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Abstract: The q-rung orthopair fuzzy graph is an extension of intuitionistic fuzzy graph and
Pythagorean fuzzy graph. In this paper, the degree and total degree of a vertex in q-rung orthopair
fuzzy graphs are firstly defined. Then, some product operations on q-rung orthopair fuzzy graphs,
including direct product, Cartesian product, semi-strong product, strong product, and lexicographic
product, are defined. Furthermore, some theorems about the degree and total degree under
these product operations are put forward and elaborated with several examples. In particular,
these theorems improve the similar results in single-valued neutrosophic graphs and Pythagorean
fuzzy graphs.
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1. Introduction

In 2017, Yager proposed the concept of q-rung orthopair fuzzy sets (q-ROFSs) [1], which
is a generalization of intuitionistic fuzzy sets (IFSs) [2] and Pythagorean fuzzy sets (PFSs) [3,4].
The q-ROFSs are fuzzy sets in which the membership grades of an element x are pairs of values in
the unit interval, < µA(x), νA(x) >, one of which indicates membership degree in the fuzzy set and
the other nonmembership degree [1]. For the q-ROFSs, the membership grades need to satisfy the
following conditions: (µA(x))q + (νA(x))q ≤ 1, µA(x) ∈ [0, 1], νA(x) ∈ [0, 1] and q ≥ 1, where the
parameter q determines the range of information expression. As q increases, the range of information
expression increases. As we all known, IFSs require the condition µA(x) + νA(x) ≤ 1 and PFSs
require the condition (µA(x))2 + (νA(x))2 ≤ 1. It is obvious to observe that q-ROFSs further diminish
the restriction of IFSs and PFSs on membership grades. Therefore, compared with IFSs and PFSs,
q-ROFSs provide decision-makers more elasticity to voice opinions with respect to membership grades
of an element. Recently, the q-ROFSs have become a hotspot research topic and attracted broad
attention [5–17].

Graph is a convenient tool to describe the decision-making problems diagrammatically [18].
By using this tool, the decision-making objects and their relationships are represented by vertex
and edge. With different representations of decision-making information, many different types
of graphs have been proposed, such as fuzzy graph [19], intuitionistic fuzzy graph (IFG) [20],
single-valued neutrosophic graph (SVNG) [21], intuitionistic fuzzy soft graph [22], rough fuzzy
graph [23], Pythagorean fuzzy graph (PFG) [24]. In consideration of the superiority of q-ROFSs,
Habib et al. [25] proposed the concept of q-rung orthopair fuzzy graph (q-ROFG) based on the q-ROFSs
in 2019. The q-ROFG is an extension of IFG [20] and PFG [24]. Compared with IFG and PFG, q-ROFG
has a more powerful ability to model uncertainty in decision-making problems.

Product operations on graphs are highly important part in graph theory [26]. Many scholars
have discussed product operations on different graphs. Mordeson and Peng [27–30] defined some
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product operations on fuzzy graphs. Later, using these operations, the degree of the vertices is obtained
from two fuzzy graphs in [31,32]. Gong and Wang [33] defined some product operations on fuzzy
hypergraphs. Sahoo and Pal [34] presented some product operations on IFGs and calculated the
degree of a vertex in IFGs. Rashmanlou et al. [35] proposed product operations on interval-valued
fuzzy graphs and study about the degree of a vertex in interval-valued fuzzy graphs. Naz et al. [21]
discussed some product operations of SVNGs and applied SVNGs to multi-criteria decision-making.
More recently, Akram et al. [24] investigated some product operations of PFGs and the degree and total
degree of a vertex in PFGs. However, the product operations on q-ROFGs have not been researched
yet, so we will pay our attention to this subject in this paper. Moreover, we have found that in SVNGs
and PFGs, the results about the degree and total degree under some product operations fail to work in
some cases. To improve these results, we introduced the number of adjacent vertices and obtained
some more general theorems.

The reminder of this paper is organized as follows. Some notions of q-ROFSs and q-ROFGs are
reviewed in Section 2. The degree and total degree of a vertex in a q-ROFG are defined in Section 3.
Some product operations on q-ROFGs, such as direct product, Cartesian product, semi-strong product,
strong product and lexicographic product, are defined, and the theorems about the degree and total
degree under the defined product operations are obtained in Section 4. Some conclusions are given in
Section 5.

2. Preliminaries

In this section, we review some definitions that are necessary.

2.1. Graph Theory

Definition 1 ([19]). A graph is a pair of sets G = (V, E), satisfying E(G) ⊆ V ×V. The elements of V(G)

and E(G) are the vertices and edges of the graph G, respectively. The standard products of graphs: direct
product, Cartesian product, semi-strong product, strong product and lexicographic product of two graphs
G1 = (V1, E1) and G2 = (V2, E2) will be denoted by G1 × G2, G1�G2, G1 • G2, G1 � G2 and G1[G2],
respectively. Let (x1, x2), (y1, y2) ∈ V1 ×V2. Then

E(G1 × G2) = {(x1, x2), (y1, y2) | x1y1 ∈ E1 and x2y2 ∈ E2},
E(G1�G2) = {(x1, x2), (y1, y2) | x1 = y1 and x2y2 ∈ E2, or x1y1 ∈ E1 and x2 = y2},
E(G1 • G2) = {(x1, x2), (y1, y2) | x1 = y1 and x2y2 ∈ E2, or x1y1 ∈ E1 and x2y2 ∈ E2},
E(G1 � G2) = E(G1�G2) ∪ E(G1 × G2),

E(G1[G2]) = {(x1, x2), (y1, y2) | x1y1 ∈ E1, or x1 = y1 and x2y2 ∈ E2}.

Definition 2 ([19]). A fuzzy subset ξ of a set V is a function ξ : V → [0, 1]. A fuzzy relation on a set V
is a mapping η : V × V → [0, 1] such that η(x, y) ≤ ξ(x) ∧ ξ(y) for all x, y ∈ V. A fuzzy graph is a pair
G = (ξ, η), where ξ is a fuzzy subset of a set V and η is a fuzzy relation on ξ.

2.2. q-Rung Othopair Fuzzy Set

Definition 3 ([1]). Let X be a universe of discourse, a q-ROFS A defined on X is given by

A = {〈x, µA(x), νA(x)〉 |x ∈ X}

where µA(x) ∈ [0, 1] and νA(x) ∈ [0, 1] respectively represent the membership and nonmembership degrees of
the element x to the set A satisfying µ

q
A(x) + ν

q
A(x) ≤ 1, (q ≥ 1). The indeterminacy degree of the element x

to the setA is πA(x)q = (µA(x)q + νA(x)q − µA(x)qνA(x)q)1/q. For convenience, the pair (µA(x), νA(x))
is called a q-rung orthopair fuzzy number (q-ROFN) [8].
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2.3. q-Rung Orthopair Fuzzy Graph

Definition 4 ([25]). A q-ROFS Q on X× X is said to be a q-rung orthopair fuzzy relation (q-ROFR) on X,
denoted by

Q = {〈xy, µQ(xy), νQ(xy)〉|xy ∈ X× X},

where µQ : X×X → [0, 1] and νQ : X×X → [0, 1] represent the membership and nonmembership function of
Q, respectively, such that 0 ≤ µQ

q(xy) + νQ
q(xy) ≤ 1 for all xy ∈ X× X and q ≥ 1. The proposed concept

of q-ROFG is a generalization of IFG [20] and PFG [24].

Definition 5 ([25]). A q-ROFG on a non-empty set X is a pair G = (P ,Q), where P is a q-ROFS on X and
Q is a q-ROFR on X such that

µQ(xy) ≤ min{µP (x), µP (y)}, νQ(xy) ≥ max{νP (x), νP (y)}

and 0 ≤ µQ
q(xy) + νQ

q(xy) ≤ 1 for all x, y ∈ X and q ≥ 1. We call P and Q the q-rung orthopair fuzzy
vertex set and the q-rung orthopair fuzzy edge set of G, respectively.

