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Abstract: In this work we report a convenient asymmetric synthesis of Fmoc-(S)-6,6,6-trifluoro-
norleucine via alkylation reaction of chiral glycine equivalent. The target amino acid of 99% enantiomeric
purity was prepared with 82.4% total yield (three steps).

Keywords: fluorine; amino acids; alkylation; asymmetric synthesis; Ni(II) complexes

1. Introduction

Medicinal applications of new organic compounds have always been a major driving force behind
the development of organic methodology. In this regard, one can notice two general trends in the design
of modern pharmaceutical drugs: the introduction of fluorine-containing substituents and tailor-made
amino acids (AAs) [1–10]. While the strategic fluorination usually leads to improved pharmacokinetics
and greater oxidative metabolic stability [9,11,12], the presence of tailor-made amino AAs residues
allows for more precise mimicking of the natural peptide–receptor interactions [1–8]. Subsequently,
fluorine-containing α- [13–21] and β-AAs [22–24], featuring both structural traits, are currently an
increasingly important class of compounds used in bio-medicinal studies and drug design [25–28].
For example, (S)-2-amino-6,6,6-trifluorohexanoic acid and 6,6,6-trifluoro-norleucine 1 (Scheme 1)
and its derivatives were shown to possess interesting biological properties, such as antitumor [29],
antimicrobial [30], and enzyme inhibitory activity [31,32]. However, the major interest in fluorinated
AA 1 is related to its various applications in the therapeutic peptide engineering [33–36] and protein
structural studies [37–39]. Over the last decade, various synthetic approaches for preparation of
tailor-made fluorinated norleucine 1 have received due attention. One group of the methods is based
on elaboration of functional groups in the already prearranged AA skeleton 2, such as additions of
CF3 radical to the terminal C=C bond [40,41] or biomimetic transamination [42,43]. However, a more
general approach for synthesis of AA 1 includes alkyl halide alkylation of properly protected glycine
derivatives 3 [44–48]. These reactions can be conducted under homogeneous [45–48], as well as PTC
conditions [44].
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nucleophilic glycine 4. The method is operationally convenient, robust, scalable, and can be 

recommended for practical preparation of enantiomerically pure (~99% ee) derivative of this 

important tailor-made AA. 

2. Materials and Methods 

General Methods. All solvents and reagents were used as purchased without further 

purification. All reactions were conducted by magnetically stirring and detected by routine 

chromatography on TLC plates. Flash chromatography was carried out using the corresponding 

solvents on silica gel (0.064–0.210 mm). The reported yields are for isolated and chemically pure 

compounds. HPLC experiments were performed on a standard equipment using the InertsilTM ODS-

3 column (3 μm, 150 × 4.6 mm) ran at 1.0 mL/min, 30 °C; monitoring was set at 254 nm with a gradient 

of 10 mM aqueous HCOOH/NH3 containing 0.1% HCOOH (eluent A) and MeCN (eluent B) from A: 

B = 95:5 to 20:80 and 20:80. 1H-, 19F-, and 13C-NMR data were recorded on Bruker AVANCE III-400 

instrument. Chemical shifts are presented in ppm (d), referenced to SiMe4 (TMS). Optical rotations 

data were conducted on a DIP-370 instrument. Melting points were taken as usual. 

Alkylation Reaction of Glycine Complex (S)-4 with CF3(CH2)3I. The Ni–glycine complex (S)-4 

(20.0 g, 33.2 mmol, 1.0 equiv.) and 1,1,1-trifluoro-4-iodobutane (7.90 g, 33.2 mmol, 1.0 equiv.) were 

stirred in deoxygenated N,N-dimethyl-formamide (DMF) (140 mL, 7 v/w) at room temperature under 

argon. Then, 10% NaOMe methanol solution (1.0 equiv.) was added into the above mixture. The 

resulting solution was stirred at room temperature for 2 h, and then was poured into water (46 mL) 

at same temperature to give the precipitate. After 0.5 h, the mixture was added water (24 mL), and 

was stirred for 15 h. After that, the precipitate was filtered, washed with DMF-H2O (36 mL, 2:1 v/v), 

washed with water (40 mL) and dried in vacuo at 60 °C for 7 h to afford the crude Ni complex (20.8 

g, 87.9%, a red solid) as a mixture of (S,2S)-6 and (S,2R)-7, the diastereomeric ratio was determined 

to be (98.7 %de) by HPLC analysis, in which the major (S,2S)-6 was eluted at a retention time (tR) of 

20.3 min and the minor (S,2R)-7 at 21.5 min under the conditions described in the general methods. 

