇jk + h̄φ̇ +
1

$T0
q̄θ

)
dvds.

Finally, if we will pass to the limit in relation (36), as e→ 0, then we deduce that the (boundedly)
limit of the function V is the indicator function, also called the characteristic function, for the set A,
defined after (18). As an immediate consequence, we are led to the inequality (23), such that Theorem
1 is concluded.

The previous estimations obtained in Theorem 1, Proposition 1 will be used to obtain the main
theorem of our present work, which is a generalization of the domain of influence result.

Let us denote by B(t) the set that contains the points x from B̄ such that:

(1) for x ∈ B, u0
i 6=0 or u1

i 6=0or ϕ0
jk 6=0 or ϕ1

jk 6=0 or φ0 6=0 or φ1 6=0 or θ0 6=0 or
∃α ∈ [0, t] so that fi(x, α) 6= 0 or mi(x, α) 6= 0 or l(x, α) 6= 0 or r(x, α) 6= 0;

(2) for x ∈ ∂B1, ∃α ∈ [0, t] so that ūi(x, α) 6= 0;
(3) for x ∈ ∂Bc

1, ∃α ∈ [0, t] so that t̄i(x, α) 6= 0;
(4) for x ∈ ∂B2, ∃α ∈ [0, t] so that ϕ̄jk(x, α) 6= 0;
(5) for x ∈ ∂Bc

2, ∃α ∈ [0, t] so that µ̄jk(x, α) 6= 0;
(6) for x ∈ ∂B3, ∃α ∈ [0, t] so that φ̄(x, α) 6= 0;
(7) for x ∈ ∂Bc

3, ∃α ∈ [0, t] so that h̄(x, α) 6= 0;
(8) for x ∈ ∂B4, ∃α ∈ [0, t] so that θ̄(x, α) 6= 0;
(9) for x ∈ ∂Bc

4, ∃α ∈ [0, t] so that q̄(x, α) 6= 0.

At the instant t, the domain of influence of the data, Bt, is a set defined by

Bt = {x0 ∈ B̄ : B(t) ∩ S̄(x0, vt) 6= Φ}, (37)

where Φ is the notation for the empty set and the sphere S(x0, vt) is defined in Equation (18).
Now, we can prove the main result of our study.

Theorem 2. If the array (ui, ϕij, θ, φ) verifies all equations of the system of Equations (14) and (15) and satisfies
the conditions (12) and (13), we obtain a characterization of the solution as follows:

ui = 0, ϕij = 0, θ = 0 and φ = 0, for (x, τ) ∈ {B̄ \ Bt} × [0, t]. (38)

Proof. We will use inequality (23) considered for an arbitrary x0, x0 ∈ B̄ \ Bt and τ ∈ [0, t], by taking
the values t = τ and R = v(t− τ). Then, we obtain∫

D[x0,v(t−τ)]
P(x, τ)dV +

1
T0

∫ τ

0

∫
D[x0,v(t−s)]

kijθ,iθ,jdVds ≤

≤
∫

D[x0,vt)]
P(0, x)dv +

∫ τ

0

∫
D[x0,v(t−s)]

$

(
fiu̇i + gjk ϕ̇jk + lφ̇ +

1
T0

rθ

)
dVds + (39)

+
∫ τ

0

∫
∂D[x0,v(t−s)]

$

(
t̄iu̇i + µ̄jk ϕ̇jk + h̄φ̇ +

1
T0

q̄θ

)
dSds.
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However, x0 ∈ B̄ \ Bt, so we can deduce that x ∈ D(x0, vt) and therefore x 6∈ B(t). Thus, we are
led to the conclusion that ∫

D[x0,vt]
P(0, x)dv = 0. (40)

Taking into account that, because of D[x0, v(t− s)] ⊆ D(x0, vt), we get

∫ τ

0

∫
D[x0,v(t−s)]

$

(
fiu̇i + gjk ϕ̇jk + lφ̇ +

1
T0

rθ

)
dVds = 0 (41)

and ∫ τ

0

∫
D[x0,v(t−s)]

(
t̄iu̇i + µ̄jk ϕ̇jk + h̄φ̇ +

1
T0

q̄θ

)
dVds = 0. (42)

Now, considering the hypothesis iii and taking into account the relations (40)–(42), we deduce∫
D[x0,v(t−s)]

P(s, x)dv ≤ 0. (43)

The inequality (43) together with the inequality (22) lead to the conclusion∫
D[x0,v(t−s)]

K(x, s)dV ≤ 0 (44)

so that, considering the definition (21) of the function K, we obtain

u̇i(x0, s) = 0, ϕ̇jk(x0, s) = 0, θ(x0, s) = 0, φ(x0, s) = 0

for all (x0, s) ∈ {B̄ \ Bt} × [0, t].
At last, because ui(x0, 0) = 0, ϕjk(x0, 0) = 0 for all x0 ∈ B̄ \ Bt, we get

ui(x0, s) = 0, ϕjk(x0, s) = 0, θ(x0, s) = 0, φ(x0, s) = 0

for all (x0, s) ∈ {B̄ \ Bt} × [0, t] so that the proof of Theorem 2 is complete.

4. Conclusions

We want to emphasize that our main result from the present study is a generalization of the result
regarding the domain of influence theorem from classical elasticity and this extension is made in a
more complex context, one of the theory of thermoelastic body with dipolar structure and with voids.
Thus, we have proven that the result regarding the domain of influence is still valid even if we are out
of the framework of classical elasticity.

Namely, we need to emphasize that the validity of the domain of influence result was not affected
by the fact that we considered the effect of thermal treatment, the effect of the dipolar structure and
the effect of voids.
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