3. The Degree and Total Degree

In this section, the degree and total degree of a vertex in a q-ROFG are defined.

Definition 6. The degree and total degree of a vertex x ∈ V in a q-ROFG G are defined as dG(x) =

(dµ(x), dν(x)) and tdG(x) = (tdµ(x), tdν(x)), respectively, where

dµ(x) = ∑
x,y 6=x∈V

µQ(xy), dν(x) = ∑
x,y 6=x∈V

νQ(xy),

tdµ(x) = ∑
x,y 6=x∈V

µQ(xy) + µP (x), tdν(x) = ∑
x,y 6=x∈V

νQ(xy) + νP (x).

Example 1. Considering a road network problem, there are four locations l, m, n, o, assume that locations
are performed by vertices, roads by edges, and the traffic congestion between adjacent locations is subjectively
evaluated by decision-maker. The road network can be performed as a q-ROFG G = (P ,Q), where P and Q
respectively represent a q-ROFS of locations (vertices) and a q-ROFS of roads (edges). The traffic congestion of
locations and roads are respectively denoted as (µP (x), νP (x)) and (µQ(x), νQ(x)), see Figure 1. For example,

l
(0.6,0.5) means that the congestion degree of location l is 0.6 and the non-congestion degree of location l is 0.5.

lm
(0.5,0.9) means that the congestion degree of road lm is 0.5 and the non-congestion degree of road lm is 0.9.

P =

(
l

(0.6, 0.5)
,

m
(0.7, 0.9)

,
n

(0.3, 0.2)
,

o
(0.5, 0.1)

)
,

Q =

(
lm

(0.5, 0.9)
,

mn
(0.1, 0.9)

,
no

(0.2, 0.5)

)
.

To obtain more traffic congestion information of the road network, the degree and total
degree of each location are calculated. By Definition 6, dG(m) = (dµ(m), dν(m)). Since dµ(x) =

∑
x,y 6=x∈V

µQ(xy) and dν(x) = ∑
x,y 6=x∈V

νQ(xy), we can get dG(m) = (µQ(lm) + µQ(mn), νQ(lm) +

νQ(mn)) = (0.5 + 0.1, 0.9 + 0.9) = (0.6, 1.8). The degree of the location m represents the sum of
congestion grades between m and other neighbor locations. By Definition 6, tdG(m) = (tdµ(m), tdν(m)).
Since tdµ(x) = ∑

x,y 6=x∈V
µQ(xy) + µP (x) and tdν(x) = ∑

x,y 6=x∈V
νQ(xy) + νP (x), so we can get tdG(m) =

(µQ(lm) + µQ(mn) + µP (m), νQ(lm) + νQ(mn) + νP (m)) = (0.5 + 0.1 + 0.7, 0.9 + 0.9 + 0.9) =

(1.3, 2.7). The total degree of the location m represents the sum of total congestion grades of the
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location m in road network. Similarly, we can obtain dG(l) = (0.5, 0.9), tdG(l) = (1.1, 1.4), dG(n) = (0.3,
1.4), tdG(n) = (0.6, 1.6), dG(o) = (0.2, 0.5) and tdG(o) = (0.7, 0.6).

Figure 1. A road network using q-rung orthopair fuzzy graph (q-ROFG) with q = 4.

4. Some Product Operations on q-Rung Orthopair Fuzzy Graphs

In this section, product operations on q-ROFGs, including direct product, Cartesian product,
semi-strong product, strong product and lexicographic product, are analyzed.

Definition 7. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs of the graphs G1 = (V1, E1) and
G2 = (V2, E2), respectively. The direct product of G1 and G2 is denoted by G1 × G2 = (P1 ×P2,Q1 ×Q2)

and defined as:

(i)

{
(µP1 × µP2)(x1, x2) = µP1(x1) ∧ µP2(x2)

(νP1 × νP2)(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µQ1 × µQ2)(x1, x2)(y1, y2) = µQ1(x1y1) ∧ µQ2(x2y2)

(νQ1 × νQ2)(x1, x2)(y1, y2) = νQ1(x1y1) ∨ νQ2(x2y2) f or all x1y1 ∈ E1, f or all x2y2 ∈ E2.

Remark 1. The direct product of G1 and G2 can be understood that the edges of G1 combine with the each edge
of G2 to form a new graph G1 × G2.

Proposition 1. Let G1 and G2 be the q-ROFGs of the graphs G1 and G2 respectively. The direct product G1×G2

of G1 and G2 is a q-ROFG.

Definition 8. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. Then, for any vertex, (x1, x2) ∈
V1 ×V2,

(dµ)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

(µQ1 × µQ2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1) ∧ µQ2(x2y2),

(dν)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

(νQ1 × νQ2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1,x2y2∈E2

νQ1(x1y1) ∨ νQ2(x2y2).

Theorem 1. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. If µQ2 ≥ µQ1 , νQ2 ≤ νQ1 , then
dG1×G2(x1, x2) = |c(x2)| dG1(x1), where |c(x2)| = ∑

x2y2∈E2

1, represents the number of points adjacent to x2

in G2 and if µQ1 ≥ µQ2 , νQ1 ≤ νQ2 , then dG1×G2(x1, x2) = |c(x1)| dG2(x2) for all (x1, x2) ∈ V1 ×V2, where
|c(x1)| = ∑

x1y1∈E1

1 represents the number of points adjacent to x1 in G1.



Symmetry 2019, 11, 588 5 of 23

Proof. By definition of degree of a vertex in G1 × G2, we have

(dµ)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

(µQ1 × µQ2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1) ∧ µQ2 (x2y2)

= ∑
x1y1∈E1,x2y2∈E2

µQ1 (x1y1)
(
since µQ2 ≥ µQ1

)
= ∑

x2y2∈E2

1× ∑
x1y1∈E1

µQ1 (x1y1)

= |c(x2)| ∑
x1y1∈E1

µQ1 (x1y1)

= |c(x2)|
(
dµ

)
G1

(x1) ,

(dν)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

(νQ1 × νQ2)((x1, x2)(y1, y2))

= ∑
x1y1∈E1,x2y2∈E2

νQ1 (x1y1) ∨ νQ2 (x2y2)

= ∑
x1y1∈E1,x2y2∈E2

νQ1 (x1y1)
(
since νQ2 ≤ νQ1

)
= ∑

x2y2∈E2

1× ∑
x1y1∈E1

νQ1 (x1y1)

= |c(x2)| ∑
x1y1∈E1

νQ1 (x1y1)

= |c(x2)| (dν)G1
(x1) .

Hence, dG1×G2(x1, x2) = |c(x2)| dG1(x1). Likewise, it is easy to show that if µQ1 ≥ µQ2 , νQ1 ≤ νQ2 ,
then dG1×G2(x1, x2) = |c(x1)| dG2(x2).

Remark 2. In the SVNGs [21] and PFGs [24], If µQ2 ≥ µQ1 , νQ2 ≤ νQ1 , then dG1×G2(x1, x2) = dG1(x1).
If µQ1 ≥ µQ2 , νQ1 ≤ νQ2 , then dG1×G2(x1, x2) = dG2(x2) (cf. Theorem 3.4 in [21] and Theorem 1 in [24]).
It is obvious that they do not consider the effect of |c(x2)| or |c(x1)| on the degree under direct product.

