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Abstract: The axiomatic geometric structure which lays at the basis of Covariant Classical and
Quantum Gravity Theory is investigated. This refers specifically to fundamental aspects of the
manifestly-covariant Hamiltonian representation of General Relativity which has recently been
developed in the framework of a synchronous deDonder–Weyl variational formulation (2015–2019).
In such a setting, the canonical variables defining the canonical state acquire different tensorial
orders, with the momentum conjugate to the field variable gµν being realized by the third-order
4-tensor Πα

µν. It is shown that this generates a corresponding Hamilton–Jacobi theory in which the
Hamilton principal function is a 4-tensor Sα. However, in order to express the Hamilton equations as
evolution equations and apply standard quantization methods, the canonical variables must have
the same tensorial dimension. This can be achieved by projection of the canonical momentum field
along prescribed tensorial directions associated with geodesic trajectories defined with respect to the
background space-time for either classical test particles or raylights. It is proved that this permits to
recover a Hamilton principal function in the appropriate form of 4-scalar type. The corresponding
Hamilton–Jacobi wave theory is studied and implications for the manifestly-covariant quantum
gravity theory are discussed. This concerns in particular the possibility of achieving at quantum level
physical solutions describing massive or massless quanta of the gravitational field.

Keywords: covariant quantum gravity; Hamilton equations; Hamilton–Jacobi theory; wave theory;
massive/massless gravitons

PACS: 03.65.Ca; 03.65.Ta

1. Introduction

This paper is part of a continuing long-term collaborative research effort about theoretical
foundations and principles of Classical and Quantum Gravity. In particular, in this paper, the axiomatic
geometric structure laying at the basis of both Covariant Classical and Quantum Gravity Theories
(respectively CCG and CQG theories) is investigated. This refers specifically to a crucial aspect of the
so-called standard formulation of General Relativity (SF-GR), i.e., the Einstein field equations, and
which is also of key importance for establishing a corresponding self-consistent quantization theory,
namely Quantum Gravity. More precisely, this concerns the Hamiltonian properties of the Einstein
field equations recently achieved in the context of a reduced-dimensional variational deDonder–Weyl
approach [1–9] and based on a synchronous variational formulation [10]. This refers to the discovery
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of a new classical Hamiltonian representation associated with SF-GR, which departs from the
customary realizations typically considered in past literature and which ultimately date back to
the non manifestly-covariant formalism introduced by Dirac [11,12]. In fact, the new Hamiltonian
system is found to exhibit three key characteristic properties, namely it is:

• manifestly covariant, i.e., it can be set in 4-tensor form;
• unconstrained, i.e., the same Hamiltonian system can be expressed in terms of an independent set

of canonical variables;
• variational. Indeed, as typical of classical Hamiltonian systems occurring in classical mechanics,

one can show that also the new abstract Hamiltonian system can be determined via a suitable
path-integral variational principle.

In contrast, if the Hamiltonian systems are not set in tensor form, so that the canonical variables
and the Hamiltonian density are not 4-tensors, then the property of manifest covariance is violated.
In addition, the same canonical variables are not independent, being generally subject to constraints
between generalized Lagrangian coordinates and canonical momenta. Hence, while the variational
property indicated above simply remains non-applicable in such a context, also a true Hamiltonian
structure is effectively missing. Indeed, it is well-known that even certain classes of non-Hamiltonian
systems can always be reduced to suitably-constrained Hamiltonian systems (sic). The consequences
of such a type of setting are serious. “Inter alia”: (1) At the classical level the correct gauge properties
of SF-GR, which usually hold in classical field theory, are now prohibited (see Ref. [10]); (2) Standard
canonical quantization methods become inapplicable; (3) Both at classical and quantum levels, the
so-called Principle of objectivity is violated, namely the fundamental requisite of retaining the same
form in arbitrary coordinate systems (GR-frames) is not fulfilled any more.

These statements, in view of their actual impact and their conceptual implications, involve an
analysis of the abstract, i.e., geometrical, structure of space-time. The latter can be achieved in principle
via either continuum or discrete representations. The task is not simply a tutorial to CQG- (and
CCQ-) theory.

In fact, challenging mathematical questions are involved which have to be established on rigorous
grounds and correspondingly physical interpretations. Of foremost importance in particular is the first
property (i.e., the manifest covariance) indicated above, which realizes a symmetry property holding in
the context of both Classical and Quantum Gravity. In fact, although the adoption of special coordinate
systems (GR-frames) is always legitimate, the differential-manifold structure of space-time makes its
structure frame-independent, i.e., symmetric with respect to the group of local point transformations

rµ → r′µ = r′µ(r) (1)

mapping between different general relativistic (GR) frames r ≡ {rµ} and r′ ≡ {r′µ} .This implies,
in turn, the mandatory consequence that all physical laws which are assumed to hold everywhere
in the whole universe should retain their (tensor) form independent of the GR-frame and hence be
intrinsically manifestly-covariant.

These premises motivate the investigation of a number of related topics which concern
in particular:

• The space-time transformation properties with respect to the group of local point transformations,
i.e., coordinate transformations, and the consistency of current realizations adopted for classical
and quantum gravity theories with respect to the principle of manifest covariance [13–17].
The issue pertains both to the identification of the classical Hamiltonian and Hamilton–Jacobi
structures of General Relativity, as well as to a corresponding prescription of the physical
postulates at the basis of a quantum mechanical description of space-time and canonical
quantization in terms of continuum or discrete space-time configurations [18–20].
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• Trajectory-based dynamics of the classical and quantum gravitational field and the statistical
foundations of quantum space-time dynamics, including the validity of Heisenberg inequalities,
thermodynamical characterization and entropic principles [21–23].

• The symmetry properties of space-time related to the emergent gravity phenomenon, whereby
certain physical observables/characteristics of classical General Relativity follow from quantum
gravity theory. These concern both the prescription of the local-coordinate value of the space-time
metric tensor, via a suitable quantum expectation value, as well as the establishment of the very
functional form of the General Relativity field equations [22,24].

Based on these considerations, in this paper, properties of the mathematical structure of the
manifestly-covariant Hamiltonian and Hamilton–Jacobi theories of classical General Relativity, both
set at the foundations of CCQ- and CQG-theories, are investigated.

For this purpose, the initial setting of the theory will be based (as originally first pointed out in
Ref. [10]) on a variational formulation of the Einstein field equations which belongs to the class of
so-called deDonder–Weyl approaches to continuum field dynamics [1–9] (and for this reason referred
to here as deDonder–Weyl synchronous-variational approach to GR). Its peculiar characteristic is, in
fact, that of leaving invariant the space-time volume element in the variational functional, a feature
which is achieved thanks to the adoption of a so-called synchronous variational principle. A basic
property of such a formulation is that it fulfills the property of manifest covariance of the theory,
i.e., the consistency with the principles of covariance and manifest covariance, while at the same
time for appropriate boundary conditions the corresponding variational Euler–Lagrange equations
should exactly coincide with the Einstein field equations. As such, the same approach should provide
the proper framework for the identification of the canonical structure underlying classical General
Relativity, a feature that differs from alternative non-manifestly covariant approaches to the problem
built upon preliminary space-time foliations [25–28].

