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Abstract: In banks, governments, and internet companies, due to the increasing demand for data
in various information systems and continuously shortening of the cycle for data collection and
update, there may be a variety of data quality issues in a database. As the expansion of data
scales, methods such as pre-specifying business rules or introducing expert experience into a repair
process are no longer applicable to some information systems requiring rapid responses. In this case,
we divided data cleaning into supervised and unsupervised forms according to whether there were
interventions in the repair processes and put forward a new dimension suitable for unsupervised
cleaning in this paper. For weak logic errors in unsupervised data cleaning, we proposed an attribute
correlation-based (ACB)-Framework under blocking, and designed three different data blocking
methods to reduce the time complexity and test the impact of clustering accuracy on data cleaning.
The experiments showed that the blocking methods could effectively reduce the repair time by
maintaining the repair validity. Moreover, we concluded that the blocking methods with a too high
clustering accuracy tended to put tuples with the same elements into a data block, which reduced
the cleaning ability. In summary, the ACB-Framework with blocking can reduce the corresponding
time cost and does not need the guidance of domain knowledge or interventions in repair, which can
be applied in information systems requiring rapid responses, such as internet web pages, network
servers, and sensor information acquisition.
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1. Introduction

Data cleaning means the examination and repair of identifiable errors by manual or technical
means to improve data quality [1]. In banks, governments and internet companies, the increasing
demand for data in various information systems and constantly shrinking of the cycle for data collection
and update make the data scale expand, and can even lead to a variety of “dirty data”, which are often
fatal in a data-intensive enterprises and may cause huge economic losses. It’s the key and the purpose
of doing data cleaning to solve the data quality problems accompanying big data and clean “dirty
data” in datasets How to solve data quality problems accompanying big data and clean “dirty data” in
datasets is the key and the purpose of data cleaning research [2]. The data mining method is usually
used to obtain valuable information from datasets; however, because “dirty data” cannot correctly
express the true state of elements and destroys the relationship between objective elements, it makes the
results of data mining untrustworthy, which brings great difficulties to the decision-making process [3].

Referring to supervised learning [4,5] and unsupervised learning [6–8] in machine learning,
we divide the data cleaning into two different forms: supervised and unsupervised data cleaning.
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Here, the difference is that the supervised and unsupervised data cleaning is not determined by
whether training sets with accurate labels are required, but according to whether external interventions
in the cleaning processes exist. Supervised data cleaning means cleaning the “dirty data” by first
pre-specifying business rules or introducing manual interventions, then dividing these “dirty data”
into specific data quality dimensions and selecting appropriate methods to repair them, e.g., repairing
the inconsistent data violating conditional functional dependencies [9] and data currency improvement
by specifying the timing series [10], which usually achieves better repair results because of sufficient
prior knowledge before repair. Furthermore, the review and modification of the results by the domain
experts after the repair can further improve the accuracy. However, not all the data cleaning processes
are always supervised, and some domain-independent erroneous data which are violating basic
database constraints or system semantics can also be detected in a data checking process. These
domain-independent erroneous data are difficult to be classified into traditional ones because of the
lack of business rules, which makes it difficult to repair relying on existing business rules. The data
cleaning for these domain-independent erroneous data can be regarded as an unsupervised data
cleaning process. Unlike traditional data quality problems, the detection of domain-independent
erroneous data does not depend on business rules specified by business personnel, but on basic
database constraints and system semantics. Meanwhile, their repair does not rely on the existing
business rules too. Therefore, they are a kind of common erroneous data, and their repair may be more
difficult without the participation of business rules.

In this case, our research focuses on data quality problems and proposes an unsupervised data
cleaning framework. It takes the corresponding conflict-free data set without “dirty data” as the
training set and learns the correlation among attributes by machine learning to guide the subsequent
repair. By keeping the repairability, we design blocking methods to reduce the time complexity,
so that it can be applied to large-scale datasets. The whole framework does not require to pre-specify
business rules or manual interventions, and it is an automatic and common framework, which ensures
real-time performance.

1.1. Problem Description

In supervised data cleaning, different types of data quality problems are usually divided into
different dimensions. The classical dimension includes indicators such as accuracy, completeness,
consistency, normalization, and timeliness [11]. Under these circumstances, researchers detect and
repair data quality problems by specifying multiple business rules or logical relationships among data,
and usually adopt different methods for different dimension problems, e.g., missing data filling in
the multi-view and panoramic dispatching [12,13], and inconsistent data repair under the distributed
big data [14]. Unlike the supervised data cleaning, the unsupervised data cleaning can essentially
be seen as a repair way which relies solely on the dataset itself. Due to the lack of sufficient domain
knowledge to specify the corresponding business rules for the erroneous data, we believe that different
dimension problems can be repaired by a similar method in the unsupervised environment. Therefore,
we reclassified data quality problems into the following dimensions:

(1) Redundancy error

Similar to traditional data quality dimensions [13], the redundancy error data in unsupervised
cleaning also means that multiple identical or similar records are generated for the same entities [15].
Because it contains useless or duplicate information, the redundant data wastes storage space and
reduces data availability. Entity resolution (ER) technology is usually used to repair this kind of data
error [15–17].

(2) Canonicalization error

Canonicalization errors indicate an inconsistency caused by different recording methods for the
same attributes in the process of data merging or multi-source data fusion [11]. The values of these
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error elements are usually correct, but due to the lack of standardization, they are determined as a data
error during the detection process. In this case, data standardization can solve these errors well.

(3) Strong logic error

Strong logic errors have two meanings. Firstly, different from canonicalization errors and redundancy
errors, they are a kind of error type with a truth value error. Secondly, there is a strong logical correlation
between the attribute of the data error and other attributes in the dataset (e.g., the left-hand side (LHS)
and right-hand side (RHS) attributes of a conditional functional dependency: the birthday, and age
attributes of a company’s staff). Such strong logical correlation is easy to obtain or specify from the given
dataset and can guide the cleaning process directly. For strong logic errors in domain-independent
erroneous data, these strong logic relationships between attributes can be transformed into business
rules, and we can adopt an existing supervised method to reduce the repair difficulty according to the
transformed rules.

(4) Weak logic error

Weak logic errors in datasets are the focus of our attention, and they are also a kind of error
type with truth value error, but there is a weak logic correlation among attributes, which are also
the inherent relationship (e.g., the company address and home address of a staff, and the correlation
between an employee’s education and monthly salary). Although the data elements with weak logic
errors seem to be unrelated to other attributes in the dataset, there is a certain internal correlation
between the data elements, and such logical relations are also inherent in the dataset, but they are
difficult to discover for directly guiding the repair of the erroneous data.

In summary, we can adopt methods in supervised data cleaning for the redundancy error,
canonicalization error, and strong logic error of domain-independent erroneous data. However, we
have to design a new method for weak logic errors, because it is difficult to transform weak logic
relations into business rules directly. Therefore, the purpose of this paper is to propose an unsupervised
data cleaning framework for weak logical error data in datasets, so that the repair results can make full
use of the correlation among data elements.

The following relation schema is given to illustrate the expression of the erroneous elements and
the corresponding cleaning processes.

HousePrices (Id, MSSubClass, MSZoning, Street, LotShape, CentralAir, BldgType, SalePrice)
The meanings, value types, and abbreviations of every attribute in the relation schema are shown

in Table 1.

Table 1. HousePrices attributes description.

Attributes Meanings Value Types Abbreviations

Id the building number numeric ID
MSSubClass the building class numeric MC
MSZoning the general zoning classification text MZ

Street type of road access text ST
LotShape general shape of property text LS

CentralAir central air conditioning Boolean CA
BldgType type of dwelling text BT
SalePrice the property’s sale price in dollars numeric SP

For description convenience, the subsequent attributes’ descriptions are all represented by the
abbreviations in this paper; for example, the LS and BT indicate the LotShape attribute and the
BldgType attribute in HousePrices, respectively.

For example, part of the tuple in the HousePrices dataset was selected here to give a partial data
instance in the relational schema, which is shown in Table 2. MSZoning means identifies the general
zoning classification of the sale, and RL, RM, FV are residential low density, residential medium density
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and floating village residential respectively. Street means type of road access to property, and Grvl is
gravel, while Pave is paved. LotShape means general shape of property, and Reg, IR1, IR2 are regular,
slightly irregular and moderately respectively. Since elements in datasets do not appear randomly,
there can be some inherent correlation between the erroneous element and other elements in data
instances, and these elements can be treated as weak logic errors in the unsupervised environment.
When lacking sufficient domain knowledge and interventions, we hope to take the correlation in
datasets into account and obtain the most relevant repair results.

Table 2. HousePrices data instance.