The mixture of 6 and 7 was purified by column to give the diastereomerically pure major product 6 

in 87.5% yield (see Supplementary Materials). 
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Scheme 1. Literature methods for synthesis of 6,6,6-trifluoro-norleucine (1) via functional group
elaborations (FGE) in 2 and alkyl halide alkylations (AHA) of glycine derivatives (3). Application of
chiral Ni(II) complexes (4) for preparation of 1 via AHA.

In this paper we describe a convenient asymmetric synthesis of Fmoc derivative 6,6,6-trifluoro-
norleucine 1 via CF3(CH2)3I alkylation of the recently rationally designed chiral equivalent of nucleophilic
glycine 4. The method is operationally convenient, robust, scalable, and can be recommended for practical
preparation of enantiomerically pure (~99% ee) derivative of this important tailor-made AA.

2. Materials and Methods

General Methods. All solvents and reagents were used as purchased without further purification.
All reactions were conducted by magnetically stirring and detected by routine chromatography on
TLC plates. Flash chromatography was carried out using the corresponding solvents on silica gel
(0.064–0.210 mm). The reported yields are for isolated and chemically pure compounds. HPLC
experiments were performed on a standard equipment using the InertsilTM ODS-3 column (3 µm,
150 × 4.6 mm) ran at 1.0 mL/min, 30 ◦C; monitoring was set at 254 nm with a gradient of 10 mM
aqueous HCOOH/NH3 containing 0.1% HCOOH (eluent A) and MeCN (eluent B) from A: B = 95:5 to
20:80 and 20:80. 1H-, 19F-, and 13C-NMR data were recorded on Bruker AVANCE III-400 instrument.
Chemical shifts are presented in ppm (d), referenced to SiMe4 (TMS). Optical rotations data were
conducted on a DIP-370 instrument. Melting points were taken as usual.

Alkylation Reaction of Glycine Complex (S)-4 with CF3(CH2)3I. The Ni–glycine complex (S)-4
(20.0 g, 33.2 mmol, 1.0 equiv.) and 1,1,1-trifluoro-4-iodobutane (7.90 g, 33.2 mmol, 1.0 equiv.) were stirred
in deoxygenated N,N-dimethyl-formamide (DMF) (140 mL, 7 v/w) at room temperature under argon.
Then, 10% NaOMe methanol solution (1.0 equiv.) was added into the above mixture. The resulting
solution was stirred at room temperature for 2 h, and then was poured into water (46 mL) at same
temperature to give the precipitate. After 0.5 h, the mixture was added water (24 mL), and was stirred
for 15 h. After that, the precipitate was filtered, washed with DMF-H2O (36 mL, 2:1 v/v), washed with
water (40 mL) and dried in vacuo at 60 ◦C for 7 h to afford the crude Ni complex (20.8 g, 87.9%, a red
solid) as a mixture of (S,2S)-6 and (S,2R)-7, the diastereomeric ratio was determined to be (98.7 %de)
by HPLC analysis, in which the major (S,2S)-6 was eluted at a retention time (tR) of 20.3 min and the
minor (S,2R)-7 at 21.5 min under the conditions described in the general methods. The mixture of
6 and 7 was purified by column to give the diastereomerically pure major product 6 in 87.5% yield
(see Supplementary Materials).

(S,2S)-6 (major isomer): M.p. 229–231 ◦C. [α]25
D = +2616 (c = 0.2, CH3OH). 1H NMR (400 MHz,

CDCl3): δ = 8.89 (d, J = 1.6 Hz, 1H), 8.09 (d, J = 9.2 Hz, 1H), 7.77 (dd, J = 1.7, 8.1 Hz, 1H), 7.49–7.58
(m, 3H), 7.37 (d, J = 8.1 Hz, 1H), 7.29–7.30 (m, 1H), 7.11 (dd, J = 2.4, 9.2 Hz, 1H), 6.88 (d, J = 7.5 Hz,
1H), 6.59 (d, J = 2.4 Hz, 1H), 4.34 (d, J = 12.6 Hz, 1H), 3.87 (dd, J = 8.0, 3.4 Hz, 1H), 3.51–3.57 (m, 2H),
3.35–3.39 (m, 1H), 3.21 (d, J = 12.6 Hz, 1H), 2.59–2.71 (m, 2H), 2.35–2.37 (m, 1H), 2.24–2.25 (m, 1H),
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1.84–2.08 (m, 3H), 1.82–1.84 (m, 2H), 1.60–1.66 (m, 1H). 13C NMR (100 MHz, CDCl3): δ = 18.0, 23.5, 30.8
32.6 (J = 29.0 Hz, q), 34.1, 58.3, 63.0, 69.7, 71.3, 124.1, 125.3 (J = 276.6 Hz, q), 125.7, 127.0, 127.1, 127.2,
129.3, 129.4, 129.8, 130.3, 132.1, 132.4, 132.7, 133.3, 133.5, 133.6, 134.8, 140.5, 170.4, 178.3, 179.9. 19F NMR
(376 MHz, CDCl3): δ = −66.8 (CF3). IR (KBr): ν = 2977, 1674, 1650, 1535, 1463, 1398, 1251, 1188, 1077,
826 cm−1. MS (ESI): m/z = 710.1 [M + H]+.