The synchronous variational principle is characterized by the adoption of superabundant
variables, leading to the distinction between a continuum background metric tensor ĝµν and a
variational field gµν. In particular, while performing the variations in the variational functional,
the components of gµν (and the corresponding conjugate momenta) are considered independent while
their extremal values (appearing in the Euler–Lagrange equations) are then required to coincide with
ĝµν. Concerning the notation, in the paper, all hatted quantities refer to functions of the background
tensor ĝµν. According to this picture, the background metric tensor ĝµν raises/lowers tensor indices,
has vanishing covariant derivatives and yields the geometric properties of the space-time, e.g., the
Ricci curvature tensor and the Christoffel symbols. Instead, the variational tensor gµν is associated
with the physical properties of gravitational field expressed through kinetic and potential contributions
in the corresponding Lagrangian function. In this sense, gµν has no geometrical interpretation, and
therefore it does not raise or lower indices, and its dynamical equations are determined by the
Euler–Lagrange equations following from the synchronous variational principle. It is then found that,
when passing from classical to quantum descriptions, the variational field gµν identifies the quantum
gravitational field (i.e., the quantum observable) which dynamically evolves over ĝµν according to a
defined quantum wave equation (CQG-wave equation) [20].

A characteristic feature which is expected to occur in such a setting (i.e., in the context of the
deDonder–Weyl synchronous-variational approach) is that the 4-tensor canonical variables which
define the canonical state acquire different tensorial orders. Thus, once the generalized coordinates
are identified with the second-order symmetric 4-tensor gµν, its conjugate momentum is found to be
realized by a third-order 4-tensor Πα

µν. As a consequence, the resulting canonical state turns out to

be represented by the mixed-order set of extended variables x ≡
{

gµν, Πα
µν

}
, with the corresponding

classical Hamiltonian structure being given by {x, H}, with H a suitable Hamiltonian density function.
Because of the difference of tensorial orders between canonical variables, this is referred to here
as extended Hamiltonian formulation of GR [18]. Despite this feature, this suggests that thanks to the
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formal analogy of the canonical theory with the Hamiltonian formulation of classical mechanics, the
development of a theory of canonical transformation for the continuum fields {x, H} should still be
permitted. These include, as a relevant realization, a so-called canonical transformation of the second
type (according to the name usually given in classical mechanics), which leads to the realization of
a Hamilton–Jacobi theory corresponding to the Hamiltonian formulation [19]. Basic characteristic,
however, is that of exhibiting a crucial non-uniqueness feature: i.e., the canonical equations fulfilled by
the extended canonical state x generally do not uniquely determine the canonical momentum Πα

µν.
It must be stressed that, a priori, the existence of such a theory as well as the equivalence between

Hamilton and Hamilton–Jacobi theories are not properties that necessarily should be expected to
hold. Indeed, the actual proof of validity of such a relationship remains to be ascertained. The task is
accomplished in the present paper. This provides a coherent theoretical setting for the classical
continuum gravitational field in which Lagrangian, Hamiltonian and Hamilton–Jacobi theories
are obtained and mutually implied from each other. In particular, stemming from the extended
Hamiltonian theory, it is shown that canonical transformations generate a corresponding extended
Hamilton–Jacobi theory, namely in which the Hamilton principal function is represented by a 4-tensor
Sα (rather than a scalar as is customary in this type of problem).

Beyond these theoretical outcomes, there arises the conceptual problem of having Hamiltonian
and Hamilton–Jacobi theories for the gravitational field which are cast in a form suitable for
attempting their quantum representation in a form appropriate for the development of corresponding
manifestly-covariant quantum gravity theories [20,21]. It turns out, however, that extended
formulations (of the type indicated above) are not suitable for the task because of the non-uniqueness of
the third-order tensor canonical momentum. In addition, a further issue concerns the implementations,
in the framework of manifestly-covariant relativistic theories, of standard quantization methods
which are already well-established in quantum mechanics [29–31]. To reach this goal and to afford an
analogous physical interpretation of the corresponding quantum theory, in fact, the requirement is
that the canonical variables should have the same tensorial dimension, with the Hamilton principal
function being represented by a single 4-scalar real function. The mathematical procedure that is
adopted here in order to achieve this kind of representation is based on the introduction of a suitable
projection operator Σ. More precisely, Σ is prescribed in such a way to act on the extended canonical
momentum field and the Hamilton principal function in such a way to lower their tensorial order,
while leaving unchanged the underlying canonical structure of the theory. As a result, the action of Σ
is found to produce corresponding reduced Hamiltonian and reduced Hamilton–Jacobi theories which are
proved to be equivalent to the extended ones (and at the same time to be mutually implied by each
other).

After listing a number of physical and mathematical pre-requisites that such an operator must
satisfy, the latter is finally identified with a 4-vector Σ ≡ Σα, so that the projection is interpreted as
occurring along a prescribed tensorial direction given by the same Σα. Only two physically-admissible
choices of Σα are identified, whereby respectively Σα = tα or Σα = kα. More precisely, in the first
case, the 4−vector tα is the tangent 4-vector to sub-luminal geodesic trajectories of the background
space-time ĝµν associated with massive test particles and characterized by proper-time arc-length
ds2 = ĝµνdrµdrν, where by definition tα ≡ drα

ds . Instead, in the second case, the 4-vector kα corresponds
to the wave 4-vector associated with light-ray geodetics and having by definition null magnitude
(i.e., such that kαkα = 0) [14]. Only the choice Σα = tα is shown to be acceptable, which allows one to
express the Hamilton equations as evolution equations in terms of proper-time evolution parameter s,
and to recover as well a Hamilton principal function in the appropriate form of 4-scalar type.

The reduced Hamilton–Jacobi wave theory for the two choices of projection operator identified
above is studied and conceptual implications for the manifestly-covariant quantum gravity theory are
discussed. This concerns in particular the possibility of achieving at quantum level physical solutions
describing either massive or massless quanta of the gravitational field. As a notable outcome, it is
proved that general representations for the Hamilton principal function which combine both tα−
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and kα−projections can in principle coexist, with the latter describing luminal waves propagating at
the speed of light c. However, this remains a sort of gauge-type contribution, in the sense that the
combination of massive and massless wave terms in the Hamilton principal function have a meaning
only for the classical Hamilton–Jacobi theory. Indeed, by themselves the massless terms cancel out
identically from the classical theory and only the massive term survives, which can be finally accounted
for by the corresponding quantum gravity theory. The result is that a quantum dynamics built on the
manifestly-covariant continuum canonical theory can only treat wave-like solutions corresponding
to massive gravitons. Therefore, according to this formalism, although the reduced representation
can include in principle both massive and massless classical wave contributions, the massless waves
have only a classical connotation and they cannot pertain the quantum gravity theory stemming from
the GR canonical formalism. This conclusion provides a theoretical support to the quantum gravity
theory early developed in Refs. [19–22,24], proving that the description of massive quantum gravitons
is indeed a characteristic feature of the manifestly-covariant theory and a strict consequence of its
formalism. The present outcome also gives completeness to the canonical formalism of the theory and
reinforces the strong symmetry link existing between the continuum classical canonical framework
and the corresponding discrete quantum representation of the theory of gravitational field.

The scheme of the paper is as follows. In Section 2, the extended Hamiltonian formulation
is introduced, while, in Section 3, the theory of canonical transformations and related extended
Hamilton–Jacobi theory are developed, proving the equivalence between the Hamiltonian and
Hamilton–Jacobi problems for the continuum gravitational field. In Sections 4 and 5, respectively,
the issues about the search of reduced Hamiltonian and Hamilton–Jacobi theories are discussed.
In Section 6, the concept of projection operator is introduced, which relates extended and reduced
canonical formulations, and the physical and mathematical requisites that it must satisfy are given.
Section 7 deals with the possibility of describing wave-like solutions in the framework of the
Hamilton–Jacobi theory, which can correspond to either massless or massive graviton particles after
quantization. Main conclusions of the work are reported in Section 8. Finally, in Appendices A and B,
mathematical details of calculations are given for completeness.