ID MC MZ ST LS CA BT SP

1 60 RL Pave Reg Y 1Fam 200,000
2 20 RL Pave Reg * 1Fam 181,500
3 60 RM Pave IR1 Y 1Fam 140,000
4 * RL Grvl IR1 Y * 250,000
5 60 FV Pave IR1 N 1Fam 140,000
6 50 RM Pave Reg N 1Fam 307,000
7 20 * Pave IR2 Y Duplex 200,000
8 60 RM Grvl IR2 Y 1Fam 129,500
9 50 FV Pave Reg Y Duplex 129,500
10 20 RL Pave IR1 N 1Fam 345,000

* were used to simulate the erroneous data in HousePrices instance.

In this paper, we express the erroneous dataset (EDS) in datasets as follows.

EDS =
{(

ti, A j
)
, (tk, Al), . . . , (tm, An)

}
(1)

In Equation (1), ti, tk, and tm represent the unique tuple identifiers of erroneous data, and A j, Al,
and An represent the corresponding attributes. We can locate the erroneous data in datasets through
the two-tuples expression, for example, the EDS in HousePrices instance can be expressed as

EDS =
{
(t2, CA), (t4, MC), (t4, BT), (t7, MZ)

}
.

1.2. Research Status

The current data cleaning research aims to divide different data quality problems into datasets, and
adopts different repair methods in the traditional dimension, e.g., for the redundant data in datasets,
Abu Ahmad et al. [16] proposed a multi-attributes weighted rule system (MAWR) to solve different
entities with the same name in entity resolution processes, and these entities have no identifier keys,
and Wang et al. [17] proposed an entity resolution method based on sub-graph cohesion to solve the
transitivity problems in resolution. For the inconsistent data in datasets, Brisaboa et al. [18] proposed
a rank-based data cleaning strategy to solve the inconsistent data in spatial databases and improve
the efficiency by dynamic adjustment, and Xu et al. [19] proposed an inconsistent data repair method
based on the minimum cost, and selected an element to repair by computing the change amount of
conflict elements before and after all candidate repair values updating.

Different from the supervised data cleaning process, the unsupervised data cleaning lacks sufficient
domain knowledge and interventions, so different data quality problems in the traditional dimension
can be repaired by similar methods. For the unsupervised data cleaning, the common methods can
be divided into two categories. One is to use data mining (such as association rules mining [20,21],
frequent pattern mining [22], etc.) to mine out possible business rules from datasets and transforms
the unsupervised data cleaning into supervised. However, there are two main disadvantages in these
methods: (1) The support threshold setting in data mining has a great impact on results; too large or
too small thresholds will affect its credibility and effectiveness. In this case, a different combination of
thresholds can obtain a different mining result, which makes the results subjective. (2) The data mining
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results are not all “equality constraints” like conditional functional dependencies, which cannot guide
the repair process directly, but also need to integrate a decision tree [23], interpolation [24] or other
methods. The other is to use the dataset itself to repair data errors, e.g., Reference [25] proposes a data
cleaning framework, Boostclean, based on machine learning, which improves the accuracy of detection
and repair, and Reference [26] proposed a regression-based method to repair the erroneous data in
datasets, while using an interactive method to correct the unsatisfactory data, which combines the
supervised and unsupervised ideas. These kinds of methods do not require an additional training
set in the repair processes, but the time complexity is relatively high. Therefore, we hold the opinion
that, in unsupervised cleaning, the corresponding conflict-free dataset without “dirty data” can be
regarded as the training set to learn the correlation, and then we repair the erroneous data by the
learning correlation, which may obtain better results.

In summary, the current data cleaning research mainly has the following three problems:
(1) Different algorithms can better repair the erroneous data in the dataset, but the complexity
is also high, which cannot be applied to some large datasets. (2) When selecting a candidate repair
element, less consideration is taken of the correlation among the data, so that these methods can obtain
repair results, but their authenticity remains to be further questioned. (3) Different repair methods are
proposed for different traditional dimension problems, but less attention is paid to data cleaning in the
unsupervised environment. Because there are insufficient domain knowledge and manual interventions,
it can be much more difficult to repair the erroneous data in the unsupervised environment.

In our research, we hold that it is more credible to repair the erroneous data in datasets by learning
the inherent correlation under the unsupervised environment. The main idea is: For the given dataset
and EDS, the conflict-free dataset (Ic f ) that has deleted the erroneous data tuples is firstly partitioned by
using the data partitioning method to reduce the complexity of the repair algorithm. Then, we adopt
the symmetric uncertainty method in information theory to learn the correlation among attributes and
repair the erroneous data based on the learning correlation in each block. Finally, we select the most
frequent repair value in all blocks as the target value of the erroneous data. This method integrates the
data blocking and attribute correlation ideas and takes the conflict-free data subset (Ic f ) as the training
set to solve the problem of insufficient training sets in unsupervised cleaning. Moreover, it does not
require any additional domain knowledge and manual interventions, which provides high real-time
algorithm and it can be applied to large-scale information systems requiring a rapid response. We will
illustrate the blocking methods and specific repair processes in Section 2.

1.3. Purpose and Structure of This Paper

The purpose of this paper is to propose a data cleaning framework for weak logic errors under
unsupervised environments. The main contributions and innovations are:

(1) We divide the data cleaning into supervised and unsupervised forms according to whether
there are intervention processes and reclassify the data quality problems in datasets to clarify the
application scenarios of our proposed methods.

(2) For the unsupervised data cleaning, we take the conflict-free data subset as the training set to
learn the attribute correlations among elements and repair the erroneous data through the learning
correlation, which makes repair results satisfy the inherent rules of the datasets under the premise of
meeting requirements.

(3) We adopt data blocking technology to reduce the cleaning complexity and put forward three
different blocking methods to discuss the impact of blocking on repair ability so that the algorithm can
be applied to large-scale datasets.

The rest of this paper is structured as follows:
In Section 2, we first propose the data cleaning framework—attribute correlation-based

(ACB)-Framework—for weak logic errors in unsupervised data cleaning, and design two sub-modules
in the framework. To facilitate the reader’s understanding and for reproduction, we provide an
example to illustrate the blocking and cleaning process. Then, we implement the blocking and cleaning
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algorithms in the ACB-Framework and analyze their convergence and time complexity. In Section 3,
to compare the influence of the blocking methods with different clustering accuracies on the data
cleaning results, the ACB-Framework is carried out in different conditions. In Section 4, we first
summarize the experimental results and give possible explanations. Then, we analyze the advantages
and disadvantages of the ACB-Framework and put forward the subsequent directions for improvement.
At last, we comb the structure and summarize the contributions of this paper in Section 5.

2. Materials and Methods

For weak logic errors in unsupervised data cleaning, we put forward an attribute correlation-based
framework (ACB-Framework) under blocking, then analyze and design the blocking and cleaning
modules in the framework to improve the data quality and data availability.

2.1. Design of the ACB-Framework

In the unsupervised environment, we learned the attribute correlation from conflict-free data
sets, and guide the subsequent repair process according to the attribute relevance of learning, which
can improve the data quality in datasets. However, when the data scale is large, repair methods,
which directly learn the correlation and repair in Ic f , can be very complex and inefficient. In this case,
we adopted data blocking methods [15,27,28] to reduce the complexity on the basis of maintaining the
repair ability, so that the ACB-Framework can be applied to large-scale datasets.

In a data cleaning process, since some “dirty data” exists in datasets, we should consider the
following three aspects when designing blocking methods and subsequent data cleaning:

(1) How should datasets with erroneous data be blocked?

Because datasets with erroneous elements usually contain some wrong attribute values, which
will affect the data blocking accuracy, we take the corresponding conflict-free data subset without error
tuples (Ic f ) as the training set, and conduct blocking in Ic f .

(2) Which block should the erroneous data be repaired in?

Selecting different data blocks to repair the erroneous data can directly affect the repair results,
and the difference of repair validity before and after blocking is also an important index to evaluate
different blocking methods. The intuitive method is to select the most relevant and nearest block to
the erroneous data tuple so that the repair results can satisfy the correlation requirements. However,
because of some wrong elements in the erroneous tuple, other attributes in the erroneous tuple are
most relevant to a data block, which does not mean that the erroneous elements are also most relevant
to the data block. In this case, we put erroneous elements in every data block to repair and selected the
most frequent repair value in different data blocks as the final target value, which can largely eliminate
the impact of blocking methods on data repair results.

(3) How to assign the attribute weights in the blocking processes?

Data blocking is substantially similar to a clustering process. When computing the similarities
among multiple tuples, it is usually necessary to know the attribute weights in a dataset. The most
common method to assign the attribute weights is through expert experience, which makes it very
subjective, and the assignment of attribute weights itself is a kind of manual intervention. Therefore,
we choose the Jaccard method to avoid the setting of attribute weights.