(S,2R)-7 (minor isomer): M.p. 218–220 ◦C. [α]25
D= −1998 (c = 0.2, CH3OH). 1H NMR (400 MHz,

CDCl3): δ = 8.50 (d, J = 9.2 Hz, 1H), 8.37 (d, J = 2.0 Hz, 1H), 7.74 (dd, J = 2.0, 8.0 Hz, 1H), 7.03–7.23
(m, 4H), 7.20–7.23 (m, 2H), 7.00–7.03 (m, 1H), 6.72 (d, J = 2.4, 1H), 4.24–4.30 (m, 2H), 3.71 (dd, J = 10.0,
3.2 Hz, 1H), 3.55 (dd, J = 8.8, 4.4 Hz, 1H), 3.35–3.38 (m, 1H), 2.62–2.67 (m, 2H), 2.25–2.30 (m, 2H),
1.80–2.00 (m, 2H), 1.64–1.79 (m, 3H), 1.25–1.35 (m, 2H). 13C NMR (100 MHz, CDCl3): δ = 18.3, 23.1, 30.3
32.2 (J = 29.0 Hz, q), 35.1, 59.5, 60.5, 69.2, 69.7, 125.0, 125.4 (J = 276.6 Hz, q), 125.7, 126.6, 126.7, 127.6,
129.1, 129.5, 130.2, 130.5, 132.3, 132.5, 133.2, 133.3, 133.4, 133.8, 133.9, 141.3, 170.9, 178.9, 181.5. 19F NMR
(376 MHz, CDCl3): δ = −66.6 (CF3). IR (KBr): ν = 2945, 1676, 1644, 1584, 1464, 1395, 1247, 1135, 1029,
823 cm−1.

Preparation of Fmoc-(S)-2-amino-6,6,6-trifluorohexanoic acid (S)-9. To a solution of Ni complex
(S,2S)-6 (20.0 g, 28.1 mmol, 1.0 equiv.) in dimethoxyethane (DME) (100 mL, 5 v/w) was added HCl
(3 N, 46.8 mL, 5.0 equiv.), and the resulting mixture was heated at 50–60 ◦C for 2 h. Then, the reaction
mixture was cooled to room temperature, and the the reaction mixture was evaporated to remove
DME. Water (400 mL) was added, and white precipitate (HCl salt) appeared. The precipitate was
filtered, washed with water (20 mL × 2). The filtrate was total 80 mL.

To the above (S)-6,6,6-trifluoro-norleucine HCl green solution were added ethylenediaminetetraacetic
acid disodium salt hydrate (10.5 g, 1.0 equiv) and acetonitrile (60 mL) and the mixture was stirred for
0.5 h at room temperature; 48% NaOH (9.5 g, 4.1 equiv) was added. Then, sodium carbonate (3.87 g,
1.3 equiv) and Fmoc-OSu (9.48 g, 1.0 equiv.) were added to the resulting mixture. The mixture was
stirred for 3 h at room temperature, and then was concentrated. To the residue was added ethyl acetate
(100 mL) and HCl (6N, 20.0 mL), and the phases were separated. The aqueous layer was extracted with
ethyl acetate (40 mL) and the combined organic layer was washed with water (40 mL) and 10 % brine
(40 mL). The organic solution was dried with Na2SO4, and then the filtrate was concentrated to dryness
and dried in vacuo at 50 ◦C to afford (S)-9 (11.45 g, a white powder) (see Supplementary Materials).