2. Extended Hamiltonian Formulation

In this section, the fundamental content of the manifestly-covariant Hamiltonian theory of classical
GR is formulated in the framework of a deDonder–Weyl synchronous-variational approach to GR,
inspired by Refs. [1,2] and originally first developed in Ref. [10] for the case of a stationary background
metric tensor of the type ĝµν = ĝµν (r). The approach is extended here to the more general and
physically-significant case of a non-stationary setting of the form ĝµν = ĝµν (r, s) ≡ ĝµν (s) (see
Refs. [22,24]). The Hamiltonian theory is found to be represented by the classical Hamiltonian structure

{x, H} , which is formed by an appropriate extended 4-tensor canonical state x ≡
{

gµν, Πα
µν

}
and a

suitable 4−scalar Hamiltonian density H (x, x̂(s), r, s) , where gµν represents the Lagrangian coordinate
expressed by the second-order variational field 4-tensor of the gravitational field and Πα

µν is its
conjugate third-order momentum 4-tensor. Because the coordinate field and its conjugate momentum
have different tensorial orders, this Hamiltonian formulation is referred to in the following as extended
Hamiltonian theory. It provides the reference background for the subsequent development of the
extended Hamilton–Jacobi theory and also of corresponding reduced Hamiltonian and H–J theories
characterized by a canonical state in which field variables and conjugate momenta have the same
tensorial orders.

Let us first introduce the variational Lagrangian density for the non-vacuum Einstein field
equations in the presence of cosmological constant (see also Ref. [10]), which is given by the
4-scalar function

L
(

Z, ∇̂µZ, Ẑ
)
= LG

(
Z, ∇̂µZ, Ẑ

)
+ LΛ

(
Z, Ẑ

)
+ LF

(
Z, Ẑ

)
, (2)
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where for shortness of notation here Z = gµν is the variational field coordinate, Ẑ = ĝµν denotes
the background metric tensor and ∇̂µZ is the covariant derivative of gµν written with respect to
ĝµν. The contributions LG and LΛ on the rhs of Equation (2) refer respectively to the gravitational and
cosmological-constant Lagrangian terms, which are defined as follows (see also Ref. [20])

LG

(
Z, ∇̂µZ, Ẑ

)
= −κgµνR̂µνh

(
Z, Ẑ

)
+ κ

1
2
∇̂αgµν∇̂αgµν, (3)

LΛ

(
Z, Ẑ

)
= −2κΛh

(
Z, Ẑ

)
. (4)

Instead, the term LF in Equation (2) denotes the Lagrangian contribution carried by external fields
different from the gravitational one, which can be prescribed in non-vacuum configurations and
generates the stress-energy tensor Tµν according to the customary variational derivation [14]. The
notations in the previous equations are standard ones, namely R̂µν is the Ricci tensor defined with

respect to the background metric tensor ĝµν, κ identifies the constant κ = c3

16πG , Λ is the cosmological

constant and h
(

Z, Ẑ
)

is the 4-scalar multiplicative factor

h
(

Z, Ẑ
)
≡
(

2− 1
4

gαβgαβ

)
, (5)

where by definition gαβgαβ 6= δα
α for variational curves.

The 4-scalar (2) is the Lagrangian function of the synchronous variational principle. It means that
the quantity

δL
(

Z, ∇̂αZ, Ẑ
)

δgµν

∣∣∣∣∣∣
gµν=ĝµν

= 0 (6)

yields the classical Einstein field equations as extremal equations evaluated for gµν = ĝµν, where here
δ denotes the synchronous variational operator which leaves invariant the background metric tensor
ĝµν and the 4−volume element dΩ ≡ d4x

√
−|ĝ|, namely such that identically δdΩ = 0. It must be

stressed that the synchronous variational principle is distinguished from customary asynchronous
variational principles of GR available in the literature for which instead δasyncdΩ 6= 0. The synchronous

condition δdΩ = 0 is the basis of the manifestly-covariance property of L
(

Z, ∇̂αZ, Ẑ
)

, a feature which

in turn is gained thanks to the introduction of the variational function h
(

Z, Ẑ
)

and the adoption of
superabundant variables, distinguishing between the background metric tensor ĝµν and the variational
field gµν, the two being required to coincide only for extremal field equations.

Given the Lagrangian formulation, it is then possible to define the canonical momentum conjugate
to the Lagrangian coordinate gµν, which in the present notation is given by the third-order 4-tensor

Πα
µν =

∂L
(

Z, ∇̂µZ, Ẑ
)

∂
(
∇̂αgµν

) = κ∇̂αgµν. (7)

The momentum Πα
µν is symmetric in the lower indices, in the sense that Πα

µν = Πα
νµ, it is non-vanishing

since gµν 6= ĝµν and must be considered as non-extremal. On the other hand, the extremal value
of Πα

µν, namely Π̂α
µν = κ∇̂αgµν, vanishes identically. We further notice that, thanks to the quadratic

dependence of the Lagrangian with respect to the generalized velocity, Equation (7) is invertible,
yielding a relationship between momenta and generalized velocities analogous to the one occurring in
relativistic particle dynamics.
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Given these premises, one can proceed formulating the manifestly-covariant Hamiltonian theory
of GR. More precisely, the Hamiltonian density H = H (x, x̂) associated with the Lagrangian
L
(

Z, ∇̂µZ, Ẑ
)

is provided, as in classical mechanics, by the Legendre transform

L
(

Z, ∇̂µZ, Ẑ
)
≡ Πα

µν∇̂αgµν − H (x, x̂) . (8)

In the Lagrangian function (2), the contribution due to the momentum Πα
µν is only present in the term

LG

(
Z, ∇̂µZ, Ẑ

)
. The latter one, when written in canonical variables, is such that LG

(
Z, ∇̂µZ, Ẑ

)
=

LG (x, x̂), where

LG (x, x̂) = −κgµνR̂µνh +
1

2κ
Πα

µνΠµν
α . (9)

The remaining contributions LΛ

(
Z, Ẑ

)
and LF

(
Z, Ẑ

)
are only field-coordinate dependent, and

therefore their expression is not affected by the Legendre transform. The Lagrangian function expressed
in the canonical variables then is written

L (x, x̂) = LG (x, x̂) + LΛ

(
Z, Ẑ

)
+ LF

(
Z, Ẑ

)
. (10)

As a result, the Hamiltonian density H (x, x̂) is given by

H (x, x̂) = HG (x, x̂)− LΛ

(
Z, Ẑ

)
− LF

(
Z, Ẑ

)
, (11)

where in particular

HG (x, x̂) ≡ 1
2κ

Πα
µνΠµν

α + κgµνR̂µνh. (12)

Introducing then the Hamiltonian action functional

SH (x, x̂) =
∫

dΩL (x, x̂) , (13)

where L (x, x̂) is given by Equation (10), the synchronous Hamiltonian variational principle
δSH (x, x̂) = 0 is required to hold for arbitrary independent synchronous variations δgµν and δΠα

µν in
the respective functional classes. We omit here the mathematical details of the proof of this statement,
as they can be found in Ref. [18]. The corresponding variational derivatives yield the so-called
extended continuum Hamilton equations

δSH (x, x̂)
δgµν ≡ −∂H (x, x̂)

∂gµν − ∇̂αΠα
µν = 0, (14)

δSH (x, x̂)
δΠα

µν
≡ ∇̂αgµν − ∂H (x, x̂)

∂Πα
µν

= 0, (15)

to be supplemented by suitable boundary conditions for the extended canonical state x ≡
{

gµν, Πα
µν

}
.