In summary, our ideas can be concluded as follows. We first block the Ic f through the methods
proposed in Section 2.2. Then, we use the symmetric uncertainty in information theory to learn the
correlation among attributes in every data block and put the erroneous element into every data block
for repair. Finally, we select the most frequent repair value in different data blocks as the final target
value, and remove the repaired element from the EDS. While the EDS is empty, we can obtain the
repaired dataset. The flow of the ACB-Framework is shown in Figure 1.
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In Figure 1, the ACB-Framework takes the given dataset I and the EDS as input, and outputs
the repaired dataset I′, which can be divided into two modules: blocking and data cleaning. In the
unsupervised environment, the framework repairs the erroneous data in the EDS through the attribute
correlation, which selects the most relevant element in the blocks to replace the original element in
nature. Therefore, there may still be a small number of erroneous data remaining after repair. In order
to keep the convergence of the ACB-Framework, we adopt a label flag marking the repaired elements
to ensure every data element are repaired at most once.

2.2. The Blocking Module

According to the ACB-Framework in Figure 1, we adopt blocking methods to reduce the complexity
of the data cleaning processes. In order to test the impact of different clustering accuracies on data
cleaning, we designed three different blocking methods.

2.2.1. Design of Blocking Algorithms

Data blocking is the key to reducing the time complexity of the cleaning processes. It always
costs much time to learn the attribute correlation from the Ic f directly, so that it cannot be applied to a
large-scale dataset. In this case, by designing reasonable blocking algorithms, the ACB-Framework can
reduce the time complexity on the basis of keeping the repair ability. We believe three basic principles
should be followed when designing blocking methods:

(1) Blocking is a pretreatment process in data cleaning to reduce the time complexity, so we should
choose algorithms with low complexity.

(2) The repair ability of data cleaning algorithms cannot be significantly reduced after blocking.
(3) Blocking algorithms should improve the repair speed of erroneous data in datasets.

Data blocking is essentially similar to a clustering process, and we can get different results through
blocking methods with different clustering accuracies. We hold the opinion that over-precise blocking
results may destroy the correlation among elements in the original dataset and will reduce the repair
ability, because they put all similar data tuples into a data block. To validate this idea, we designed
three blocking methods with increasing clustering accuracy, and the time complexity of these three
methods was gradually increased.
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Random Blocking Algorithm (RBA)

The RBA is a very simple and fast blocking method, which can quickly divide a dataset into a
specified number of blocks. Suppose there are n tuples in Ic f , the RBA equally divides the Ic f into k
blocks on the basis of ensuring the initial tuple order and puts all remaining tuples that cannot be
divided exactly into the last data block. In this way, the tuple amounts in the first k − 1 blocks are all
[n/k], and the last block is no more than [n/k] + k− 1, as shown in Figure 2.
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Taking the HousePrices instance in Table 2 as an example, and the corresponding conflict-free
subset Ic f = {t1, t3, t5, t6, t8, t9, t10}, we specify the blocking amount k = 2, and the Ic f can be divided
into the following two blocks: Block 1 = {t1, t3, t5} and Block 2 = {t6, t8, t9, t10}.

The RBA takes the conflict-free dataset Ic f and blocking amount k as input. The main idea is to
divide the Ic f into k blocks under keeping the original tuple order, which is shown in Algorithm 1.

Algorithm 1. The Random Blocking Algorithm (RBA) flow.

Input: conflict-free dataset Ic f , blocks amounts k
Output: blocking results of RBA

01. // initialization
02. n=i=m=0;
03. // n is the tuples amounts in Ic f

04. n← tuples amount in Ic f ;

05. // i is the tuples amounts of the first k − 1 blocks
06. i← [n/k];
07. // m = 0,1,2, . . . ,k − 1
08. Block m = (ti(m−1)+1, tim) in Ic f ;

09. Block k← remaining tuples in Ic f ;

10. end;

In Algorithm 1, the L1 to L2 initialize the variables involved in the RBA; the L3 to L6 obtain the
tuple amount n of Ic f and compute the tuple amount i of the first k − 1 data blocks; the L8 to L10 do
blocking for tuples in Ic f .

The RBA has the advantage of fast blocking speed and can partly retain the correlation among
elements in the original dataset. However, its clustering accuracy is very poor, and the selection of
the blocking amount k will directly affect tuples in a block, thus further affecting the accuracy of the
attribute correlation learning from every data block. Therefore, we will analyze in detail the complexity
of the RBA in Section 2.2.2, and discuss the impact of blocking amount k on data cleaning in Section 3.2.

Similarity Blocking Algorithm, SBA

The SBA conducts blocking according to the similarities among tuples and puts tuples with high
similarity into the same data block. Compared with the RBA, the SBA has better clustering accuracy,
but also a higher time complexity. When designing a similarity function, a classic method is to set
different functions for different attribute types and then design a comprehensive algorithm to combine
the similarities of different attributes. However, this kind of method inevitably requires the attribute
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weights in datasets and has strong subjectivity. In this case, we adopt the Jaccard method to compute
the similarities among tuples in Ic f . The mathematical definition is as follows:

sim
(
ti, t j

)
=

∣∣∣ti = {A1, A2, . . . , AN} ∩ t j = {A1, A2, . . . , AN}
∣∣∣∣∣∣ti = {A1, A2, . . . , AN} ∪ t j = {A1, A2, . . . , AN}
∣∣∣ (2)

When the tuples ti and t j are the same, the sim
(
ti, t j

)
=1 and the sim

(
ti, t j

)
=0 when they are

totally different. Taking the tuples t1 and t3 of HousePrices instance in Table 2 as an example,
the sim(t1, t3) = 8/14 = 0.571.

The SBA takes the Ic f and a matching determination threshold thds as input. The main idea is
to first select a data tuple from the candidate queue (CQ) as the blocking center Ck and compute the
similarities between the Ck and other tuples in CQ. Then, we put all tuples satisfying the threshold thds

into a block and deleted them from the CQ. Similarly, other blocks can repeatedly be acquired until the
CQ does not contain any tuples, which is shown in Algorithm 2.

Algorithm 2. The Similarity Blocking Algorithm (SBA) flow.

Input: conflict-free dataset Ic f , threshold thds

Output: blocking results of SBA

01. // initialization
02. CQ=null, k=1;
03. // add all tuples in Ic f to candidate queue

04. CQ← tuples in Ic f ;

05. for CQ ! =null do
06. Ck ←a random tuple in CQ;
07. // add tuple Ck to Block k
08. Block k←add Ck;
09. CQ = CQ−Ck;
10. for ti ∈ CQ do
11. // the similarity between tuple ti and Ck satisfies the given threshold
12. if(sim(ti, Ck) ≥ thds) do
13. // add tuple ti to Block k
14. Block k←add ti;
15. CQ = CQ− ti;
16. end if;
17. end for;
18. k++;
19. end for;
20. end

In Algorithm 2, the L1 to L2 initialize the variables involved in the SBA; the L3 to L4 add all tuples
of Ic f into the candidate queue (CQ); the L5 to L9 randomly select a tuple from the CQ as the blocking
center Ck while the CQ is not empty, and delete it from the CQ after adding it to corresponding Block
k; the L10 to L17 compute the similarities between the Ck and other tuples in CQ, and remove all
satisfying tuples from the CQ after putting them into the Block k; the L18 to L20 repeatedly acquire
other blocks from the remaining CQ until the CQ is empty.

Compared with the RBA, the SBA method has better clustering accuracy, but also higher time
complexity. While blocking, the SBA determines whether two tuples ti and t j in Ic f matching by setting
a threshold thds. The selection of thds has a direct impact on blocking size and amount, and different
thresholds may influence the repair ability of the data cleaning module too. Therefore, we will analyze
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in detail the complexity of the SBA in Section 2.2.2, and discuss the impact of thds on the data cleaning
in Section 3.2.

Random Walk Blocking Algorithm, RWBA

The RWBA first needs to establish a similarity graph for all tuples according to the similarity pairs,
and then uses the structural information of the established graph to conduct blocking. In this paper,
a similar pair of tuples ti and t j in Ic f is expressed by the following triples.

similarity pair = [ti, t j, sim
(
ti, t j

)
] (3)

where ti and t j represent any two tuples in Ic f , and the sim
(
ti, t j

)
means the Jaccard similarity between

them. Compared with the SBA, the random walk on a similarity graph considers not only the direct
correlation between blocks and tuples, but also the indirect correlation through other tuples to blocks.
Therefore, when computing the correlation degree between blocks and tuples, we use the random walk
with the restart method to obtain the structural information in a similarity graph and take the stable
probability of the random walk as the correlation degree. To distinguish the Jaccard similarities among
tuples in the SBA, we express the correlation degree between a block n and tuple ti by random walk
method as the simcd(Block n, ti).