Definition 9. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

(µQ1 × µQ2)((x1, x2)(y1, y2)) + (µP1 × µP2)(x1, x2)

= ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1) ∧ µQ2(x2y2) + µP1(x1) ∧ µP2(x2),

(tdν)G1×G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1×E2

(νQ1 × νQ2)((x1, x2)(y1, y2)) + (νP1 × νP2)(x1, x2)

= ∑
x1y1∈E1,x2y2∈E2

νQ1(x1y1) ∨ νQ2(x2y2) + νP1(x1) ∨ νP2(x2).

Theorem 2. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any (x1, x2) ∈ V1 ×V2, if

(1) µQ2 ≥ µQ1 , then (tdµ)G1×G2(x1, x2) = |c(x2)| (dµ)G 1
(x1) + µP1(x1) ∧ µP2(x2);

(2) νQ2 ≤ νQ1 , then (tdν)G1×G2(x1, x2) = |c(x2)| (dν)G 1
(x1) + νP1(x1) ∨ νP2(x2);

(3) µQ1 ≥ µQ2 , then (tdµ)G1×G2(x1, x2) = |c(x1)| (dµ)G 2
(x2) + µP1(x1) ∧ µP2(x2);

(4) νQ2 ≤ νQ1 , then (tdν)G1×G2(x1, x2) = |c(x1)| (dν)G 2
(x2) + νP1(x1) ∨ νP2(x2).
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In the above equalities, |c(x2)| represents the number of points adjacent to x2 in G2 and |c(x1)| represents
the number of points adjacent to x1 in G1.

Proof. The proof can be obtained by Definition 9 and Theorem 1.

Remark 3. In the PFGs [24], if

(1) µQ2 ≥ µQ1 , then (tdµ)G1×G2(x1, x2) = (dµ)G 1
(x1) + µP1(x1) ∧ µP2(x2);

(2) νQ2 ≤ νQ1 , then (tdν)G1×G2(x1, x2) = (dν)G 1
(x1) + νP1(x1) ∨ νP2(x2);

(3) µQ1 ≥ µQ2 , then (tdµ)G1×G2(x1, x2) = (dµ)G 2
(x2) + µP1(x1) ∧ µP2(x2);

(4) νQ1 ≤ νQ2 , then (tdν)G1×G2(x1, x2) = (dν)G 2
(x2) + νP1(x1) ∨ νP2(x2) (cf. Theorem 2 in [24]).

It is obvious that they do not consider the effect of |c(x2)| or |c(x1)| on the total degree under direct product.

Example 2. Consider two q-ROFGs G1 = (P1,Q1) and G2 = (P2,Q2) on V1 = {l, m} and V2 = {n, p, s},
respectively, as shown in Figure 2. Their direct product G1 × G2 is shown in Figure 3.

Since µQ2 ≥ µQ1 , νQ2 ≤ νQ1 , by Theorem 1, we have

(dµ)G1×G2(l, p) = |c(p)| (dµ)G 1
(l) = |{n, s}| (dµ)G 1

(l) = 2× 0.1 = 0.2,

(dν)G1×G2(l, p) = |c(p)| (dν)G 1
(l) = |{n, s}| (dν)G 1

(l) = 2× 0.8 = 1.6.

Therefore, (d)G1×G2(l, p)=(0.2, 1.6). In addition, by Theorem 2, we have

(tdµ)G1×G2(l, p) = |c(p)| (dµ)G 1
(l) + µP1(l) ∧ µP2(p) = |{n, s}| (dµ)G 1

(l) + µP1(l) ∧ µP2(p)

= 2× 0.1 + 0.9∧ 0.9 = 1.1,

(tdν)G1×G2(l, p) = |c(p)| (dν)G 1
(l) + νP1(l) ∨ νP2(p) = |{n, s}| (dν)G 1

(l) + νP1(l) ∨ νP2(p)

= 2× 0.8 + 0.6∨ 0.5 = 2.2.

Therefore, (td)G1×G2(l, p)=(1.1, 2.2). Likewise, we can get the degree and total degree of each vertex in G1×G2.

Figure 2. Two q-ROFGs with q = 3.
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Figure 3. Direct product of two q-ROFGs.

Remark 4. Klement and Mesiar [36] show that results concerning various fuzzy structures actually follow from
results of ordinary fuzzy structures. These results include those from PFSs, IFSs, and many others. Although
PFSs and q-rung orthopair fuzzy sets are isomorphism, Theorem 1 and Theorem 2 in this paper cannot be
obtained from the results of PFGs. In the PFGs [24], they do not consider the effect of |c(x2)| = ∑

x2y2∈E2

1 and

their results fail to work in Example 2. For example, when using theorem 1 in PFGs [24], we can get

(dµ)G1×G2(l, p) = (dµ)G 1
(l) = 0.1

(dν)G1×G2(l, p) = (dν)G 1
(l) = 0.8.

However, (dµ)G1×G2(l, p) = 0.2 6= (dµ)G 1
(l) = 0.1 and (dν)G1×G2(l, p) = 1.6 6= (dν)G 1

(l) = 0.8.
When using theorem 2 in PFGs [24], we can get

(tdµ)G1×G2(l, p) = (dµ)G 1
(l) + µP1(l) ∧ µP2(p) = (dµ)G 1

(l) + µP1(l) ∧ µP2(p)

= 0.1 + 0.9∧ 0.9 = 1.0,

(tdν)G1×G2(l, p) = (dν)G 1
(l) + νP1(l) ∨ νP2(p) = (dν)G 1

(l) + νP1(l) ∨ νP2(p)

= 0.8 + 0.6∨ 0.5 = 1.4.

However, (tdµ)G1×G2(l, p) = 1.1 6= 1.0 and (tdν)G1×G2(l, p) = 2.2 6= 1.4.

Definition 10. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs of G1 = (V1, E1) and G2 = (V2, E2),
respectively. The Cartesian product of G1 and G2 is denoted by G1�G2 = (P1�P2,Q1�Q2) and defined as:

(i)

{
(µP1�µP2)(x1, x2) = µP1(x1) ∧ µP2(x2)

(νP1�νP2)(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µQ1�µQ2)(x, x2)(x, y2) = µP1(x) ∧ µQ2(x2y2)

(νQ1�νQ2)(x, x2)(x, y2) = νP1(x) ∨ νQ2(x2y2) f or all x ∈ V1, f or all x2y2 ∈ E2,

(iii)

{
(µQ1�µQ2)(x1, z)(y1, z) = µP1(x1y1) ∧ µP2(z)
(νQ1�νQ2)(x1, z)(y1, z) = νP1(x1x2) ∨ νQ2(z) f or all z ∈ V2, f or all x1y1 ∈ E1.

Remark 5. The Cartesian product of G1 and G2 can be understood that the vertices of G1 combine with the each
edge of G2 and the vertices of G2 combine with the each edge of G1 to form a new graph G1�G2.
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Proposition 2. Let G1 and G2 be the q-ROFGs of the graphs G1 and G2, respectively. The Cartesian product
G1�G2 of G1 and G1 is a q-ROFG.

Definition 11. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(µQ1�µQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1),

(dν)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(νQ1�νQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1(x1) ∨ νQ2(x2y2) + ∑
x2=y2,x1y1∈E1

νP2(x2) ∨ νQ1(x1y1).

Theorem 3. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. If µP1 ≥ µQ2 , µP2 ≥ µQ1 and
νP1 ≤ νQ2 , νP2 ≤ νQ1 . Then dG1�G2(x1, x2) = dG1(x1) + dG2(x2) for any (x1, x2) ∈ V1 ×V2.