These equations can be equivalently cast in terms of local 4-vector Poisson brackets (see Appendix A,
Equations (A8) and (A9)). Written explicitly, the same equations are realized by the PDEs

∇̂αΠα
µν = −∂H (x, x̂)

∂gµν , (16)

∇̂αgµν =
1
κ

Πµν
α , (17)
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so that the second one recovers as usual the definition of the canonical momentum. This set of
equations is equivalent to the Euler–Lagrange equation identified with the Einstein field equation. In
fact, the following property holds.

Property 1. (Extremal property)—Provided gµν is identified with the extremal solution ĝµν, then respectively
Π̂α

µν and ĝαβ satisfy identically the equation Π̂α
µν = 0 and the Einstein equations.

Proof. In fact, if one requires gµν ≡ ĝµν, it follows that ∇̂αgµν ≡ 0. This warrants that identically
Π̂α

µν = 0 while elementary algebra shows that the first tensor Equation (16) recovers the Einstein
equations.

This completes the derivation of the extended Hamiltonian theory of GR and, thanks to Property 1,
the proof of its formal connection with the SF-GR.

However, the additional notable feature of the same equations should be pointed out.

Property 2. (Non-uniqueness property)—Provided gµν differs from the extremal solution ĝµν, it follows that
the solution of Equations (16) and (17) is generally non-unique.

Proof. Let us show, in fact, that Equations (16) and (17) generally do not uniquely determine the
extended canonical momentum Πα

µν. This conclusion follows from the first PDE indicated above (i.e.,
Equation (16)) by noting that the same equation does not prescribe uniquely the 4th-order tensor
covariant derivatives ∇̂αΠβ

µν but only their saturation ∇̂αΠα
µν.

Notice that this conclusion is not at variance with Property 1. Nevertheless, the issue of
non-uniqueness for Equations (16) and (17) remains virtually still open for more general (i.e.,
non-vanishing) boundary conditions for Π̂α

µν.

3. Canonical Transformations and Extended Hamilton–Jacobi Theory

In this section, we pose the problem of the construction of canonical transformations
which preserve the Hamiltonian structure of the continuum Equations (16) and (17) (see also
Equations (A8) and (A9) reported for convenience in Appendix A), together with the related
derivation of a manifestly-covariant extended Hamilton–Jacobi theory for the classical gravitational
field corresponding to the extended Hamiltonian formulation. In doing this, we shall regard the tensor
fields ĝαβ and gαβ as independent. In such a setting, the canonical transformations are defined in terms
of a local diffeomorphism of the form

x → X = X (x, r) , (18)

X → x = x (X, r) , (19)

where x ≡
{

gβγ, Πα
βγ

}
and X ≡

{
Qβγ, Pα

βγ

}
. More generally, however, one can always allow X to

depend also on x̂ ≡
{

ĝαβ, Π̂α
µν = 0

}
, namely to be of the form X = X (x, x̂, r). Furthermore, we denote

by X̂ = X (x̂, x̂, r). Notice that the transformation (18) may not be defined globally on the open set D4

and in particular may depend also on how the boundary set ∂D4 is prescribed. The reason is that the
continuum Hamilton equations themselves may not be defined on ∂D4, due to possible discontinuities
of the canonical fields arising on such a set. By definition, the map transforms the Lagrangian density
L (x, x̂) ≡ L

(
Z, ∇̂µZ, Ẑ

)
given by Equation (8) in terms of the equation

L (x, x̂) = LT

(
X, X̂, r

)
+ ∇̂αSα, (20)
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where LT

(
X, X̂, r

)
is the transformed Lagrangian which is taken of the form

LT

(
X, X̂, r

)
= Pα

µν∇̂αQµν − K
(

X, X̂, r
)

, (21)

while Sα can be interpreted as an arbitrary 4-vector mixed-variable generating function (gauge function)
for the transformation (18), which can for example be assumed to be a smooth function of the variables
(x, X, r). Moreover, notice that, in principle, Sα can contain arbitrary dependences in terms of both
x̂ and X̂. In fact, due to the gauge property of the Lagrangian density, the gradient operator ∇̂α in
Equation (20) acts only on the variables (x, X, r) contained in Sα. In particular, omitting for brevity the
latter dependences, we can always prescribe Sα in terms of the Legendre transformation

Sα = −QµνPα
µν + Sα

2

(
gβγ, P(α)

βγ , r
)

, (22)

where we notice that in the second term on the rhs the internal repeated index α is dummy. As a
consequence of the previous equation, Equation (20) requires that the transformed Hamiltonian density
K must be allowed to be also explicitly dependent on the position 4-vector r. From Equations (20) and
(22) it also follows that

Πα
µν∇̂αgµν − H (x, x̂) = Pα

µν∇̂αQµν − K
(

X, X̂, r
)
+ ∇̂αSα. (23)

Invoking Equation (22), one obtains:

∇̂αSα = −Qµν∇̂αPα
µν − Pα

µν∇̂αQµν + ∇̂αgµν
∂Sα

2

(
gβγ, Pα

βγ, r
)

∂gµν

+∇̂αPα
βγ

∂Sλ
2

(
gβγ, Pλ

βγ, r
)

∂Pλ
βγ

+ ∇̂αSα
2

(
gβγ, Pα

βγ, r
)∣∣∣(

gβγ ,Pα
βγ

) . (24)

Due to the assumption of a dummy internal index (α), in the previous terms, the summation must
be intended on all the repeated indices (which include now also α). The arbitrariness of ∇̂αgµν and
∇̂αPα

βγ then implies the following transformation equations:

Πα
µν =

∂Sα
2

(
gβγ, P(α)

βγ , r
)

∂gµν , (25)

Qµν =
∂Sα

2

(
gβγ, Pα

βγ, r
)

∂Pα
µν

, (26)

K
(

X, X̂, r
)
= H (x, x̂) + ∇̂αSα

2

(
gβγ, Pα

βγ, r
)∣∣∣(

gβγ ,Pα
βγ

) , (27)

where in the second equation the summation on the index α is understood, while in the last term of the
third equation the condition on the covariant derivative must hold for each index α. Equations (25)
and (26) identify respectively half of the inverse and direct canonical transformations given respectively
by Equations (19) and (18).

A fundamental feature of the continuum canonical transformations is realized by the invariance
property which characterizes the 4-vector canonical Poisson brackets defined above (see Equations (A1)
and (A2)). In fact, one can prove that the conditions of invariance

[A, B]x,j ≡ [A, B]X,j , (28)

[A, B]x,j ≡ [A, B]X,j (29)
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hold identically for arbitrary canonical transformations. Therefore, in the following, the labels
identifying the choice of the canonical fields in the Poisson brackets can be safely omitted. We notice
that canonical transformations map in one another different solutions of the continuum canonical
equations. These transformations require a classification of D4 as follows. In fact, the space-time D4 in
which the canonical fields are defined can be either bounded or unbounded (namely, coinciding with
R4). Moreover, in both cases, the domain D4 can be: (A) either connected or non-connected; (B) either
simply connected or non simply connected. A canonical transformation of the type (18) can only be
defined for connected subsets of D4 which are either simply connected or not, while D4 itself can be
either bounded or unbounded.