The random walk model [29] obtains the structural information in a similarity graph by simulating
a random walk behavior. Given a similarity graph G and a random walker, the walker starts from one
or a group of nodes with initial probabilities. During a transition process, the walker either arrives
at its neighbor nodes in G with a certain probability 1 − α , or returns to the initial nodes with a
probability α (i.e., the restart process). When the probability of the walker arriving at every node is
stable, the random walk process ends and reaches a convergence state. We take the stable probability
as the correlation degree between the initial node (nodes) and other nodes. In this way, we can make
full use of the structural information in the similarity graph when computing the correlation degrees
between blocks and tuples.

The similarity graph G(T,S), composed by similarity pairs, is a weighted and undirected graph,
where the T represents the node set in G(T,S) (i.e., the tuple set, ti ∈ T), and the S represents the similarity
set among nodes (i.e., the weight of G(T,S) represents the similarity between the corresponding two
tuples, sim

(
ti, t j

)
∈ S). In order to facilitate descriptions, we will use the two words, node and tuple,

without distinction.
The random walk with restart on the similarity graph G(T,S) is an irreducible, aperiodic, and

finite Markov chain, so the convergence state must exist and be unique [30]. For an initial node set N
(N ∈ T) in the G(T,S), let vector π0 be the probability distribution of every node in the initial state, and
the next state π1 can be expressed as

π1 = (1−α) × PT
×π0 + α× q (4)

In Equation (4), the initial state π0 and restart vector q are both column vectors in which the
components corresponding to initial nodes set are 1/N, and the other components are all 0. The restart
probability α= 0.15 [31] and P is the state transition matrix on similarity graph G(T,S). The mathematical
definition is as follows

P = {Pi j|Pi j = wi j/
∑

wi∗} (5)

where the wi j is the corresponding weight of a similarity pair ti and t j, i.e., the sim
(
ti, t j

)
.

The subsequent states πn on G(T,S) can be similarly computed by the Equation (4). When all
nodes on the G(T,S) are in convergence, which is recorded as the vector π∗, the components of the π∗
are relatively stable and satisfy Equation (6).

π∗ = (1−α) × PT
×π∗ + α× q (6)
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The RWBA takes the Ic f and a matching determination threshold thdr as input. The main idea is to
first compute all similarity pairs in Ic f and establish a similarity graph G(T,S). Then we add all tuples
in Ic f into the candidate queue (CQ) and randomly select a tuple from the CQ as the blocking center Bk.
Finally, we compute the correlation degrees between the Bk and other tuples in CQ by the random
walk with the restart method, and remove all satisfying tuples from the CQ after putting them into a
block. Similarly, we can obtain other blocks from the remaining CQ until the CQ is empty. The RWBA
flow is shown in Algorithm 3.

Algorithm 3. The Random Walk Blocking Algorithm (RWBA) flow.

Input: conflict-free dataset Ic f , threshold thdr

Output: blocking results of RWBA

01. // initialization
02. i = j = n = 0, k = 1, G(T,S) = CQ = null;
03. // n is the tuples amounts in Ic f

04. n← tuples amounts in Ic f ;

05. // get all similarity pairs in Ic f

06. sim
(
ti, t j

)
← Ic f (i = 1:n, j = i+1:n);

07. // get the similarity graph G(T,S) for all similarity pairs

08. G(T,S)← sim
(
ti, t j

)
;

09. // add all tuples in Ic f to the candidate queue

10. CQ← tuples in Ic f ;

11. for CQ ! =null do
12. Bk ←a random tuple in CQ;
13. // add tuple Bk to Block k
14. Block k←add Bk;
15. CQ = CQ− Bk;
16. // compute the convergence status for G(T,S) by random walk with restart
17. convergence← G(T,S);
18. for ti ∈ CQ do
19. // the correlation degree(simcd) between Bk and ti in convergence status
20. if(simcd(Bk, ti) ≥ thdr) do
21. Block k←add ti;
22. CQ = CQ− ti;
23. G(T,S)= G(T,S) −ti;
24. end if;
25. end for;
26. G(T,S) = G(T,S) − Bk;
27. k++;
28. end for;
29. end;

In Algorithm 3, the L1 to L2 initialize the variables involved in the RWBA; the L3 to L8 compute
all similarity pairs in Ic f and establish a similarity graph G(T,S); the L9 to L10 add all tuples in Ic f into
the CQ; the L11 to L15 randomly select a tuple from the CQ as the blocking center Bk; the L16 to L17
compute the correlation degrees between the Bk and other tuples in the G(T,S) by convergent random
walk with restart; the L18 to L25 remove all satisfying tuples from the CQ and G(T,S) after putting
them into a block; the L26 to L28 repeatedly acquire other blocks from the remaining CQ until the CQ
is empty.
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When blocking, the RWBA and SBA have similar algorithm flows, but the SBA adopts the Jaccard
similarity to measure the correlation between blocks and tuples, while the RWBA uses the convergent
random walk with restart method. Because the random walk with the restart method from the G(T,S)
can make full use of their structural information, the RWBA method always has better clustering
accuracy than the SBA. However, there is high time complexity to compute all similarity pairs in Ic f ,
establish a similarity graph G(T,S), and obtain the convergence state. In order to reduce the time
complexity of the RWBA, we propose two possible improvements: (1) When blocking, we put all tuples
satisfying the thdr into a data block at one time instead of adding the tuple with the highest correlation
degree. (2) When computing the convergence state on the G(T,S), we regard it as convergence as
soon as the gap between two adjacent states πk and πk+1 reaches a value. We will analyze in detail
the complexity of the RWBA in Section 2.2.2 and discuss the impact of thdr on the data cleaning in
Section 3.2.

2.2.2. The Convergence and Complexity Analysis of the Blocking Methods

When it comes to the RBA, SBA, and RWBA, they are all continuous loops to block a dataset.
Therefore, it is necessary to consider their convergence and time complexity.

Convergence Analysis

The convergence of the RBA, SBA, and RWBA means that these algorithms should terminate and
get stable blocking results for given input sets in Algorithm 1, 2, and 3. It can be proved that these
three methods are convergent for the Ic f with limited tuples.

Proof 1: The RBA, SBA, and RWBA methods are convergent for the Ic f with limited tuples. �

When blocking, the conflict-free dataset Ic f can be obtained by the original dataset I and the
erroneous dataset EDS, and we suppose there are n tuples in Ic f .

The RBA is very simple and can obtain the blocking results just by traversing the Ic f once, so it
is convergent.

According to the flow in Algorithm 2, the SBA first adds all tuples in Ic f into a CQ and randomly
selects a tuple from the CQ as the blocking center. Then, it puts all satisfying tuples into a block and
deletes them from the CQ. With the increase of data blocks, the tuples in the CQ decrease gradually,
and it will eventually end when the CQ is empty, so the SBA method is convergent.

The flow of the RWBA is similar to the SBA, but the RWBA needs to first compute all similarity pairs
in the Ic f and establish a similarity graph G(T,S), then it obtains the correlation degrees between blocks
and tuples through the random walk with the restart method in the G(T,S). Therefore, the convergence
of the RWBA is mainly affected by the construction of the G(T,S) and the convergence of restart random
walk. Because the similarity function of computing all similarity pairs in Ic f (showing in Expression (2))
is convergent, the construction of the G(T,S) is convergent too. In view of the G(T,S), it is a irreducible,
aperiodic, and finite Markov chain, so the convergence state must exist and be unique. In this case, the
RWBA is convergent.

Complexity Analysis

For the RBA, SBA, and RWBA algorithms, we mainly analyzed their time complexity. Suppose there
are n (t1, t2, . . . , tn) tuple amounts and N (A1, A2, . . . , AN) attribute amounts in the Ic f .

The RBA has a very fast blocking speed and can complete the blocking process by traversing the
Ic f only once, so its time complexity is O(n).

The SBA cyclically selects a blocking center Ck from the CQ, computes the similarities sim(ti, Ck)

between the Ck and other tuples in the CQ, and deletes all satisfying tuples from the CQ after putting
them into a block. Suppose there are θk tuples added into Block k for the kth loop; in the worst case,
only one tuple is added at a time, that is, θk = 1. Moreover, computing the similarities among tuples
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also requires a traversal of the N attributes in the Ic f . In this case, the time complexity of the SBA is
shown in Equation (7).

O(N(n(n− 1) + (n− 2)(n− 3) + . . .+ 2)) = O
(
Nn2

)
(7)

The time complexity of the SBA in Equation (7) is obtained in the worst case where θk = 1. In actual
computations, the θk is always bigger than 1, which makes the iteration times fewer.