(S)-9: M.p. 152–154 ◦C. 1H NMR (400 MHz, CD3OD): δ = 7.77–7.79 (m, 2H), 7.64–7.69 (m, 2H),
7.32–7.40 (m, 2H), 7.28–7.30 (m, 2H), 4.36–4.37 (m, 2H), 4.18–4.24 (m, 2H), 2.18–2.23 (m, 2H), 1.92–1.95
(m, 1H), 1.64–1.77 (m, 2H). 19F NMR (376 MHz, CDCl3): δ = –67.6 (CF3). IR (KBr): ν = 3265, 3067, 2926,
2858, 1654, 1476, 1445, 1049 cm−1. MS (ESI): m/z = 431.1 [M + Na]+.

3. Results and Discussion

In line with our longstanding curiosity in synthesis of several types of tailor-made AAs, in particular
trifluoromethyl- and [49,50] phosphorus-containing [51,52], sterically constrained [53,54], and nonlinear
optical properties of AA and their derivatives, such as self-disproportionation of enantiomers [55–57],
we were contributing to the chemistry of Ni(II) complexes of Schiff bases of AA as a general methodology
for synthesis of tailor-made AAs [58–60]. Over the last several years, we were focusing on the
modular design [61,62] of chiral tridentate ligands used for preparation of the corresponding Ni(II)
complexes of AA Schiff bases. Among other advances [63–65], recently we developed a strategically
trichloro-substituted ligand 5 (Scheme 2) [66,67], which showed excellent stereocontrolling properties
in the dynamic kinetic resolution of unprotected α- [68,69] and β-AAs [70]. It was shown that the
presence of strategically positioned chlorine atoms favorably influence the parallel displaced type of
aromatic stacking interactions between the proline N-benzyl and o-amino-benzophenone ring [66].
The quality of these aromatic stacking has important synthetic consequences [67] enhancing the
stereochemical preferences at the a-position of the amino acid residue. It should be mentioned that
the strategically chlorinated ligand 5 was developed by and commercially available from Hamari
Chemicals. However, other methodological avenues of ligand 5 applications for the asymmetric
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preparation of tailor-made AAs still remain unexplored [71]. Ligands (S)- or (R)-5 are commercially
available and can be conveniently prepared [72] starting form (S)- or (R)-proline and transformed to
the Ni(II) complexes of glycine Schiff base 4 [71,73]. As presented in Scheme 2, ligand 5 is reacting
with glycine and Ni(II) ions in basic methanol solution to afford complex 4.
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Scheme 2. Synthesis of chiral Ni(II) complex of glycine Schiff base 4.

Alkylation of the glycine moiety in complexes of type 4 with alkyl halide as alkyl precursor can be
conducted under homogeneous [74] as well as phase-transfer catalysis (PTC) conditions [75]. The latter
are usually preferred, due to the low byproducts formation, but can be realized only for activated alkyl
halides. Thus, under standard PTC conditions [75], CF3(CH2)3I was found to be totally inefficient for
alkylation of complex (S)-4, resulting in noticeable decomposition of the alkylating reagent. In sharp
contrast, under the homogeneous conditions (Scheme 3), by use of DMSO as a solvent and NaOH as a
base (Table 1), the expected alkylation products were isolated and fully characterized.
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HPLC analysis of the reaction mixture revealed rather low rate of the alkylation and disappointing
diastereoselectivity. As shown in Table 1, in entries 1–3, after 4.5 h of the reaction time, over 43% of
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starting complex 4 was still intact. Near-complete consumption of glycine complex 4 was observed
after 24 h (entry 4) along with a large amount of various byproducts. One of the major byproducts was
identified as previously described [73] compound 8 resulting from oxidative decomposition of stating
glycine complex 4 [76,77].

Table 1. Reaction of complex (S)-4 with CF3(CH2)3I in DMSO using solid NaOH as a base [a].

Compounds Byproducts

Entry Time (h) 4 (%) 6 (%) 7 (%) Dr (6:7) 5 (%) 8 + uk [b] (%)

1 1.5 63.9 21.7 4.0 84:16 0.7 3.0

2 3.0 54.5 25.7 4.7 85:15 0.4 5.1

3 4.5 43.6 27.8 5.3 84:16 0.6 8.9

4 24.0 0.7 37.9 2.1 95:5 5.1 42.5
[a] Reaction conditions: complex (S)-4, DMSO (20 v/w), NaOH (1.0 equiv), CF3(CH2)I (1.0 equiv). [b] unknown
compounds.