Among the possible canonical transformations (produced by a mixed-variable generating function
Sα which explicitly depends on the 4-position) that can be introduced and under such conditions hold
in the whole set D4, we now seek a particular one which brings to transformed fields X which are
constant, in the sense that

∇̂αPα
µν = 0, (30)

∇̂αQµν = 0. (31)

This requirement extends to the continuum field theory the problem originally posed in the
Hamilton–Jacobi theory of classical mechanics, in which the transformed canonical variables are
assumed to be constant (i.e., in the non-relativistic treatment independent of the coordinate time t). The
previous constraint equations require that the corresponding Hamilton equations for X are necessarily

∇̂αPα
µν =

[
Pα

µν, K
]

α
≡ 0, (32)

∇̂αQµν = [Qµν, K]α ≡ 0. (33)

Since these equations must hold in the whole open set D4, it follows that the transformed Hamiltonian
K cannot depend on the transformed state X. Hence, it can only be a function of the type K = K (x̂, r),
and in particular it can be proved that it K can always be defined in such a way that K (x̂, r) = 0,
namely it vanishes identically.

A particular realization of Equations (32) and (33) is provided by the identification

X = x̂. (34)

As a consequence, both Qµν and Pα
µν are necessarily functions of the background metric tensor ĝαβ only.

Therefore, from Equation (27), invoking also Equation (25), it follows

H

gµν,
∂Sα

2

(
gβγ, P(α)

βγ , r
)

∂gµν

+ ∇̂αSα
2

(
gβγ, Pα

βγ, r
)∣∣∣(

gβγ ,Pα
βγ

) = 0, (35)

to be denoted as continuum extended Hamilton–Jacobi equation for the Hamilton 4-vector generating
function Sα

2

(
gβγ, Pα

βγ, r
)

. Notice that the solution of Equation (35) must be determined letting initially
Pα

βγ 6= 0. In the previous equation, the 4-vector field Sα
2 can then be prescribed by imposing also the

constraint equation:

Qµν =
∂Sα

2

(
gβγ, P(α)

βγ , r
)

∂Pα
µν

∣∣∣∣∣∣
Pα

µν=0

. (36)

Provided the condition on the Hessian determinant det

∣∣∣∣∣ ∂2Sα
2

(
gβγ ,P(α)

βγ ,r
)

∂gµν∂Pα
µν

∣∣∣∣∣ 6= 0 is satisfied, Equation

(36) realizes an implicit equation for gβγ. This condition warrants the existence of the inverse
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transformation (19). In fact, once the generating function Sα
2 is determined by solving the

Hamilton–Jacobi equation, the vector Equation (36) together with Equation (25) yields the
implicit function

gβγ = gβγ (ĝµν, r) , (37)

whereby the canonical momenta are provided by Equation (25).
Let us now prove that Equation (35) is equivalent to the set of extended Hamilton equations,

namely that the fields gβγ and Πβγ
α satisfy the continuum canonical Equations (A8) and (A9). In fact, let

us evaluate first the partial derivative of Equation (35) with respect to gβγ, keeping both
∂Sα

2

(
gβγ ,P(α)

βγ ,r
)

∂gµν

and rµ constant. This gives

∂

∂gβγ
H

gµν,
∂Sα

2

(
gβγ, P(α)

βγ , r
)

∂gµν

+ ∇̂α

[
∂

∂gβγ
Sα

2

(
gβγ, Pα

βγ, r
)]∣∣∣∣

gβγ

= 0. (38)

Inspection of Equation (38) shows that this is equivalent in the whole open set D4 to the continuum
canonical Equation (A8). In fact, in Equation (38), the first term recovers the contribution given
by the Poisson bracket on the rhs of Equation (A8). The second term ∂

∂gβγ Sα
2

(
gβγ, Pα

βγ, r
)

instead
can be identified with the initial canonical momentum Πα

βγ which by definition must be considered

independent of gβγ and rµ as explicitly indicated above in the same equation.
Then, let us evaluate in a similar manner the partial derivative of the H–J Equation (35) with

respect to
∂Sα

2

(
gβγ ,P(α)

βγ ,r
)

∂gµν , keeping gµν and rµ constant. This gives

∂

∂
∂Sλ

2

(
gβγ ,P(α)

βγ ,r
)

∂gµν

H

gµν,
∂Sα

2

(
gβγ, P(α)

βγ , r
)

∂gµν

 +
∂

∂
∂Sλ

2

(
gβγ ,P(α)

βγ ,r
)

∂gµν

∇̂αSα
2

(
gβγ, Pα

βγ, r
)∣∣∣

gβγ
= 0. (39)

Invoking the identity (24), which in the present case gives

∇̂αSα
2

(
gβγ, Pα

βγ, r
)
= ∇̂αgβγ

∂Sα
2

(
gβγ, Pα

βγ, r
)

∂gβγ
+ ∇̂αSα

2

(
gβγ, Pα

βγ, r
)∣∣∣

gβγ
, (40)

it follows that the only term which depends on the partial derivative
∂Sλ

2

(
gβγ ,P(α)

βγ ,r
)

∂gµν is the first one on
the rhs of the previous equation, so that one obtains

∂

∂
∂Sλ

2

(
gβγ ,P(α)

βγ ,r
)

∂gµν

∇̂αSα
2

(
gβγ, Pα

βγ, r
)∣∣∣

gβγ
= − ∂

∂
∂Sλ

2

(
gβγ ,P(α)

βγ ,r
)

∂gµν

∇̂αgβγ
∂Sα

2

(
gβγ, Pα

βγ, r
)

∂gβγ
. (41)

Then, Equation (39) becomes

∂

∂
∂Sλ

2

(
gβγ ,P(α)

βγ ,r
)

∂gµν

H

gµν,
∂Sα

2

(
gβγ, P(α)

βγ , r
)

∂gµν

− ∇̂λgµν = 0. (42)

Inspection of Equation (42) shows that this is equivalent in the whole open set D4 to the continuum
canonical Equation (A9). In fact, in Equation (42), the first term recovers the contribution given by
the Poisson bracket on the rhs of Equation (A9). Instead, the second term gives the term on the lhs of
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the same equation, upon identifying Πα
βγ =

∂Sα
2

(
gβγ ,P(α)

βγ ,r
)

∂gβγ . In addition, the boundary conditions to be

satisfied by
∂Sα

2

(
gβγ ,P(α)

βγ ,r
)

∂gβγ and Πα
βγ coincide by construction.

In conclusion, the continuum extended Hamilton–Jacobi equation is equivalent to the continuum
extended canonical equations. Both equations hold in principle for arbitrary canonical fields x, in
which the variational 4-tensor gµν is still considered different from the background metric tensor ĝµν.

4. Search of a Reduced Hamiltonian Theory

As pointed out above, the extended Hamiltonian theory is characterized by a canonical state
x ≡

{
gµν, Πα

µν

}
in which the Lagrangian coordinate is expressed by the second-order 4-tensor gµν

while the conjugate momentum remains intrinsically non-unique in the context of the same theory (see
Property #2), being represented by the third-order 4-tensor Πα

µν. The discrepancy of tensorial orders
between canonical variables is specific to deDonder–Weyl type of manifestly-covariant variational
approaches to continuum field dynamics, such as the synchronous principle adopted here for the
treatment of the gravitational field in the framework of classical GR. However, the latter feature clashes
with the whole formalism of Hamiltonian classical mechanics, both in non-relativistic and relativistic
settings, where canonical conjugate variables are naturally born with equal dimension. The same type
of problem is then inherited by the extended H–J theory having a 4-tensor Hamilton principal function,
which should be expected instead to be expressed by a scalar function.