The time complexity of the RWBA method can be divided into two parts: construction of the
G(T,S) and data blocking on the G(T,S). When establishing the G(T,S), we should compute all similarity
pairs in the Ic f , and the time complexity is the Cartesian level. Moreover, the computation to obtain
similarity pairs needs to traverses the N attributes in the Ic f , so the time complexity of the construction

of the G(T,S) is O
(
Nn2

)
. The flow of data blocking on the G(T,S) is similar to the SBA, except that we

take the stable probability of the random walk with the restart as the correlation between blocks and
tuples. For the given nodes in the G(T,S), the time complexity to obtain the convergence state of the
random walk with the restart is O

(
n3

)
. Suppose there are τk tuples added into Block k for the kth loop

through the correlation degrees of convergent random walk with restart; in the worst case, only one
tuple is added at a time, that is, τk = 1. In this case, the time complexity of blocking on the G(T,S) is
shown in Equation (8).

O
(
nn3 + (n− 2)(n− 2)3 + . . .+ 2× 23

)
= O

(
n4

)
(8)

When the data scale is large, the attributed amount is much smaller than the tuple amount, that is,
N � n. At last, the time complexity of the RWBA is

O
(
n4 + Nn2

)
= O

(
n4

)
(9)

Similar to Equation (7), the time complexity in Equation (9) is also obtained in the worst case,
where τk = 1. In actual computations, the τk is always bigger than 1, which makes the iteration times
fewer too.

2.3. The Data Cleaning Module

According to the ACB-Framework in Figure 1, we designed the ACB-Repair algorithm for the
blocked datasets. In order to reduce the impact of blocking on data cleaning, we put the erroneous
data in every block to repair and select the most frequent repair value as the target value of the
erroneous data.

2.3.1. Design of the ACB-Repair

The data cleaning module is the core of the ACB-Framework, and we adopted the symmetric
uncertainty method in information theory to repair the erroneous elements in EDS. It can be divided
into two sub-modules: attribute correlation learning and erroneous elements reparation.

Attribute Correlation Learning

The attribute correlation learning of the data cleaning module requires the blocking results in
Section 2.2. In actual datasets, there can be a certain correlation among elements, so it is more credible
to repair considering the correlation in datasets under the unsupervised environment. Generally
speaking, in information theory, the way to compute the correlation is the information gain (IG) [32]
or the symmetric uncertainty (SU) [33]; however, the disadvantage of the IG is that it tends to select
attributes with multiple different values and should be standardized to ensure comparability. In this
case, the SU method is chosen to compute the correlation in data blocks.
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In information theory, the uncertainty of a variable X can be measured by the information
entropy H(X), which increases with the uncertainty of the variable. The mathematical definition is
as follows:

H(X) = −
∑
x∈X

p(x)log2p(x) (10)

where p(x) means the probability that a variable X takes the value of x. The conditional entropy
H(X

∣∣∣Y) represents the uncertainty of a variable X when Y is determined.

H(X|Y) = −
∑
y∈Y

p(y)
∑
x∈X

p(x
∣∣∣y)log2p(x

∣∣∣y) (11)

In Equation (11), the p(x
∣∣∣y) means the probability that the variable X takes the value of x when

the variable Y is y. In this case, the IG can be expressed as

IG(X, Y) = H(X) −H(X|Y) (12)

To eliminate the influence of variable units and values, the SU method is used to normalize the IG

SU(X, Y) = 2×
[

IG(X, Y)
H(X) + H(Y)

]
(13)

Taking Block 2 of the HousePrices instance through the RBA as an example, and Block
2 = {t6, t8, t9, t10}, we select the first element (t2, CA) in EDS as the candidate element, and the
domain of the CA attribute in Block 2 contains two elements {Y, N} with the probabilities both 1/2,
that is, p(Y) = p(N)= 1/2. So, the information entropy of the CA is H(CA)= 1.000 using the method in
Equation (10). Similarly, the domain of the MC attribute is {20, 50, 60} with the probabilities, p(20)= 1/4,
p(50) = 1/2, p(60) = 1/4, so the information entropy is H(MC) = 3/2 = 1.500. When the MC attribute
value is 20, the corresponding values of the CA attribute are all {N}, that is, p(CA = N|MC = 20) = 1
and p(CA = Y|MC = 20) = 0. In a similar way, the conditional probability of the CA attribute when
the MC attribute takes other values can be computed. Then, the conditional entropy H(CA|MC) can be
obtained based on the Equation (11), i.e., H(CA|MC) = 1

2 = 0.500. According to Equation (12), the IG can
be computed too, IG(CA, MC) = H(CA) −H(CA|MC) = 1.000 − 0.500 = 0.500. At last, the correlation
between the CA and MC attributes through the Equation (13) is

SU(CA, MC) = 2×
0.500

1.000 + 1.500
= 0.400

Similarly, the correlation between the CA and other attributes in Block 2, ID, MZ, ST, LS, BT, and
SP is {0.000, 0.400, 0.343, 0.400, 0.343, 0.800}, respectively. It should be noted that because there are only
four tuples in Block 2, the learning correlation among attributes can only represent the correlation in
Block 2, and may not be representative for the whole industry.

Erroneous Elements Reparation

According to the candidate data element and learning attribute correlation, we regard the
correlation as the attribute weights to compute the distance between the tuple of the candidate element
and other tuples in data blocks and to get their weighted distance (WDis). The mathematical definition
is shown in Equation (14).

WDis
(
ti, t j

)
=

√∑
SU(X, Y) ×RDis

(
ti[Y], t j[Y]

)
ti, X ∈ EDS and t j, Y ∈ Others (14)

In Equation (14), the ti, X ∈ EDS means the tuple ti and attribute X are both selected from the
EDS to ensure they are erroneous elements. The SU(X, Y) represents the correlation between the
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X and Y attributes, and X is the attribute of the candidate element, Y is another attribute in blocks.
The RDis

(
ti[Y], t j[Y]

)
means the relative distance between tuples ti and t j on the attribute Y. Due to

different types of attributes (numeric, text, and Boolean), it is not comparable directly through the
Euclidean distance or the edit distance. Therefore, we designed the relative distance (RDis) to measure
the distance among attributes in tuples, which makes the comparability between different attribute
types. For numerical attributes, the ratio of their Euclidean distance to the larger value is computed as
the RDis, and for others, the ratio of their edit distance to the longer string is computed as the RDis.
The mathematical definition is shown in Equation (15).

RDis
(
ti[Y], t j[Y]

)
=


EucD(ti[Y],t j[Y])
max(ti[Y],t j[Y])

Y ∈ numeric

EditD(ti[Y],t j[Y])
maxlen(ti[Y],t j[Y])

Y ∈ Others
(15)

In Equation (15), the EucD and EditD represent the Euclidean distance and the edit distance,
respectively. Thanks to the relative distance, the distance of attributes in different tuples can be well
mapped to the interval [0, 1], which makes them comparable.

Taking Block 2 of HousePrices instance through the RBA as an example, and Block 2 = {t6, t8, t9, t10},
the candidate element selected from the EDS is (t2, CA), and the correlation between the CA and
other attributes {ID, MC, MZ, ST, LS, BT, SP} is SU = {0.000, 0.400, 0.400, 0.343, 0.400, 0.343, 0.800},
respectively. In this case, the correlate set of the attribute CA is {MC, MZ, ST, LS, BT, SP}, then the RDis
between tuples t2 and t6 on the correlate set is RDis = {0.600, 0.500, 0.000, 0.000, 0.000, 0.409} based
on the method in Equation (15). At last, we obtain the WDis between tuples t2 and t6 according to
Equation (14), WDis(t2, t6) = 0.876. Similarly, the WDis between the t2 and other tuples {t8, t9, t10} in
Block 2 is

WDis
(
t2, t j

)
j=6, 8,9,10

= {0.876, 1.157, 1.094, 0.883}

Selecting 2n + 1, (n ≥ 1) nearest tuples as the class-tuples, we finish a repair round by the most
frequent value of the candidate attribute in class-tuples. Because there are only four tuples in Block 2,
the class-tuples are {t6, t9, t10} with n = 1, and the CA attribute values of class-tuples are {N, Y, N},
respectively. Therefore, the target value of the (t2, CA) is “N”. To keep the convergence of the method,
we use a label flag to mark the repaired element (t2, CA), and remove it from the EDS.