One of the critical notes made in this series of experiment was the observation that solid NaOH
is not the best choice of introducing the base into the reaction mixture. After a series of experiments
focused on solvent/base issue, we found that combination of DMF as a reaction solvent and solution
of NaOMe in MeOH as a base allows for a dramatically improved outcome. Thus, as presented in
Table 2, the alkylation of (S)-4 with CF3(CH2)3I performed in DMF and using NaOMe/MeOH (28%
solution) proceeded with high rate providing for virtually complete (>99%) consumption of the starting
materials within about 30 min (entry 1). Importantly, the amount of byproducts was also dramatically
reduced, albeit the stereochemical outcome was rather marginal (90:10 dr). Interestingly, extension of
the reaction time from 0.5 to 2.0 h did not result in any visible changes of the chemical or stereochemical
outcome (entry 2).

Table 2. Reaction of complex (S)-4 with CF3(CH2)3I in DMF using solid NaOMe (28% and 10% solution
in MeOH) as a base [a].

Compounds Byproducts

Entry Time (h) NaOMe (Concentration) 4 (%) 6 (%) 7 (%) Dr (6:7) 5 (%) 8 + uk [b] (%)

1 0.5 28% 0.9 81.3 9.0 90:10 1.15 0.2

2 2.0 28% <0.1 82.1 9.1 90:10 1.8 0.35

3 0.5 10% 0.2 89.05 3.2 97:3 0.3 2.5

4 2.0 10% 0.2 89.3 3.25 96.5:3.5 0.35 3.7
[a] Reaction conditions: complex (S)-4, DMF (7 v/w), NaOMe/MeOH (1.0 equiv), CF3(CH2)I (1.0 equiv). Isolated
yield of 6 was 87.5%. [b] unknown compounds.

Additional experiments with combination of DMF/NaOMe indicated that the application of less
concentrated solution of NaOMe, has some advantageous effect on the reaction outcome. As shown
in Table 2 (entry 3), the use of 10% NaOMe solution in MeOH as a base resulted in almost complete
alkylation of glycine complex (S)-4 with CF3(CH2)3I in less than 30 min of the reaction time. Similar to
the previous experiments (entries 1 and 2) the alkylation proceeded rather cleanly, but most notably
with rather improved diastereoselectivity (97:3 dr). Also in this case, the extended reaction time
has no detrimental effect on the overall outcome. Using these conditions we were able to isolate
diastereomerically pure major product 6 with reasonably good chemical yield of 87.5%. Diastereomers
(S,2S)-6 and (S,2R)-7 were purified by column and fully characterized. The major product (S,2S)-6 gave
[α]25

D = +2616, indicating α-(S) configuration of the CF3-AA, while the minor diastereomer showed a
negative sign of optical rotation ([α]25

D = −1998), confirming α-(R) stereochemistry of the AA residue.
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The obtained data are in agreement of general trends in optical rotation observed for diastereomeric
Ni(II)-complexes of this type [1f,5i,20].

As presented in Scheme 4, the disassembly of purified diastereomerically pure (>98% de) major
product (S,2S)-6 was performed under the action of 3N aqueous HCl at 60 ◦C using dimethoxyethane
(DME) as organic solvent. Virtually complete disappearance of complex (S,2S)-6 was observed within
about 2 h of the reaction time. Upon cooling of the reaction mixture, the precipitate of salt of ligand
(S)-5 was conveniently removed by filtration. The aqueous solution of the Ni(II) ions and free (S)-1,
was concentrated, and treated with Fmoc-OSu in MeCN/H2O to provide the N-Fmoc protected amino
acid (S)-9.
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32. Borozan, S.Z.; Zlatović, M.V.; Stojanović, S.Đ. Anion–π interactions in complexes of proteins and
halogen-containing amino acids. J. Biol. Inorg. Chem. 2016, 21, 357–368. [CrossRef] [PubMed]

33. Sandberg, M.; Eriksson, L.; Jonsson, J.; Sjöström, M.; Wold, S. New Chemical Descriptors Relevant for the
Design of Biologically Active Peptides. A Multivariate Characterization of 87 Amino Acids. J. Med. Chem.
1998, 41, 2481–2491. [CrossRef] [PubMed]

34. van Hest, J.C.M.; Kiick, K.L.; Tirrell, D.A. Efficient Incorporation of Unsaturated Methionine Analogues into
Proteins in Vivo. J. Am. Chem. Soc. 2000, 122, 1282–1288. [CrossRef]

35. Kiick, K.L.; Tirrell, D.A. Protein Engineering by In Vivo Incorporation of Non-Natural Amino Acids: Control
of Incorporation of Methionine Analogues by Methionyl-tRNA Synthetase. Tetrahedron 2000, 56, 9487–9493.
[CrossRef]
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