Two main questions arise at this point. The first one is based on the intrinsic non-uniqueness
of the prescription of the canonical momentum Πα

µν emerging in the context of the same theory (see
Property 2). This suggests the possibility of bringing back the extended theory to a reduced-dimensional
representation of the canonical state. This should be achieved in terms of a transformation of the type

x → xR, (43)

with xR identifying a reduced-dimensional state of the form xR ≡
{

gµν, πµν

}
and πµν being a

suitably-defined reduced canonical momentum represented by an appropriate second-order 4-tensor. In
particular, the crucial property which πµν should exhibit is that (unlike the extended momentum Πα

µν)
of being uniquely determined by the corresponding (reduced) Hamilton equations.

The second issue to be met is again suggested by comparison with the Hamiltonian theory
of classical dynamics, where Hamilton equations are expressed as a couple of first-order ordinary
differential evolution equations with respect to a suitable evolution parameter, identified with the
coordinate time t in non-relativistic mechanics or the proper-time s in relativistic mechanics of
classical test particles. Having the Hamilton equations of GR expressed as evolution equations
would afford in fact the implementation of standard quantization rules also in the framework of
continuum gravitational field theory, such as the Poisson-to-commutator brackets formalism or the
Hamilton–Jacobi quantization leading to the Schroedinger-like wave equation. These two requirements
are evidently connected to each other, and their simultaneous realization would represent a necessary
prerequisite for the consequent establishment of a quantum-gravity theory which is rooted in the
Hamiltonian theory of classical GR.

Based on these preliminaries, in this section, the problem of the determination of a reduced
continuum Hamiltonian theory for GR is addressed for the Hamiltonian system {x, H}. This is
represented by the reduced classical Hamiltonian structure {xR, HR} which is formed by the
appropriate 4-tensor reduced canonical state xR and a suitable 4-scalar Hamiltonian density
HR (xR, x̂R, r, s). Concerning the notation, here we have included the possibility of a functional
dependence of HR on the 4-position r and on the 4-scalar evolution parameter s, which at present
has a pure symbolic character and will be properly determined in Section 6. These dependences
must be included for generality, as they can arise in principle from the reduction procedure leading
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to Equation (43). In particular, the target requires finding a realization of the variational canonical
momentum in such a way that:

(a) In the corresponding reduced canonical state, fields and reduced momenta form a couple of
second-order conjugate 4-tensors.

(b) The reduced Hamiltonian theory must yield corresponding suitable reduced continuum
Hamilton equations, referred to as reduced GR–Hamilton equations.

(c) The reduced GR–Hamilton equations can be cast in evolution form and warrant the validity of
the non-vacuum Einstein field equations.

These requirements are expressed by demanding that the same reduced Hamiltonian equations
are realized by the initial-value problem represented by the canonical equations

Dgµν(s)
Ds = ∂HR(xR ,x̂R ,r,s)

∂πµν(s) ,
Dπµν(s)

Ds = − ∂HR(xR ,x̂R ,r,s)
∂gµν(s) ,

(44)

and admit a unique solution when subject to initial conditions of the type{
gµν(so) ≡ g(o)µν (so),

πµν(so) ≡ π
(o)
µν (so).

(45)

If such a representation is reached, then the solution of the initial-value problem (44) and (45) generates
the Hamiltonian flow

xR(so)→ xR(s), (46)

which is associated with the Hamiltonian structure {xR, HR}, where the parameter s must be suitably
identified according to the reduction process adopted in Equation (43) (see details below). Hence, here

xR(s) ≡
{

gµν(r(s)), πµν(r(s))
}

(47)

identifies the s-parametrized reduced-dimensional variational canonical state, with gµν and πµν being
the corresponding continuum Lagrangian coordinates and the conjugate momenta, x̂R(s) ≡{

ĝµν(r(s)), π̂µν(r(s)) ≡ 0
}

being the corresponding prescribed state and HR(xR, x̂R, r, s) being the
variational Hamiltonian 4-scalar density to be suitably determined. Moreover, D

Ds is the covariant
s−derivative defined as the 4-scalar differential operator

D
Ds
≡ ∂

∂s
+ Σα(s)∇̂α, (48)

where ∇̂α is the covariant derivative evaluated in terms of the prescribed metric tensor ĝµν, and
Σα(s) is an in principle non-unique suitable “tangent” 4-vector related both to the definition of the
evolution parameter s and the reduction procedure yielding the reduced canonical state. The precise
identification of Σα(s) is addressed below in Section 6. Finally, the Hamiltonian density HR(xR, x̂R, r, s)
is represented in terms of the reduced canonical variables as

HR(xR, x̂R, r, s) ≡ TR (xR, x̂R) + V(g, ĝ, r, s), (49)

where the effective kinetic and potential densities TR (xR, x̂R) and V(g, ĝ, r, s) can be taken now
respectively of the general form{

TR (xR, x̂R) ≡ 1
2κ πµνπµν,

V (g, ĝ, r, s) ≡ κgµνR̂µνh− LΛ (g, ĝ)− LF(g, ĝ, r, s).
(50)
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Given these premises, the construction of the GR–Hamilton Equation (44) follows in analogy with
the extended Hamiltonian theory, and in particular they can be derived through a manifestly-covariant
synchronous variational approach, in agreement with the deDonder–Weyl approach. The variational
functional can be identified now with the real 4-scalar

SR (xR, x̂R) ≡
∫

dΩLR(xR, x̂R, r, s), (51)

with LR(xR, x̂R, r, s) being the variational Lagrangian density

LR(xR, x̂R, r, s) ≡ πµν
D
Ds

gµν − HR(xR, x̂R, r, s). (52)

Thus, LR(xR, x̂R, r, s) is identified with the Legendre transform of the corresponding variational
Hamiltonian density HR(xR, x̂R, r, s) defined by Equation (49). The variational principle associated
with the functional SR (xR, x̂R) is prescribed in terms of the synchronous-variation operator δ (i.e.,
identified with the Frechet derivative according to Ref. [10]), i.e., by means of the synchronous
variational principle

δSR (xR, x̂R) = 0 (53)

obtained keeping constant both the prescribed state x̂R and the 4-scalar volume element dΩ. This
yields the 4-tensor Euler–Lagrange equations cast in symbolic form

δSR(xR ,x̂R)
δgµν = 0,

δSR(xR ,x̂R)
δπµν

= 0,
(54)

which are manifestly equivalent to the Hamilton Equation (44). These equations can be written in the
equivalent Poisson-bracket representation as

D
Ds

xR(s) = [xR, HR(xR, x̂R, r, s)](xR)
, (55)

with [, ](xR)
denoting the Poisson bracket evaluated with respect to the canonical variables xR, namely

[xR, HR(xR, x̂R, r, s)](xR)
=

∂xR
∂gµν

∂HR
∂πµν

− ∂xR
∂πµν

∂HR
∂gµν . (56)

The connection of Equation (55) with the Einstein field equations can then be shown to follow by
requiring validity of the initial conditions{

gµν(so) ≡ ĝµν(so),
πµν(so) ≡ π̂µν(so) = 0,

(57)

together with the requirement π̂µν(s) = 0 holding for all s ∈ I.

5. Reduced Hamilton–Jacobi Theory

In this section, we analyze the requirements for the establishment of a reduced Hamilton–Jacobi
theory of classical GR that can be derived from the extended Hamilton–Jacobi formulation presented
in Section 3. This consists of the realization of a Hamilton–Jacobi equation in which the Hamilton
principal function is expressed as a 4-scalar S obtained through a suitable reduction procedure from the
4-vector principal function Sα

2 . The sought theory must be proved to be equivalent both to the extended
Hamilton–Jacobi theory as well as to the extended and reduced Hamiltonian theories formulated above.