The ACB-Repair takes the blocking results of Section 2.2 and the erroneous dataset EDS as input,
and the repaired dataset I′ as output. The main idea is to first select an element

(
ti, A j

)
from EDS as the

candidate element. For any data block, Block δ, we learn the attribute correlation set SUδ between the
attribute A j and other attributes in Block δ, and compute the weighted distance set WDisδ between the
tuple ti and other tuples in Block δ based on the learning SUδ. Then, we choose 2n + 1, (n ≥ 1) nearest
tuples as class-tuplesδ and regard the most frequent value in class-tuplesδ as the repaired-valueδ of the(
ti, A j

)
in Block δ. When all blocks are traversed once, the

(
ti, A j

)
is repaired completely and we take

the most frequent repair-value in all blocks as the final target-value of
(
ti, A j

)
. At last, we use a label flag

to mark the
(
ti, A j

)
and delete it from the EDS. When the EDS is empty, the ACB-Repair ends, which is

shown in Algorithm 4.
In Algorithm 4, the L1 to L2 initialize the variables involved in the ACB-Repair; the L3 to L5

randomly select an element
(
ti, A j

)
from the EDS as the candidate element while the EDS is not empty;

the L7 to L14 compute the attribute correlation set SUδ between the A j and other attributes in the Block
δ according to Equation (13); the L15 to L23 compute the weighted distance set WDisδ between the ti
and other tuples in Block δ according to Equation (14); the L24 to L28 select the class-tuplesδ for the
WDisδ and obtain the repaired-valueδ for the

(
ti, A j

)
in Block δ; the L29 to L35 get the final target-value

for the
(
ti, A j

)
in all blocks and delete the

(
ti, A j

)
from the EDS after making it with the flag. When the

EDS is empty, the algorithm ends and we obtain the repaired dataset I′.
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Algorithm 4. The ACB-Repair flow.

Input: Blocks for Ic f , EDS
Output: repaired dataset I′

01. // initialization
02. i=j=δ=θ=0, flag=null;
03. for EDS !=null do
04. // randomly select a candidate data element from EDS

05.
(
ti, A j

)
← EDS ;

06. // select a Blockδ from all Blocks
07. for Blockδ ∈ Blocks do
08. // compute the correlation between A j and other attributes in Blockδ
09. for Aθ ∈ AN −A j do
10. // the correlation between A j and Aθ
11. SUθ

(
A j, Aθ

)
;

12. // add the SUθ

(
A j, Aθ

)
to correlation set SUδ

13. SUδ ← add SUθ

(
A j, Aθ

)
;

14. end for;
15. // compute the weighted distance between ti and other tuples in Blockδ
16. for tθ ∈ tn − ti do
17. // the relative distance between ti and tθ
18. RDisθ(ti, tθ);
19. // the weighted distance between ti and tθ
20. WDisθ(ti, tθ);
21. // add the WDisθ(ti, tθ) to distance set WDisδ;
22. WDisδ ← add WDisθ(ti, tθ) ;
23. end for;
24. // select 2n + 1 class-tuples for WDisδ
25. class- tuplesδ ← asending order of WDisδ ;

26. // get the repaired value for
(
ti, A j

)
in Blockδ;

27. repaired- valueδ ← class -tuplesδ;
28. end for;

29. // get the target value for
(
ti, A j

)
from all repaired-valueδ

30. target-value← repaired -valueδ;

31. f lag←
(
ti, A j

)
;

32. EDS=EDS−
(
ti, A j

)
;

33. end for;
34. I′← target-value;
35. end;

2.3.2. The Convergence and Complexity Analysis of ACB-Repair

Similar to the blocking algorithms in Section 2.2, the ACB-Repair method is also a continuous
loop process to gradually repair the erroneous data in the EDS. Therefore, it is necessary to consider its
convergence and complexity too.

Convergence Analysis

For the data blocks of the Ic f and erroneous dataset EDS, the convergence of the ACB-Repair
means that the algorithm should terminate and get a stable repair result I′ with multiple repair rounds.
It can be proved that the ACB-Repair is convergent for limited data block amounts.
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Proof 2: The ACB-Repair is convergent for limited data blocks amount. �

Suppose there are M tuples (t1, t2, t3, . . . , tM) and N attributes (A1, A2, A3, . . . , AN) in dataset I,
and n tuples (t1, t2, t3, . . . , tn, n ≤M) in the corresponding conflict-free dataset Ic f . The ACB-Repair is
a loop process to repair the erroneous elements, for one repair round, we need to first select a candidate
element from the M×N elements according to the EDS, and then, put the erroneous element into every
block to repair. Suppose one of the blocks, Block δ contains m tuples (t1, t2, . . . , tm, m ≤ n), we compute
the correlation between the attribute of the candidate element and other N − 1 attributes in the Block δ,
and obtain the weighted distances between the tuple of the candidate element and other m tuples in
the Block δ according to the learning correlation. Finally, we repair the candidate element in other
blocks similarly and finish a repair round. Because it is convergent to compute the attribute correlation
and the weighted distances in a block, it is convergent to repair the erroneous element in the data
block too. Moreover, due to the limited amount of data blocks, one repair round of the ACB-Repair is
convergent. In view of multiple repair rounds, the algorithm can ensure every erroneous element is
repaired at most once, because we use a label flag to mark the repaired elements. In the worst case,
all M×N data elements in I are erroneous data, at this time, the ACB-Repair will still be convergent
due to every repair round convergence. In summary, the ACB-Repair algorithm is convergent for
limited data block amounts.

Complexity Analysis

The ACB-Repair selects a candidate element from the EDS for every repair round, and puts
it in all blocks to repair. After a repair round, it is deleted from the EDS to ensure convergence,
and the algorithm will terminate while the EDS is empty. For one repair round, the complexity of
the ACB-Repair consists of the following three parts: selecting the candidate element, learning the
attribute correlation, and repairing the erroneous element.

Suppose there are t erroneous elements in a dataset I, that is, the EDS contains t elements. When
selecting the candidate element, we need to traverse the t elements to randomly select one of them,
and the time complexity is O(t).

For a data block Block δ with m tuples (t1, t2, . . . , tm, m ≤ n), when computing the correlation
SU(X, Y) between attributes X and Y, we need to first traverse the m tuples in the Block δ to get
the probability p(x) and p(y) of the attributes X and Y, and compute the corresponding information
entropy H(X) and H(Y) using Equation (10), and the time complexity is O(m). Then, we traverse every
value of the attribute Y to get the conditional probability p(x|y) and compute the correlation SU(X, Y)
according to Equation (13), and the time complexity is also O(m). Therefore, the time complexity of
learning the correlation between the candidate attribute and other N − 1 attributes is O

(
(N − 1)m2

)
.

When repairing the erroneous element, we should put the candidate element in all blocks to repair.
For data block Block δ, the ACB-Repair computes the WDis between the tuple of the candidate element
and other tuples in the Block δ according to the learning attribute correlation. It should traverse the m
tuples and N − 1 attributes in the Block δ, and the time complexity is O((N − 1)m).

In the worst case, all tuples in the Ic f are divided into a block, which means no blocking
for Ic f and m = n, so the time complexity of a repair round can be expressed intuitively as

O
(
t + (N − 1)m2 + (N − 1)m

)
. Similarly, the worst case of the dataset I is that all elements are erroneous

elements, that is, tmax = MN. In summary, the time complexity of a repair round in this case is

O
(
max

(
MN, m2N

))
(16)

For multiple repair rounds, the maximum repair times can be tmax = MN, so the time complexity
of the ACB-Repair algorithm is

O
(
max

(
M2N2, m2N2M

))
(17)
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The time complexity in Equation (17) is obtained in the worst case where all tuples in Ic f are
divided into a block and all elements in I are wrong. In an actual dataset, the erroneous data amount
is often small, and the blocking methods can be validity, so the complexity is much smaller than
Equation (17).

3. Results

In this section, we set up a contrast experiment and take the repair algorithm without blocking as
a control group to test the performance of the ACB-Repair under different conditions and verify the
influence of the blocking methods with different clustering accuracies on the data cleaning. Meanwhile,
due to the lack of sufficient business rules in the unsupervised environment, the regression-based
method (RBM) and the interpolation-based method (IBM) are the two most commonly used methods.
The RBM repairs data according to the idea of multiple regression and builds a multiple regression
model between other attributes and the erroneous data attributes in the dataset to get the target value
of repair, in which the text attribute and the numerical attribute are respectively calculated with the
edit distance and Euclidean distance. The IBM uses the idea of interpolation to repair. For text-based
attributes, it directly selects the attribute values that appear most frequently for repair. For numerical
attributes, the target value of repair can be obtained according to interpolation. Therefore, we compare
our method with these two methods to verify its advantages.

3.1. Experimental Configuration

3.1.1. Experimental Environment

The experiment used a Core-i7 2.8 GHz processor and 24 GB memory on the 64-bit Windows 10
operating system. The algorithm was written in the Java language and ran on the Eclipse platform.