Proof. By definition of degree of a vertex in G1�G2, we have

(dµ)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(µQ1�µQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

= ∑
x1=y1,x2y2∈E2

µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µQ1(x1y1)

(By using µP1 ≥ µQ2 and µP1 ≤ µQ2)

= ∑
x1=y1

1× ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x2=y2

1× ∑
x1y1∈E1

µQ1 (x1y1)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1)

= (dµ)G 1
(x1) + (dµ)G 2

(x2),

(dν)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(νQ1�νQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1(x1) ∨ νQ2(x2y2) + ∑
x2=y2,x1y1∈E1

νP2(x2) ∨ νQ1(x1y1)

= ∑
x1=y1,x2y2∈E2

νQ2(x2y2) + ∑
x2=y2,x1y1∈E1

νQ1(x1y1)

(By using νP1 ≤ νQ2 and νP2 ≤ νQ1)

= ∑
x1=y1

1× ∑
x2y2∈E2

νQ2 (x2y2) + ∑
x2=y2

1× ∑
x1y1∈E1

νQ1 (x1y1)

= ∑
x2y2∈E2

νQ2 (x2y2) + ∑
x1y1∈E1

νQ1 (x1y1)

= (dν)G 1
(x1) + (dν)G 2

(x2).

Hence, dG1�G2(x1, x2) = dG1(x1) + dG2(x2).
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Definition 12. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(µQ1�µQ2)((x1, x2)(y1, y2)) + (µP1�µP2)(x1, x2)

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ µP1(x1) ∧ µP2(x2),

(tdν)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(νQ1�νQ2)((x1, x2)(y1, y2)) + (νP1�νP2)(x1, x2)

= ∑
x1=y1,x2y2∈E2

νP1(x1) ∧ νQ2(x2y2) + ∑
x2=y2,x1y1∈E1

νP2(x2) ∧ νQ1(x1y1)

+ νP1(x1) ∨ νP2(x2).

Theorem 4. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any (x1, x2) ∈ V1 ×V2,

(1) If µP1 ≥ µQ2 and µP2 ≥ µQ1 , then

(tdµ)G1�G2(x1, x2) = (tdµ)G 1
(x1) + (tdµ)G 2

(x2)− µP1(x1) ∨ µP2(x2);

(2) If νP1 ≤ νQ2 and νP2 ≤ νQ1 , then

(tdν)G1�G2(x1, x2) = (tdν)G 1
(x1) + (tdν)G 2

(x2)− νP1(x1) ∧ νP2(x2).

Proof. By definition of total degree of a vertex in G1�G2,

(1) (tdµ)G1�G2(x1, x2) = ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ µP1(x1) ∧ µP2(x2)

= ∑
x1=y1

1× ∑
x2y2∈E2

µQ2(x2y2) + ∑
x2=y2

1× ∑
x1y1∈E1

µQ1(x1y1) + µP1(x1)

+ µP2(x2)− µP1(x1) ∨ µP2(x2) (since µP1 ≥ µQ2 , µP2 ≥ µQ1)

= ∑
x2y2∈E2

µQ2(x2y2) + µP2(x2) + ∑
x1y1∈E1

µQ1(x1y1) + µP1(x1)

− µP1(x1) ∨ µP2(x2)

= (tdµ)G 1
(x1) + (tdµ)G 2

(x2)− µP1(x1) ∨ µP2(x2),

(2) (tdν)G1�G2(x1, x2) = ∑
x1=y1,x2y2∈E2

νP1(x1) ∨ νQ2(x2y2) + ∑
x2=y2,x1y1∈E1

νP2(x2) ∨ νQ1(x1y1)

+ νP1(x1) ∨ νP2(x2)

= ∑
x1=y1

1× ∑
x2y2∈E2

νQ2(x2y2) + ∑
x2=y2

1× ∑
x1y1∈E1

νQ1(x1y1) + νP1(x1)

+ νP2(x2)− νP1(x1) ∧ νP2(x2) (since νP1 ≤ νQ2 , νP2 ≤ νQ1)

= (tdν)G 1
(x1) + (tdν)G 2

(x2)− νP1(x1) ∧ νP2(x2).

Example 3. Consider two q-ROFGs G1 and G2 in Example 2, where µP1 ≥ µQ2 , µP2 ≥ µQ1 and νP1 ≤
µQ2 , νP2 ≤ νQ1 . Their Cartesian product G1�G2 is shown in Figure 4.
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By Theorem 3, we have

(dµ)G1�G2(l, p) = (dµ)G1(l) + (dµ)G2(p) = 0.1 + 0.7 + 0.2 = 1.0,

(dν)G1�G2(l, p) = (dν)G1(l) + (dν)G2(p) = 0.8 + 0.6 + 0.7 = 2.1.

Therefore, dG1�G2(l, p) = (1.0, 2.1). In addition, by Theorem 4, we can get

(tdµ)G1�G2(l, p) = (tdµ)G1(l) + (tdµ)G2(p)− µP1(l) ∨ µP2(p)

= 0.9 + 0.1 + 0.7 + 0.2 + 0.9− 0.9∨ 0.9 = 1.9,

(tdν)G1�G2(l, p) = (tdν)G1(l) + (tdν)G2(p)− νP1(l) ∧ νP2(p)

= 0.8 + 0.6 + 0.6 + 0.7 + 0.5− 0.6∧ 0.5 = 2.7.

Therefore, tdG1�G2(l, p) = (1.9, 2.7). Likewise, we can get the degree and total degree of each vertex
in G1�G2.

Figure 4. Cartesian product of two q-ROFGs.

Definition 13. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs of the graphs G1 = (V1, E1) and
G2 = (V2, E2), respectively. The semi-strong product of G1 and G2, denoted by G1 • G2 = (P1 • P2,Q1 • Q2),
is defined as:

(i)

{
(µP1 • µP2)(x1, x2) = µP1(x1) ∧ µP2(x2)

(νP1 • νP2)(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µQ1 • µQ2)(x, x2)(x, y2) = µP1(x) ∧ µQ2(x2y2),
(νQ1 • νQ2)(x, x2)(x, y2) = νP1(x) ∨ νQ2(x2y2) f or all x ∈ V1, f or all x2y2 ∈ E2,

(iii)

{
(µQ1 • µQ2)(x1, x2)(y1, y2) = µP1(x1y1) ∧ µQ2(x2y2),
(νQ1 • νQ2)(x1, x2)(y1, y2) = νP1(x1y1) ∨ νQ2(x2y2) f or all x1y1 ∈ E1, f or all x2y2 ∈ E2.

Remark 6. The semi-strong product of G1 and G2 can be understood that the vertices of G1 combine with the
each edge of G2 and the edges of G1 combine with the each edge of G2 to form a new graph G1 • G2.
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Proposition 3. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs of the graphs G1 and G2, respectively.
The semi-strong product G1 • G2 of G1 and G2 is a q-ROFG.

Definition 14. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1•G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

(µQ1 • µQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1) ∧ µQ2(x2y2),

(dν)G1•G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

(νQ1 • νQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1(x1) ∨ νQ2(x2y2) + ∑
x1y1∈E1,x2y2∈E2

νQ1(x1y1) ∨ νQ2(x2y2).

Theorem 5. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. If µP1 ≥ µQ2 , µQ1 ≤ µQ2 and
νP1 ≤ νQ2 , νQ1 ≥ νQ2 . Then (d)G1•G2(x1, x2) = |c(x2)| dG1(x1) + dG2(x2) for any (x1, x2) ∈ V1 × V2,
where |c(x2)| represents the number of points adjacent to x2 in G2.

Proof. By definition of degree of a vertex in G1 • G2, we have

(dµ)G1•G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

(µQ1 • µQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x1y1∈E1,x2y2∈E2

µQ2(x2y2) ∧ µQ1(x1y1)

= ∑
x1=y1,x2y2∈E2

µQ2(x2y2) + ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1)

(Since µP1 ≥ µQ2 and µQ1 ≤ µQ2)

= ∑
x1=y1

1× ∑
x2y2∈E2

µQ2(x2y2) + ∑
x2y2∈E2

1× ∑
x1y1∈E1

µQ1(x1y1)

= ∑
x2y2∈E2

µQ2(x2y2) + |c(x2)| ∑
x1y1∈E1

µQ1(x1y1)

= (dµ)G 2
(x2) + |c(x2)| (dµ)G 1

(x1).