The derivation presented here follows from the reduced Hamiltonian theory and the
representation of the GR–Hamilton equations as dynamical evolution equations. This feature in
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fact is appropriate for the development of the theory of canonical transformations in close analogy with
classical Hamiltonian mechanics. More precisely, in distinction with the extended Hamilton–Jacobi
continuum theory, the corresponding reduced theory should describe a dynamical flow connecting a
generic phase-space state xR ≡

{
gµν, πµν

}
with a suitable initial phase-space state XR ≡

{
Gµν, Pµν

}
characterized by constant coordinate fields and momenta. This includes as a special case the
configuration in which coordinate fields and momenta are identically-vanishing, i.e., stationary with
respect to the evolution parameter s. It is then expected that the reduced Hamilton–Jacobi theory
follows from constructing a symplectic canonical transformation associated with a mixed-variable
generating function of type S

(
gβγ, Pµν, x̂R, r, s

)
.

Accordingly, the transformed canonical state XR must satisfy the constraint equations

D
Ds

Pµν(so) = 0, (58)

D
Ds

Gµν(so) = 0, (59)

which imply the Hamilton equations

0 =
[

Pµν, KR

(
XR, X̂R, r, s

)]
(XR)

, (60)

0 =
[

Gµν, KR

(
XR, X̂R, r, s

)]
(XR)

, (61)

where KR

(
XR, X̂R, r, s

)
is the transformed Hamiltonian given by

KR

(
XR, X̂R, r

)
= HR (xR, x̂R, r, s) +

∂

∂s
S
(

gβγ, Pµν, x̂R, r, s
)

. (62)

Thanks to Equations (60) and (61), the transformed Hamiltonian is necessarily independent of XR.
As a consequence, KR identifies an arbitrary gauge function, i.e., it must be KR = KR (x̂R, r), which can
always be set equal to zero (KR = 0). On the other hand, canonical transformation theory requires that
it must be

πιξ =
∂S
(

gβγ, Pµν, x̂R, r, s
)

∂gιξ
, (63)

Gιξ =
∂S
(

gβγ, Pµν, x̂R, r, s
)

∂Pιξ
. (64)

It follows that Equation (62) delivers

HR

(
gβγ,

∂S
(

gβγ, Pµν, x̂R, s
)

∂gιξ
, x̂R, r, s

)
+

∂

∂s
S
(

gβγ, Pµν, x̂R, r, s
)
= 0, (65)

which realizes the reduced GR Hamilton–Jacobi equation for the mixed-variable generating function
S
(

gβγ, Pµν, x̂R, r, s
)
. Due to its similarity with the customary Hamilton–Jacobi equation well-known

in Hamiltonian classical dynamics, in the following, S will be referred to as the reduced GR–Hamilton
principal function. The canonical transformations generated by S

(
gβγ, Pµν, x̂R, r, s

)
are then obtained by

the set of Equations (63)–(65). The inverse canonical transformation XR → xR locally exists provided

the invertibility condition on the Hessian determinant det

∣∣∣∣∣
[

∂2S(gβγ ,Pµν ,x̂R ,r,s)
∂gρσ∂Pιξ

]
XR=x̂R

∣∣∣∣∣ 6= 0 is met. Under

such a condition, the direct canonical Equation (64) determines gβγ as an implicit function of the form
gβγ = gβγ

(
Gβγ, Pµν, x̂R, r, s

)
.
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We now proceed proving the equivalence between reduced GR–Hamilton and
GR–Hamilton–Jacobi equations, in analogy with the relationship holding for the corresponding
extended formulations. To this aim, the compact notation S (g, P, x̂R, r, s) is adopted below. In
particular, it follows that the GR–Hamilton–Jacobi Equation (65) subject to the constraint (63) is
equivalent to the set of GR–Hamilton equations expressed in terms of the initial canonical variables, as
given by Equation (44). To start with, we evaluate first the partial derivative of Equation (65) with
respect to gik, keeping both ∂S(g,P,x̂R ,r,s)

∂gιξ and rµ constant. This gives

∂

∂gik HR

(
gβγ,

∂S (g, P, x̂R, s)
∂gιξ

, x̂R, r, s
)
+

∂

∂s

[
∂

∂gik S (g, P, x̂R, r, s)
]
(g,P)

= 0. (66)

Then, we evaluate in a similar manner the partial derivative with respect to ∂S(g,P,x̂R ,s)
∂gik , keeping gµν

and rµ constant. This gives

∂

∂
∂S(g,P,x̂R ,r,s)

∂gik

HR

(
gβγ,

∂S (g, P, x̂R, s)
∂gιξ

, x̂R, r, s
)
+

 ∂

∂
∂S(g,P,x̂R ,r,s)

∂gik

∂

∂s
S (g, P, x̂R, r, s)


(g,P)

= 0. (67)

With the identification πιξ = ∂S(g,P,x̂R ,s)
∂gιξ provided by Equation (63), it follows that Equation (66)

becomes
∂

∂gik HR

(
gβγ, πιξ , x̂R, r

)
+

D
Ds

πik = 0, (68)

which coincides with the second Hamilton equation in (44). To prove also the validity of the Hamilton
equation for gβγ, we first invoke the following identity ∂

∂
∂S(g,P,x̂R ,s)

∂gik

∂

∂s
S (g, P, x̂R, s)


(g,P)

=
∂

∂
∂S(g,P,x̂R ,s)

∂gik

∂

∂s
S (g, P, x̂R, s)

− D
Ds

gβγ ∂

∂
∂S(g,P,x̂R ,s)

∂gik

∂S (g, P, x̂R, s)
∂gβγ

, (69)

where
∂

∂
∂S(g,P,x̂R ,r,s)

∂gik

∂S (g, P, x̂R, r, s)
∂gβγ

= δi
βδk

γ. (70)

The first term on the rhs of Equation (69) vanishes identically because ∂
∂s S (g, P, x̂R, r, s) must be

considered as independent of πik. Therefore, Equation (67) gives

∂

∂πik
HR

(
gβγ, πιξ , x̂R, r, s

)
− D

Ds
gik = 0, (71)

which coincides with the Hamilton equation for gik and gives also the relationship of the generalized
velocity D

Ds gik with the canonical momentum. This proves the equivalence between the reduced
GR–Hamilton–Jacobi and GR–Hamilton equations, both expressed in manifestly-covariant form.

This conclusion recovers the relationship between Hamilton and Hamilton–Jacobi equations
holding in Hamiltonian Classical Mechanics for discrete dynamical systems. The connection
is established also in the present case for the continuum gravitational field thanks to the
manifestly-covariant representation of the Hamiltonian and Hamilton–Jacobi equations as dynamical
evolution equations with respect to the dynamical parameter s, to be defined below. The physical
interpretation which follows concerns the meaning of the Hamilton–Jacobi theory in providing a wave
mechanics description of the continuum Hamiltonian dynamics. This arises also in the present context
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by comparing the mathematical structure of the Hamilton–Jacobi Equation (65) with the well-known
eikonal equation of geometrical optics. In fact, Equation (65) contains the square of the derivative
∂S(gβγ ,Pµν ,x̂R ,r,s)

∂gιξ , so that the Hamilton principal function S
(

gβγ, Pµν, x̂R, r, s
)

is associated with the
eikonal (i.e., the phase of the wave), while the remaining contributions due to the geometrical and
physical properties of the curved space-time formally play the role of a non-uniform index of refraction
in geometrical optics [32]. The outcome pointed out here proves that the dynamics of the field gµν(s) in
the domain of variational fields where the reduced Hamiltonian structure is defined and the reduced
Hamilton–Jacobi theory (65) applies must be characterized by a wave-like behavior and can therefore
be given a geometrical optics interpretation. This feature is fundamental for the establishment of the
corresponding manifestly-covariant quantum theory of the gravitational field.