3.1.2. Experimental Datasets

In the experiment, we chose the Mental Health in Tech Survey dataset (MHTS) and the Telco
Customer Churn dataset (TCC) from the Kaggle website as the experimental datasets. We first
compared the ACB-Repair with the repair method without blocking (WOB-Repair) on the MHTS
dataset to analysis the repair ability of the two methods under different conditions and observed
the influence of clustering accuracy on the data cleaning. Then, the RBM, IBM, and the ACB-Repair
with the best blocking results were tested on the TCC dataset to verify the advantages of our method.
In order to reduce the contingency of the experimental results, all the data in our experiments were the
average results of three.

3.1.3. Evaluation Indexes

We designed three indexes—validity, satisfaction, and runtime—to evaluate the repair ability of
different cleaning methods to the same erroneous data. In unsupervised data cleaning, the ACB-Repair
essentially selects the most relevant elements from all data blocks as the target values of erroneous
elements, so it cannot ensure all target values are the same with the corresponding initial truth values
after repair. In this case, the validity, satisfaction, and runtime three indexes were adopted to measure
the change in the number of erroneous elements before and after repair, the satisfaction degree between
target values and the initial truth values, and the runtime of different repair processes, respectively.

Validity

The validity index was used to measure the change amount of erroneous data before and
after repair, and it is described by the ratio of change amount to initial erroneous data amount.
The mathematical definition is as follows.
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Validity =

∑
I sumerror −

∑
I′ sumerror∑

I sumerror
(18)

where the
∑
I

sum_error and the
∑
I′

sum_error indicate the number of erroneous elements before and after

repair, respectively.

Satisfaction

The satisfaction index is used to describe the satisfaction degree between repaired results and the
truth values. In the unsupervised cleaning, different repair methods usually get different repair values,
so by comparing the relative distance between repaired values and the truth values, the different repair
values can be evaluated.

satisfaction = 1−

∑
n

Dis(repaired,truth)
max(repaired,truth)

n
(19)

In Equation (19), the Dis(repaired, truth) means the distance between repaired values and the
corresponding truth values. For the numeric attributes and other attribute types, the Euclidean distance
and the edit distance were adopted, respectively. The max(repaired, truth) indicates the larger one
between repaired values and the truth values. For the numeric attributes and other attribute types,
the numeric size and string length are taken, respectively.

Runtime

The runtime index indicates the running time of the repair algorithms to erroneous elements
in a given dataset. In this paper, the runtime of different repair methods is measured by the system
running time.

3.2. Analysis of Experimental Results

In the MHTS dataset, we first set multiple erroneous elements amount (amount) and class-tuples
amount (n) to observe the performance of the WOB-Repair (Repair without Blocking) method, which
is the control group in the experiment.

First of all, we fixed the amount to 10 and kept the same EDS, the experimental results are shown
in Figure 3a–c with different n.

From the results in Figure 3a–c, the n did not have a significant effect on the validity, satisfaction,
and runtime indexes of the WOB-Repair method when the amount and EDS were fixed. We could even
obtain exactly the same repair results from n = 17 to n = 47 (the step of n was 5), and the change of the
validity index for different repair results was less than 0.1. In this case, we hold the opinion that the
WOB-Repair method is stable for different n and its effect on the experimental results can be ignored.
In the subsequent experiment, we chose n = 21 without explanation, when the class-tuple is 2n + 1 = 43.

Then, we fixed the n = 21 and set multiple amounts in the MHTS, the experimental results of the
WOB-Repair are shown in Figure 3d–f.

Under the fixed n, the validity of the WOB-Repair fluctuated between 0.59 and 0.84, and it was
stable at about 65% in the experiment. Similar to the validity index, the satisfaction of the WOB-Repair
fluctuated between 0.64 and 0.88. We think it required a high repair ability in an unsupervised
environment that the repair result is completely consistent with the value of the initial data set by
randomly simulating the weak logic errors in the data set and comparing the repaired data set with the
initial data set. From the results in Figure 3d–f, the mean validity and satisfaction of the WOB-Repair
method were 65.2% and 75.1%, respectively, so that it can be effective in the unsupervised data cleaning.
However, with the increase in the number of erroneous elements, the repair time of this method
increases too. When the data scale is large, it takes a lot of time to clean the erroneous data through the
non-blocking WOB-Repair algorithm, which may not be suitable.
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Figure 3. The experimental results of the control group WOB-Repair method on the MHTS dataset.
(a–c) The validity, satisfaction, and runtime of the WOB-Repair, respectively, with fixed amount and
EDS, and the n is 2, 7, 12, 17, . . . , 57 in the experiment. (d–f) The validity, satisfaction, and runtime of
the WOB-Repair, respectively, with fixed n, and the amount is 10, 12, 14, . . . , 22 in the experiment.

The experimental results in Figure 3 were obtained by the WOB-Repair, which was the control
group in the experiment, under different conditions. In the following sections, we will compare the
WOB-Repair method with the ACB-Repair blocked by the RBA, SBA, and RWBA, and observe the
impact of the blocking methods with different clustering accuracies on the data repair. In order to
describe conveniently and distinguish different blocking methods, we used the RBA, SBA, and RWBA
to express the ACB-Repair algorithm blocked by the corresponding method.

In the MHTS dataset, we fixed the amount to 20 and with both the same EDS and n as the
WOB-Repair, and the experimental results of the RBA method are shown in Figure 4 by setting multiple
blocking amounts (k).
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Repair method. The k is 2, 3, 4, …, 9 in the experiment. 
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Figure 4. The experimental results on validity (a), satisfaction (b), and runtime (c) of the RBA method
on the MHTS dataset with fixed amount and n, and the amount and n are the same with the WOB-Repair
method. The k is 2, 3, 4, . . . , 9 in the experiment.

The results of the RBA in Figure 4 were obtained in the same environment (amount, EDS, and n)
as the WOB-Repair, and the blocking amount determined the tuple amount of a data block when
blocking. In the experiment, the runtime of the RBA decreased obviously and the validity decreased
slowly, while the satisfaction remained relatively stable, as data blocks increased. Combining the
experimental results in Figures 3 and 4, although the RBA can significantly reduce the runtime of the
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repair process, its repair results were not satisfactory compared to the WOB-Repair. For example, when
k = 2, the runtime of the RBA decreased from the 145.49 minutes of the WOB-Repair to 46.49 minutes,
but the validity and satisfaction changed from the 0.7 and 0.666 of the WOB-Repair to 0.5 and 0.719,
respectively. We think validity is more important than satisfaction when evaluating the repair ability
of different methods because it directly measures the change in the number of erroneous elements
before and after repair. In this case, although the satisfaction of the RBA at k = 2 was higher than the
WOB-Repair, we still regard the WOB-Repair as having better repair ability.

Different from the RBA, the SBA takes the Jaccard similarity among tuples to cluster and block.
In the MHTS dataset, we fixed the amount to 20 and with both the same EDS and n as the WOB-Repair
and RBA, and the experimental results of the SBA method are shown in Figure 5 by setting multiple
matching determination thresholds (thds). During the experiment, we found that when the thds was
small, the tuple amounts of the first few blocks were very large, which made other blocks contain
fewer tuples. In order to control the size of the data blocks, we set all tuple amounts to not exceed n/2
(n is the tuple amount of Ic f ).
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Figure 5. The experimental results on validity (a), satisfaction (b), and runtime (c) of the SBA method
on the MHTS dataset with a fixed amount and n, and the amount and n were the same as the RBA and
WOB-Repair methods. In the experiment, we found that the Ic f would be divided into many blocks
when the thds was larger than 0.5, so we set the threshold thds of the SBA as 0.3, 0.33, 0.36, . . . , 0.51.

From the results in Figure 5a, the validity of the SBA method is affected to some extent by the thds.
When the thds is small, the SBA has good repair results, and its validity is stable at a low level with the
increase of the thds. In Figure 5b,c, the satisfaction of the SBA fluctuates, and has no obvious variation
tendency, but the runtime of this method decreases significantly. We think this is mainly because the
larger thds always divides the Ic f into more data blocks, which makes the tuple amount in a data block
smaller, thus reducing the runtime of the method.

The thds in the SBA method could reflect the similarities among tuples in data blocks, and the
bigger thds meant better clustering accuracy. In the experiment, we found that too big a thds can
make the validity index of the SBA method decrease sharply. For example, when the thds = 0.36, the
validity = 0.65, but when the thds = 0.51, the corresponding validity = 0.45. We guess this phenomenon
may be caused by the following two reasons. (1) The bigger thds reduces the tuple amounts of some
data blocks, and the tuple amount can affect the validity of methods, thus weakening the repair ability
of the SBA. (2) The bigger thds increases the clustering accuracy of data blocking, and higher clustering
accuracy will aggregate tuples with the same values, which may reduce the validity of the SBA method.
In order to verify the viewpoint (2), we adopted the RWBA method with higher clustering accuracy to
carry out subsequent experiments.