Analogously, it is easy to show that (dν)G1•G2(x1, x2) = |c(x2)| dνG1(x1) + dνG2(x2). Hence,
dG1•G2(x1, x2) = |c(x2)| dG1(x1) + dG2(x2).

Remark 7. In the SVNGs [21] and PFGs [24], if µP1 ≥ µQ2 , µQ1 ≤ µQ2 and νP1 ≤ νQ2 , νQ1 ≥ νQ2 , then
(d)G1•G2(x1, x2) = dG1(x1) + dG2(x2) (cf. Theorem 3.14 in [21] and Theorem 5 in [24]). It is obvious that they
do not consider the effect of |c(x2)| on the degree under semi-strong product.
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Definition 15. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1•G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

(µQ1 • µQ2)((x1, x2)(y1, y2)) + (µP1 • µP2)(x1, x2)

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x1y1∈E1,x2y2∈E2

µQ2(x1y1) ∧ µQ2(x2y2)

+ µP1(x1) ∧ µP2(x2),

(tdν)G1•G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1•E2

(νQ1 • νQ2)((x1, x2)(y1, y2)) + (νP1 • νP2)(x1, x2)

= ∑
x1=y1,x2y2∈E2

νP1(x1) ∨ νQ2(x2y2) + ∑
x1y1∈E1,x2y2∈E2

νQ1(x1y1) ∨ νQ2(x2y2)

+ νP1(x1) ∨ νP2(x2).

Theorem 6. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For all (x1, x2) ∈ V1 ×V2,
(1) If µP1 ≥ µQ2 , µQ1 ≤ µQ2 , then

(tdµ)G1•G2(x1, x2) = (|c(x2)|)(tdµ)G 1
(x1) + (tdµ)G 2

(x2) + (1− |c(x2)|)µP1(x1)− µP1(x1) ∨ µP2(x2);

(2) If νP1 ≤ νQ2 , νQ1 ≥ νQ2 , then

(tdν)G1•G2(x1, x2) = (|c(x2)|)(tdν)G 1
(x1) + (tdν)G 2

(x2) + (1− |c(x2)|)νP1(x1)− νP1(x1) ∧ νP2(x2).

In the above equalities, |c(x2)| represents the number of points adjacent to x2 in G2.

Proof. By definition 6 of total degree of a vertex in G1 • G2,

(1)(tdµ)G1•G2(x1, x2) = ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1) ∧ µQ2(x2y2)

+ µP1(x1) ∧ µP2(x2)

= ∑
x1=y1

1× ∑
x2y2∈E2

µQ2(x2y2) + ∑
x2y2∈E2

1× ∑
x1y1∈E1

µQ1(x1y1) + µP1(x1)

+ µP2(x2)− µP1(x1) ∨ µP2(x2)

(Since µP1 ≥ µQ2 , µQ1 ≤ µQ2)

= ∑
x2y2∈E2

µQ2(x2y2) + |c(x2)| ∑
x1y1∈E1

µQ1(x1y1) + µP1(x1)

+ µP2(x2)− µP1(x1) ∨ µP2(x2)

= (|c(x2)|)(tdµ)G 1
(x1) + (tdµ)G 2

(x2) + (1− |c(x2)|)µP1(x1)− µP1(x1) ∨ µP2(x2).

Analogously, we can prove (2).

Remark 8. In the PFGs [24], if µP1 ≥ µQ2 , µQ1 ≤ µQ2 , then

(tdµ)G1•G2(x1, x2) = (tdµ)G 1
(x1) + (tdµ)G 2

(x2)− µP1(x1) ∨ µP2(x2);

If νP1 ≤ νQ2 , νQ1 ≥ νQ2 , then

(tdν)G1•G2(x1, x2) = (tdν)G 1
(x1) + (tdν)G 2

(x2)− νP1(x1) ∧ νP2(x2) (cf. Theorem 6 in [24]).

It is obvious that they do not consider the effect of |c(x2)|, (1− |c(x2)|)µP1(x1) and (1− |c(x2)|)νP1(x1) on
the total degree under semi-strong product.
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Example 4. Consider two q-ROFGs G1 and G2 in Example 2, where µP1 ≥ µQ2 , µQ1 ≤ µQ2 , νP1 ≤
νQ2 , νQ1 ≥ νQ2 . Their semi-strong product G1 • G2 is shown in Figure 5.

By Theorem 5, we can get

(dµ)G1•G2(l, p) = |c(p)| (dµ)G1(l) + (dµ)G2(p) = |{n, s}| (dµ)G1(l) + (dµ)G2(p)

= 2× 0.1 + 0.7 + 0.2 = 1.1,

(dν)G1•G2(l, p) = |c(p)| (dν)G1(l) + (dν)G2(p) = |{n, s}| (dν)G1(l) + (dν)G2(p)

= 2× 0.8 + 0.6 + 0.7 = 2.9.

Therefore, dG1•G2(l, p) = (1.1, 2.9). In addition, by Theorem 6, we have

(tdµ)G1•G2(l, p) = (|c(p)|)(tdµ)G 1
(l) + (tdµ)G 2

(p) + (1− |c(p)|)µP1(l)− µP1(l) ∨ µP2(p)

= |{n, s}| (tdµ)G 1
(l) + (tdµ)G 2

(p) + (1− |c(p)|)µP1(l)− µP1(l) ∨ µP2(p)

= 2× (0.1 + 0.9) + 0.7 + 0.2 + 0.9 + (1− 2)× 0.9− 0.9∨ 0.9 = 2.0,

(tdν)G1•G2(l, p) = (|c(p)|)(tdν)G 1
(l) + (tdν)G 2

(p) + (1− |c(p)|)νP1(l)− νP1(l) ∧ νP2(p)

= |{n, s}| (tdν)G 1
(l) + (tdν)G 2

(p) + (1− |c(p)|)νP1(l)− νP1(l) ∧ νP2(p)

= 2× (0.8 + 0.6) + 0.6 + 0.7 + 0.5 + (1− 2)× 0.6− 0.6∧ 0.5 = 3.5.

Therefore, tdG1•G2(m, p) = (2.0, 3.5). Likewise, we can get the degree and total degree of each vertex in G1 • G2.

Figure 5. Semi-strong product of two q-ROFGs.
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Remark 9. In the PFGs [24], they do not consider the effect of |c(x2)| = ∑
x2y2∈E2

1 and their results fail to work

in Example 4. For example, when using theorem 5 in PFGs [24], we can get

(dµ)G1•G2(l, p) = (dµ)G1(l) + (dµ)G2(p) = (dµ)G1(l) + (dµ)G2(p)

= 0.1 + 0.7 + 0.2 = 1.0,

(dν)G1•G2(l, p) = (dν)G1(l) + (dν)G2(p) = (dν)G1(l) + (dν)G2(p)

= 0.8 + 0.6 + 0.7 = 2.1.

However, (dµ)G1•G2(l, p) = 1.1 6= 1.0 and (dν)G1•G2(l, p) = 2.9 6= 2.1.
When using Theorem 6 in PFGs [24], we can get

(tdµ)G1•G2(l, p) = (tdµ)G 1
(l) + (tdµ)G 2

(p)− µP1(l) ∨ µP2(p)

= (0.1 + 0.9) + 0.7 + 0.2 + 0.9− 0.9∨ 0.9 = 1.9,

(tdν)G1•G2(l, p) = (tdν)G 1
(l) + (tdν)G 2

(p)− νP1(l) ∧ νP2(p)

= (0.8 + 0.6) + 0.6 + 0.7 + 0.5− 0.6∧ 0.5 = 2.7.