The RWBA obtains the structural information in a similarity graph by random walk with restart,
and it considers not only the direct correlation among tuples but also their indirect correlation through
other tuples when blocking. In the MHTS dataset, we fixed the amount to 20 and with both the same
EDS and n as the WOB-Repair, RBA, and SBA, and the experimental results of the RWBA method
are shown in Figure 6 by setting multiple thresholds (thdr). Because we normalized the columns
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of the convergent state vector π∗, and the tuple amount of Ic f was 1240, we set the multiple thdr

as 5 ∗ 10−4, 5.5 ∗ 10−4, . . . , 8.5 ∗ 10−4, 9 ∗ 10−4.
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the RBA, SBA, and WOB-Repair methods.

Similar to the analysis in Section 2.2.2, the RWBA had a very high time complexity when the tuple
amount of Ic f was large, which mainly manifests in computing all similarity pairs and the iteration
on a similarity graph. For example, when the tuple amount of Ic f was 1240, it took 22.97 hours
to establish the similarity graph for the RWBA, which contains 768,180 similarity pairs, under the
experimental environment in Section 3.1.1. We found the runtime of the RWBA was much longer than
the WOB-Repair, RBA, and SBA methods. In this case, we no longer payed attention to the runtime
index of the RWBA, but focused on the analysis of its validity and satisfaction indexes. In Figure 6c, with
the increase of the thdr, the blocking amount of the RWBA increased gradually too. However, unlike
the SBA method, its validity and satisfaction indexes were relatively stable unexpectedly, and were not
significantly affected by the tuple amount of blocks. We think this may be attributed to the random
walk with restart process, which enabled the RWBA to learn the correlation more accurately from a
small data block. During the experiment, although the results obtained by the RWBA were more stable
than the SBA method, the mean and peak value of its validity were only 0.54 and 0.55, respectively,
which were lower than those obtained by the SBA. Therefore, we believe that a blocking method with
a too high clustering accuracy will reduce the repair ability in the same experimental environment.

In order to evaluate the repair ability of the three different blocking methods with the same EDS,
we compared their performances on the three indexes with the same blocking amount and experimental
environment. The results are shown in Figure 7.
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RBA, SBA, and RWBA methods on the MHTS dataset with the same k. We set the values of the thds of
the SBA and the thdr of the RWBA to obtain a specific k in the experiment. Because it costs too much
time to establish a similarity graph for the RWBA, we did not compare the runtime index of the RWBA
with the other three methods in (c).
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From the experimental results, although there is little difference in the satisfaction of the
WOB-Repair, RBA, SBA, and RWBA methods, the validity of the WOB-Repair was always better than
the other three. In this case, we believe that the blocking methods can significantly reduce the original
repair time, but the repair ability will also be reduced to a certain extent. When the blocking amount
is small (k ≤ 4, where the mean of the tuple amount was 310 in the experiment), the SBA had better
repair results compared with the RBA and RWBA. With the increase in the k, the tuple amounts in the
blocks decreased gradually. For example, when the k = 2, the smallest data block of the RWBA contains
558 tuples, but when k = 9, the largest data block of the RWBA only contains 229 tuples, under these
conditions, the validity of the SBA decreases most obviously, and the RWBA performs most stably and
it can still maintain relatively better repair ability than the RBA and SBA when the tuple amounts of
blocks are small.

Although the RWBA has the most stable repair results in small data blocks, it has a very high
time complexity when data scale is large, and the time to establish a similarity graph for Ic f is even far
longer than the WOB-Repair method. In actual repair processes, we can control the blocking amount
by controlling the size of thds, so as to ensure the repair ability of the SBA. Therefore, we regard that the
SBA has the best repair ability combining the validity, satisfaction, and runtime of the three indexes.

Then, we compared the RBM and IBM methods with the ACB-Repair blocked by the SBA on the
TCC dataset. In the TCC dataset, we set the matching determination thresholds of SBA (thds) to 0.36
and there were multiple erroneous data amounts (amount). The validity, satisfaction, and runtime
indexes of the RBM, IBM, and ACB-Repair are shown in Figure 8.
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RBM, and IBM methods on the TCC dataset with the same EDS. We set the values of thds to 0.36 and
the amount was 20, 22, 24, . . . , 40.

From the experimental results, we can see that the ACB-Repair based on similarity blocking
methods performed best in the validity index for the same erroneous data in the TCC dataset, but
because of the existence of the learning processes, the repair runtime was also the longest. The RBM
method had little difference in the satisfaction index with the ACB-Repair, but its repair validity was
slightly lower than the ACB-Repair method, and its runtime was also shorter. In view of the IBM
method, although it had a fast repair speed, it was inferior to the previous two methods on the validity
or satisfaction indexes. For the erroneous data in the datasets, we hold the opinion that the validity
index can directly measure the change in the number of erroneous elements before and after repair so
that it may be more important. Furthermore, we guess the reason why the RBM and IBM, especially the
IBM method, perform relatively badly in the TCC dataset is that they tend to synthesize a new repair
value based on existing values in the dataset rather than selecting the most relevant value to repair. In
this case, their repair values may never appear in the given dataset, so these methods may be difficult
to adapt to unsupervised scenarios. In summary, we think ACB-Repair is effective in unsupervised
data cleaning.
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4. Discussion

For weak logic errors in unsupervised data cleaning, we proposed an attribute correlation-based
(ACB-Framework) under blocking, which learns the attribute correlation from all data blocks through
the machine learning method with symmetric uncertainty, and computes the weighted distances
between the tuple of the erroneous data and other tuples in every data block according to the learning
correlation to repair. In order to reduce the time cost, we designed three different blocking methods to
test the impact of clustering accuracy on the repair process. From the experimental results in Section 3.2,
we found that although the blocking methods had worse repair abilities than the method without
blocking, the repair time could be significantly reduced. In some fields where the real-time requirements
for data cleaning are high, such as internet pages, network servers, and sensor information acquisition,
we allow reducing the repair ability within a certain range to improve its real-time performance, which
makes the ACB-Framework applicable.

In the experiment, when the tuple amounts of data blocks are large (i.e., the blocking amount
is small), the SBA has the best repair results among the three blocking methods, and when the tuple
amounts are small, the RWBA gets the best and the most stable repair results. We think this may
be attributed to the random walk with restart process, which computes the convergence state on a
similarity graph to obtain the indirect correlation transmitted by other tuples. However, when the
original data scale is tremendous, it has a very high time complexity to establish the similarity graph
and compute the convergence state for the RWBA, even exceeding the WOB-Repair method, which
makes the applicability of the RWBA very poor. Although the RWBA method has the best clustering
accuracy and its repair ability is not significantly affected by the tuple amounts of blocks compared
with the RBA and SBA methods, its mean and peak value of the repair validity is inferior to the SBA
when tuple amounts of blocks are large. Therefore, we think that a too high clustering accuracy will
agglomerate more tuples with the same elements, which can reduce repair validity. For the problem,
the SBA performed poorly in data blocks with fewer tuples. We can control the tuple amount by
controlling the size of thds in applications, so as to ensure its repair ability. Furthermore, we compared
the optimal threshold of the SBA method in the previous experiment with the two methods of RBM
and IBM to verify the effectiveness of our proposed method.

However, although the RBA and SBA methods can reduce the repair time, their repair results for
the erroneous data were both worse than the WOB-Repair method without blocking. In this case, how
to maintain the repair abilities of methods on the basis of reducing their repair time is a question worth
considering. The subsequent research will explore the following two aspects:

(1) How to design better repair methods in unsupervised data cleaning?
(2) How to further reduce the cleaning time while better maintaining its cleaning ability?

5. Conclusions

The main achievement of this paper was the division of data cleaning into the supervised and
unsupervised forms according to whether there were interventions in the repair processes. Due to the
lack of sufficient domain knowledge to guide repair under the unsupervised environment, we hold
the opinion that multiple data quality problems with different traditional dimensions can be repaired
by similar methods, and propose a new dimension suitable for unsupervised cleaning. In view of
weak logic errors in unsupervised data cleaning, we propose an attribute correlation-based framework
under blocking to repair them, and designed three different data blocking methods to reduce the time
complexity and test the impact of clustering accuracy on data cleaning. From the experimental results,
although the blocking methods may reduce the repair ability to a certain extent, they can greatly reduce
the repair time. Moreover, the ACB-Framework does not need the guidance of domain knowledge and
interventions in the repair process, in some fields with large data scales, frequent data updating, and
high real-time requirements, it can have certain application value.
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