However, (tdµ)G1•G2(l, p) = 2.0 6= 1.9 and (tdν)G1•G2(l, p) = 3.5 6= 2.7.

Definition 16. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs of the G1 = (V1, E1) and G2 =

(V2, E2), respectively. The strong product of these two q-ROFGs is denoted by G1 � G2 = (P1 �P2,Q1 �Q2)

and defined as:

(i)

{
(µP1 � µP2)(x1, x2) = µP1(x1) ∧ µP2(x2)

(νP1 � νP2)(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µQ1 � µQ2)(x, x2)(x, y2) = µP1(x) ∧ µQ2(x2y2),
(νQ1 � νQ2)(x, x2)(x, y2) = νP1(x) ∨ νQ2(x2y2) f or all x ∈ V1, f or all x2y2 ∈ E2,

(iii)

{
(µQ1 � µQ2)(x1, z)(y1, z) = µQ1(x1y1) ∧ µP2(z)
(νQ1 � νQ2)(x1, z)(y1, z) = νQ1(x1x2) ∨ νP2(z) f or all z ∈ V2, f or all x1y1 ∈ E1,

(iv)

{
(µQ1 � µQ2)(x1, x2)(y1, y2) = µQ1(x1y1) ∧ µQ2(x2y2)

(νQ1 � νQ2)(x1, x2)(y1, y2) = νQ1(x1y1) ∨ νQ2(x2y2) f or all x1y1 ∈ E1, f or all x2y2 ∈ E2.

Remark 10. The strong product of G1 and G2 can be understood that the vertices of G1 combine with the each
edge of G2, the vertices of G2 combine with the each edge of G1 and the edges of G1 combine with the each edge of
G2 to form a new graph G1 � G2.

Proposition 4. Let G1 and G2 be the q-ROFGs of the graphs G1 and G2, respectively. The strong product
G1 � G2 of G1 and G1 is a q-ROFG.

Definition 17. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(µQ1 � µQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1) ∧ µQ2(x2y2),
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(dν)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(νQ1 � νQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1(x1) ∨ νQ2(x2y2) + ∑
x2=y2,x1y1∈E1

νP2(x2) ∨ νQ1(x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

νQ1(x1y1) ∨ νQ2(x2y2).

Theorem 7. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. If µP1 ≥ µQ2 , µP2 ≥ µQ1 ,
µQ1 ≤ µQ2 , νP1 ≤ νQ2 , νP2 ≤ νQ1 , νQ1 ≥ νQ2 . Then, for all (x1, x2) ∈ V1 � V2, dG1×G2(x1, x2) =

(1 + |c(x2)|) dG1(x1) + dG2(x2), where |c(x2)| represents the number of points adjacent to x2 in G2.

Proof. By definition of degree of a vertex in G1 � G2, we have

(dµ)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(µQ1 � µQ2)((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1) ∧ µQ2(x2y2)

= ∑
x1=y1,x2y2∈E2

µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µQ1(x1y1) + ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1)

(Since µP1 ≥ µQ2 , µP2 ≥ µQ1 and µQ1 ≤ µQ2)

= ∑
x1=y1

1× ∑
x2y2∈E2

µQ2(x2y2) + ∑
x2=y2

1× ∑
x1y1∈E1

µQ1(x1y1)

+ ∑
x2y2∈E2

1× ∑
x1y1∈E1

µQ1(x1y1)

= ∑
x2y2∈E2

µQ2 (x2y2) + ∑
x1y1∈E1

µQ1 (x1y1) + |c(x2)| ∑
x1y1∈E1

µQ1 (x1y1)

=
(
dµ

)
G2

(x2) +
(
dµ

)
G1

(x1) + |c(x2)|
(
dµ

)
G1

(x1)

=
(
dµ

)
G2

(x2) + (1 + |c(x2)|)
(
dµ

)
G1

(x1) .

Analogously, it is easy to show that (dν)G1�G2(x1, x2) = (1 + |c(x2)|) (dν)G1(x1) + (dν)G2(x2). Hence,
dG1�G2(x1, x2) = (1 + |c(x2)|) dG1(x1) + dG2(x2).

Remark 11. In the SVNGs [21] and PFGs [24], If µP1 ≥ µQ2 , µP2 ≥ µQ1 , µQ1 ≤ µQ2 , νP1 ≤ νQ2 ,
νP2 ≤ νQ1 , νQ1 ≥ νQ2 , then dG1�G2(x1, x2) = |V2| dG1(x1) + dG2(x2), where |V2| represents the number of
vertices in G2 (cf. Theorem 3.19 in [21] and Theorem 7 in [24]). It is obvious that they do not consider the effect
of |c(x2)| on the degree under strong product.
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Definition 18. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(µQ1 � µQ2)((x1, x2)(y1, y2)) + (µP1 � µP2)(x1, x2)

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

µQ2(x1y1) ∧ µQ2(x2y2) + µP1(x1) ∧ µP2(x2),

(tdν)G1�G2(x1, x2) = ∑
(x1,x2)(y1,y2)∈E1�E2

(νQ1 � νQ2)((x1, x2)(y1, y2)) + (νP1 � νP2)(x1, x2)

= ∑
x1=y1,x2y2∈E2

νP1(x1) ∨ νQ2(x2y2) + ∑
x2=y2,x1y1∈E1

νP2(x2) ∨ νQ1(x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

νQ1(x1y1) ∨ νQ2(x2y2) + νP1(x1) ∨ νP2(x2).

Theorem 8. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any (x1, x2) ∈ V1 ×V2,

(1) If µP1 ≥ µQ2 , µP2 ≥ µQ1 , µQ1 ≤ µQ2 , then

(tdµ)G1�G2(x1, x2) = (tdµ)G 2
(x2) + (1 + |c(x2)|) (tdµ)G 1

(x1)− |c(x2)| µP1(x1)− µP1(x1) ∨ µP2(x2);

(2) If νP1 ≤ νQ2 , νP2 ≤ νQ1 , µQ1 ≥ µQ2 , then

(tdν)G1�G2(x1, x2) = (tdν)G 2
(x2) + (1 + |c(x2)|) (tdν)G 1

(x1)− |c(x2)| νP1(x1)− νP1(x1) ∧ νP2(x2).

In the above equalities, |c(x2)| represents the number of points adjacent to x2 in G2.

Proof. For any vertex (x1, x2) ∈ V1 ×V2,

(1) (tdµ)G1�G2(x1, x2) = ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ ∑
x1y1∈E1,x2y2∈E2

µQ1(x1y1) ∧ µQ2(x2y2) + µP1(x1) ∧ µP2(x2),

= ∑
x1=y1

1× ∑
x2y2∈E2

µQ2(x2y2) + ∑
x2=y2

1× ∑
x1y1∈E1

µQ1(x1y1)

+ ∑
x2y2∈E2

1× ∑
x1y1∈E1

µQ1(x1y1)

+ µP1(x1) + µP2(x2)− µP1(x1) ∨ µP2(x2) (since µP1 ≥ µQ2 , µP2 ≥ µQ1 , µQ1 ≤ µQ2)

= ∑
x2y2∈E2

µQ2(x2y2) + µP2(x2) + (1 + |c(x2)|) ∑
x1y1∈E1

µQ1(x1y1) + (1 + |c(x2)|) µP1(x1)

− ((1 + |c(x2)|)− 1)µP1(x1)− µP1(x1) ∨ µP2(x2)

= (tdµ)G 2
(x2) + (1 + |c(x2)|) (tdµ)G 1

(x1)

− ((1 + |c(x2)|)− 1)µP1(x1)− µP1(x1) ∨ µP2(x2)

= (tdµ)G 2
(x2) + (1 + |c(x2)|) (tdµ)G 1

(x1)− |c(x2)| µP1(x1)− µP1(x1) ∨ µP2(x2).

Analogously, we can prove (2).

Remark 12. In the PFGs [24], if µP1 ≥ µQ2 , µP2 ≥ µQ1 , µQ1 ≤ µQ2 , then

(tdµ)G1�G2(x1, x2) = (tdµ)G 2
(x2) + |V2| (tdµ)G 1

(x1)− (|V2| − 1) µP1(x1)− µP1(x1) ∨ µP2(x2);

If νP1 ≤ νQ2 , νP2 ≤ νQ1 , µQ1 ≥ µQ2 , then
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(tdν)G1�G2(x1, x2) = (tdν)G 2
(x2) + |V2| (tdν)G 1

(x1) − (|V2| − 1) νP1(x1) − νP1(x1) ∧ νP2(x2)

(cf. Theorem 8 in [24]).
It is obvious that they do not consider the effect of |c(x2)| on the total degree under strong product.

Example 5. Consider two q-ROFGs G1 and G2 in Example 2, where µP1 ≥ µQ2 , νP1 ≤ νQ2 , µP2 ≥
µQ1 , νP2 ≤ νQ1 , µQ1 ≤ µQ2 , νQ1 ≥ νQ2 and their strong product G1 � G2 is shown in Figure 6.

By Theorem 7, we have

(dµ)G1�G2(l, p) =
(
dµ

)
G2

(p) + (1 + |c(p)|)
(
dµ

)
G1

(l)

=
(
dµ

)
G2

(p) + (1 + |{n, s}|)
(
dµ

)
G1

(l)

= 0.7 + 0.2 + (1 + 2)× 0.1 = 1.2,

(dν)G1�G2(l, p) = (dν)G2
(p) + (1 + |c(p)|) (dν)G1

(l)

= (dν)G2
(p) + (1 + |{n, s}|) (dν)G1

(l)

= 0.6 + 0.7 + (1 + 2)× 0.8 = 3.7.

Therefore, dG1�G2(l, p) = (1.2, 3.7). In addition, by Theorem 8, we have

(tdµ)G1�G2(l, p) = (tdµ)G 2
(p) + (1 + |c(p)|) (tdµ)G 1

(l)− |c(p)| µP1(l)− µP1(l) ∨ µP2(p)

= (tdµ)G 2
(p) + (1 + |{n, s}|) (tdµ)G 1

(l)− |{n, s}| µP1(l)− µP1(l) ∨ µP2(p)

= 0.7 + 0.2 + 0.9 + (1 + 2)× (0.1 + 0.9)− 2× 0.9− 0.9∨ 0.9 = 2.1,

(tdν)G1�G2(l, p) = (tdν)G 2
(p) + (1 + |c(p)|) (tdν)G 1

(l)− |c(p)| νP1(l)− νP1(l) ∧ νP2(p)

= (tdν)G 2
(p) + (1 + |{n, s}|) (tdν)G 1

(l)− |{n, s}| νP1(l)− νP1(l) ∧ νP2(p)

= 0.6 + 0.7 + 0.5 + (1 + 2)× (0.8 + 0.6)− 2× 0.6− 0.6∧ 0.5 = 4.3.

Therefore, tdG1�G2(l, p) = (2.1, 4.3). Likewise, we can find the degree and total degree of each vertex in G1 � G2.

Figure 6. Strong product of two q-ROFGs.
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Remark 13. In the PFGs [24], they do not consider the effect of |c(x2)| = ∑
x2y2∈E2

1. For example, when using

theorem 7 in PFGs [24], we can get

(dµ)G1�G2(l, p) =
(
dµ

)
G2

(p) + p2
(
dµ

)
G1

(l) = 0.7 + 0.2 + 3× 0.1 = 1.2,

(dν)G1�G2(l, p) = (dν)G2
(p) + p2(dν)G1

(l) = 0.6 + 0.7 + 3× 0.8 = 3.7.

When using theorem 8 in PFGs [24], we can get

(tdµ)G1�G2(l, p) = (tdµ)G 2
(p) + (p2) (tdµ)G 1

(l)− (p2 − 1) µP1(l)− µP1(l) ∨ µP2(p)

= 0.7 + 0.2 + 0.9 + 3× (0.1 + 0.9)− (3− 1)× 0.9− 0.9∨ 0.9 = 2.1,

(tdν)G1�G2(l, p) = (tdν)G 2
(p) + (p2) (tdν)G 1

(l)− (p2 − 1) νP1(l)− νP1(l) ∧ νP2(p)

= 0.6 + 0.7 + 0.5 + 3× (0.8 + 0.6)− (3− 1)× 0.6− 0.6∧ 0.5 = 4.3.

Although they get the same values as the Example 5, but the variable means different things. p2 is represented by
number of points in G2. Actually, p2 should be replaced by 1 + |c(x2)| in Example 5.

Definition 19. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs of the G1 = (V1, E1) and
G2 = (V2, E2), respectively. The lexicographic product of these two q-ROFGs is denoted by G1[G2] =

(P1[P2],Q1[Q2]) and defined as follows:

(i)

{
(µP1 [µP2 ])(x1, x2) = µP1(x1) ∧ µP2(x2)

(νP1 [νP2 ])(x1, x2) = νP1(x1) ∨ νP2(x2) f or all (x1, x2) ∈ V1 ×V2,

(ii)

{
(µQ1 [µQ2 ])(x, x2)(x, y2) = µP1(x) ∧ µQ2(x2y2)

(νQ1 [νQ2 ])(x, x2)(x, y2) = νP1(x) ∨ νQ2(x2y2) f or all x ∈ V1, f or all x2y2 ∈ E2,

(iii)

{
(µQ1 [µQ2 ])(x1, z)(y1, z) = µQ1(x1y1) ∧ µP2(z)
(νQ1 [νQ2 ])(x1, z)(y1, z) = νQ1(x1x2) ∨ νP2(z) f or all z ∈ V2, f or all x1y1 ∈ E1,

(iv)

{
(µQ1 [µQ2 ])(x1, x2)(y1, y2) = µP2(x2) ∧ µP2(y2) ∧ µQ1(x1y1)

(νQ1 [νQ2 ])(x1, x2)(y1, y2) = νP2(x2) ∨ νP2(y2) ∨ νQ1(x1y1) f or all x1y1 ∈ E1, x2 6= y2.

Remark 14. The lexicographic product of G1 and G2 can be understood that the vertices of G1 combine with the
each edge of G2, the vertices of G2 combine with the each edge of G1 and the edges of G1 combine with the two
different vertices of G2 to form a new graph G1[G2].

Proposition 5. The lexicographic product G1[G2] of two q-ROFGs of G1 and G2 is a q-ROFG.



Symmetry 2019, 11, 588 19 of 23

Definition 20. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1[G2]
(x1, x2) = ∑

(x1,x2)(y1,y2)∈E1[E2]

(µQ1 [µQ2 ])((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ ∑
x2 6=y2,x1y1∈E1

µP2(y2) ∧ µP2(x2) ∧ µQ1(x1y1),

(dν)G1[G2]
(x1, x2) = ∑

(x1,x2)(y1,y2)∈E1[E2]

(νQ1 [νQ2 ])((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

νP1(x1) ∨ νQ2(x2y2) + ∑
x2=y2,x1y1∈E1

νP2(x2) ∨ νQ1(x1y1)

+ ∑
x2 6=y2,x1y1∈E1

νP2(y2) ∨ νP2(x2) ∨ νQ1(x1y1).

Theorem 9. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. If µP1 ≥ µQ2 , µP2 ≥ µQ1 and
νP1 ≤ νQ2 , νP2 ≤ νQ1 . Then, dG1[G2]

(x1, x2) = (dµ)G2(x2) + |V2| (dµ)G1(x1), for any (x1, x2) ∈ V1 × V2,
where |V2| represents the number of vertices in G2.

Proof. For any vertex (x1, x2) ∈ V1 ×V2,

(dµ)G1[G2]
(x1, x2) = ∑

(x1,x2)(y1,y2)∈E1[E2]

(µQ1 [µQ2 ])((x1, x2)(y1, y2))

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ ∑
x2 6=y2,x1y1∈E1

µP2(y2) ∧ µP2(x2) ∧ µQ1(x1y1)

= ∑
x1=y1,x2y2∈E2

µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µQ1(x1y1) + ∑
x2 6=y2,x1y1∈E1

µQ1(x1y1)

(Since µP1 ≥ µQ2 and µP2 ≥ µQ1)

= ∑
x1=y1

1× ∑
x2y2∈E2

µQ2(x2y2) + ∑
x2=y2

1× ∑
x1y1∈E1

µQ1(x1y1)

+ ∑
x2 6=y2

1× ∑
x1y1∈E1

µQ1(x1y1)

= ∑
x2y2∈E2

µQ2(x2y2) +

(
∑

x2=y2

1 + ∑
x2 6=y2

1

)
∑

x1y1∈E1

µQ1(x1y1)

= (dµ)G2(x2) + |V2| (dµ)G1(x1).

Analogously, we can show that (dν)G1[G2]
(x1, x2) = (dν)G2(x2) + |V2| (dν)G1(x1). Hence,

(d)G1[G2]
(x1, x2) = dG2(x2) + |V2| dG1(x1).
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Definition 21. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any vertex (x1, x2) ∈ V1 ×V2,

(tdµ)G1[G2]
(x1, x2) = ∑

(x1,x2)(y1,y2)∈E1[E2]

(µQ1 [µQ2 ])((x1, x2)(y1, y2)) + (µP1 [µP2 ])(x1, x2)

= ∑
x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ ∑
x2 6=y2,x1y1∈E1

µP2(y2) ∧ µP2(x2) ∧ µQ1(x1y1) + µP1(x1) ∧ µP2(x2),

(tdν)G1[G2]
(x1, x2) = ∑

(x1,x2)(y1,y2)∈E1◦E2

(νQ1 [νQ2 ])((x1, x2)(y1, y2)) + (νP1 [νP2 ])(x1, x2)

= ∑
x1=y1,x2y2∈E2

νP1(x1) ∨ νQ2(x2y2) + ∑
x2=y2,x1y1∈E1

νP2(x2) ∨ νQ1(x1y1)

+ ∑
x2 6=y2,x1y1∈E1

νP2(y2) ∨ νP2(x2) ∨ νQ1(x1y1) + νP1(x1) ∨ νP2(x2).

Theorem 10. Let G1 = (P1,Q1) and G2 = (P2,Q2) be two q-ROFGs. For any (x1, x2) ∈ V1 ×V2,
(1) If µP1 ≥ µQ2 and µP2 ≥ µQ1 , then

(tdµ)G1[G2]
(x1, x2) = (tdµ)G 2

(x2) + |V2| (tdµ)G 1
(x1)− (|V2| − 1)µP1(x1)− µP1(x1) ∨ µP2(x2);

(2) If νP1 ≤ νQ2 and νP2 ≤ νQ1 , then

(tdν)G1[G2]
(x1, x2) = (tdν)G 2

(x2) + |V2| (tdν)G 1
(x1)− (|V2| − 1)νP1(x1)− νP1(x1) ∧ νP2(x2).

In the above equalities, |V2| represents the number of vertices in G2.

Proof. For any vertex (x1, x2) ∈ V1 ×V2,

(1)(tdµ)G1[G2]
(x1, x2) = ∑

x1=y1,x2y2∈E2

µP1(x1) ∧ µQ2(x2y2) + ∑
x2=y2,x1y1∈E1

µP2(x2) ∧ µQ1(x1y1)

+ ∑
x2 6=y2,x1y1∈E1

µP2(y2) ∧ µP2(x2) ∧ µQ1(x1y1) + µP1(x1) ∧ µP2(x2)

= ∑
x1=y1

1× ∑
x2y2∈E2

µQ2(x2y2) + ∑
x2=y2

1× ∑
x1y1∈E1

µQ1(x1y1)

+ ∑
x2 6=y2

1× ∑
x1y1∈E1

µQ1(x1y1) + µP1(x1) + µP2(x2)− µP1(x1) ∨ µP2(x2)

(Since µP1 ≥ µQ2 , µP2 ≥ µQ1)

= (tdµ)G 2
(x2) + |V2| (tdµ)G 1

(x1)− (|V2| − 1)µP1(x1)

− µP1(x1) ∨ µP2(x2).

Analogously, we can prove (2).

Example 6. Consider two q-ROFGs G1 and G2 in Example 2, where µP1 ≥ µQ2 , µP2 ≥ µQ1 and νP1 ≤
νQ2 , νP2 ≤ νQ1 and their lexicographic product G1[G2] is shown in Figure 7.

By Theorem 9, we have

(dµ)G1[G2]
(l, p) = |V2| (dµ)G1(l) + (dµ)G2(p)

= 3× 0.1 + 0.7 + 0.2 = 1.2,

(dν)G1[G2]
(l, p) = |V2| (dν)G1(l) + (dν)G2(p)

= 3× 0.8 + 0.6 + 0.7 = 3.7.
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Therefore, dG1[G2]
(l, p) = (1.2, 3.7). In addition, by Theorem 10, we must have

(tdµ)G1[G2]
(l, p) = |V2| (tdµ)G 1

(l) + (tdµ)G 2
(p)− (|V2| − 1)µP1(l)− µP1(l) ∨ µP2(p)

= 3× (0.1 + 0.9) + 0.7 + 0.2 + 0.9− (3− 1)× 0.9− 0.9∨ 0.9 = 2.1,

(tdν)G1[G2]
(l, p) = |V2| (tdν)G 1

(l) + (tdν)G 2
(p)− (|V2| − 1)νP1(l)− νP1(l) ∧ νP2(p)

= 3× (0.8 + 0.6) + 0.6 + 0.7 + 0.5− (3− 1)× 0.6− 0.6∧ 0.5 = 4.3.

Therefore, tdG1[G2]
(l, p) = (2.1, 4.3). Likewise, we can get the degree and total degree of each vertex

in G1[G2].

Figure 7. Lexicographic product of two q-ROFGs.

5. Conclusions

Our paper contributes to the literature on fuzzy graphs in several ways. First, the degree and
total degree of a vertex in q-ROFGs are defined. The implications of the degree and total degree of a
vertex in q-ROFGs are illustrated by the example of road network. The degree and total degree of a
vertex help one understand the properties of the product operations on q-ROFGs. Second, product
operations on q-ROFGs, including direct product, Cartesian product, semi-strong product, strong
product and lexicographic product, are defined. The product operations on q-ROFGs simplify the
number of q-ROFGs and will be helpful when the q-ROFGs are very large. Third, some general
theorems about the degree and total degree under the defined product operations on q-ROFGs are
obtained. We illustrate these theorems through some examples. These theorems improve the similar
results in SVNGs and PFGs. More specifically, these theorems show that the degree (or total degree)
of a vertex in product operations on q-ROFGs are not only related to the degree (or total degree) of
vertices but also the number of adjacent points, which is omitted in the SVNGs and PFGs.

In the future, we are working to extend our study to: (1) q-rung orthopair fuzzy soft graphs;
(2) Rough q-rung orthopair fuzzy graphs; (3) Simplified interval-valued q-rung orthopair fuzzy graphs
and; (4) Hesitant q-rung orthopair fuzzy graphs.
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