6. The Projection Operator

In this section, we set up the mathematical method that is used to generate reduced Hamilton and
Hamilton–Jacobi theories starting from the corresponding extended formulations. This is accomplished
by introducing the projection operator Σ, i.e., by definition an operator that acting on an arbitrary tensor
function of the extended canonical state x is such that ΣΣ = 1

Γ , with 1 being the unity operator and Γ a
real constant. Thus, in the case in which Γ = 1, Σ identifies a so-called normalized projection operator.
This should be defined so that, in particular, it generates the reduced canonical state xR, namely

xR = Σ [x] . (72)

Based on the prescription of x and xR given above, this requires accordingly that when acting on
the extended or reduced canonical momenta Πα

µν and πµν it should yield the other momentum,
i.e., respectively  πµν = Σ

[
Πα

µν

]
,

Σπµν = ΣΣ
[
Πα

µν

]
= (Γ)−1 Πα

µν.
(73)

The simplest realization of Equation (73) is thus obtained by identifying the projection operator with
the 4-vector Σα, namely such that {

Σ ≡ Σα,
ΣΣ ≡ ΣαΣα = (Γ)−1 ,

(74)

which implies the validity of the tensor products{
ΣαΠα

µν = πµν,
Σαπµν = (Γ)−1 Πα

µν.
(75)

The physical meaning of the two relationships is immediate: πµν is obtained, up to a factor, by
projecting the 3rd-order tensor Πα

µν along the 4-vector Σα, which saturates one tensorial index. Similarly,
Πα

µν is obtained up to a suitable factor by multiplying with Σα the reduced canonical momentum. In
an analogous way, one can introduce for the Hamilton principal functions the relationship

S = ΣαSα, (76)

with S and Sα representing respectively the corresponding reduced and extended functions. In
order to achieve the reduced canonical formulation reported above (see previous sections) and
consistent with the prescriptions (75), the identification of the projection operator must satisfy the
following requirements:
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(A) The Definitions (75) and (76) must be invertible, namely it must be equally possible to express
Πα

µν as

Πα
µν =

1
Γ

Σαπµν, (77)

and Sα as
Sα =

1
Γ

ΣαS, (78)

where Γ ≡ ΣαΣα is the magnitude of the 4-vector Σα. Therefore, it must be Γ 6= 0 necessarily.
(B) The 4-vector Σα cannot be identified with a differential operator, otherwise it would alter the

differential order of both Hamilton and Hamilton–Jacobi equations. As a consequence, it follows that
in particular it must be Σα 6= ∇α.

(C) The 4-vector Σα must commute with the differential operators ∇̂α and
(

∂
∂gµν

, ∂
∂gµν

)
, in order to

afford the evolution representation of the canonical equations and the definition of covariant derivative
according to Equation (48).

(D) The definition of Σα must hold for a generic background space-time ĝµν, and in particular
also in the limit of flat space-time for which ĝµν ≡ ηµν, being ηµν the Minkowski metric tensor. This
limit in fact is physically relevant, since the quantum theory of gravitational field stemming from the
canonical formulation of GR must apply also in such a case.

(E) The definition of Σα must be such to warrant that the reduced Hamiltonian structure {xR, HR}
and the form of reduced Hamiltonian equations are preserved, included the quadratic dependence on
the canonical momenta.

(F) Since the projector operator acts only on the kinetic term of the Hamiltonian function and leaves
unaffected the potential term, the 4-vector Σα must be dimensionless, so that the physical dimensions
of the extended and reduced momenta remain the same and are dimensionally homogeneous with the
potential term of the Hamiltonian.

(G) Finally, the reduced canonical state xR = Σ [x] and in particular the corresponding
reduced canonical momentum πµν = ΣαΠα

µν should be uniquely determined by the
initial-value problem (44) and (45).

The conditions (A)–(G) require that the explicit representation of Σα must be defined with respect
to quantities of the background space-time only. Although in principle the choice of Σα could span a
wide range of possibilities, after careful analysis, one can conclude that there are only two candidates
that could fall in this category with a precise physical meaning.

The first one is met by identifying Σα with the wave 4-vector kα associated with light-ray geodesic
trajectories. By definition, this satisfies the conditions

kαkα = 0, (79)

Dkα = 0, (80)

where here D stands for the customary coordinate covariant derivative operator of the space-time
ĝµν (see Ref. [14]). If acceptable, this choice for the projection operator would correspond to the
physical map of the canonical momenta and their dynamics along the space-time background direction
determined by wavefronts of luminal geodesic trajectories. However, it is easy to verify that this
solution is not appropriate, as the choice of the wave-vector kα satisfies only the requirements (B)–(D)
stated above. Instead, the criterion (A) is violated since in such a case Γ = 0, so that the projection
transformation is not invertible, while similarly point (E) is violated because projecting the momenta
along kα makes the kinetic term of the Hamiltonian function vanish identically. In fact, invoking the
commutation property of point (C), one has that Πα

µνΠµν
α = (kαkα)πµνπµν = 0, which implies the

whole Hamiltonian structure of GR to break down and the theory to collapse to a hypersurface where
only the potential contribution survives, therefore to a state without dynamics. In conclusion, this type
of projection must be excluded.
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The second choice corresponds instead to setting Σα = tα, where tα is the tangent 4-vector
belonging to sub-luminal geodesics defined in the background space-time ĝµν with arc length
prescribed by the differential equation

ds2 = ĝµνdrµdrν. (81)

Here, drµ is the tangent displacement with respect to the same geodesics, so that by construction it
follows that tα ≡ drα

ds is the corresponding tangent 4-velocity, with the parameter s identifying the
invariant proper-time associated with the same geodetic curve. Thus, by definition the tangent 4-vector
satisfies the conditions

tαtα = 1, (82)

Dtα = 0, (83)

so that in this case Γ = 1 identically and condition (A) is verified. As a consequence, the relationships
between extended and reduced momenta become now simply Πα

µν = tαπµν and Sα = tαS. An
additional important feature of this solution is that tα is dimensionless, as required by condition (F), a
feature which warrants validity of the Hamiltonian theory. The remaining conditions (B)–(E) and (G)
listed above can be shown to be satisfied as well, so that the identification Σα = tα remains the only
acceptable one. From the physical point of view, this corresponds to the projection of the Hamiltonian
dynamics along a sub-luminal direction accessible to massive test particles (i.e., the observers). This
choice, in addition, provides a unique identification also for the evolution parameter to be used
in the reduced canonical equations, which is represented by the proper-time s measured along the
same curve.

After the identification of the projection operator Σα = tα and the evolution parameter with the
proper-time s associated with sub-luminal geodesic trajectories, we can address in more detail the
representation of the canonical equations in evolution form. As anticipated above, this represents a
requirement for the construction of a corresponding manifestly-covariant Hamilton–Jacobi theory of
GR from the Hamiltonian theory, and its subsequent quantization. In particular, we introduce here the
notion of Lagrangian path (LP) [31] and the related concept of Lagrangian path parametrization of
Hamilton equations [22].

We first express the functional dependence of the tangent 4-vector tα, which is of the type
tα(ĝ(s), r). Then, Equations (82) and (83) can be written as{

tα(ĝ(s), r)∇̂αtγ(ĝ(s), r) = 0,
ĝµν(s)tµ(ĝ(s), r)tν(ĝ(s), r) = 1,

(84)

so that by construction tα(ĝ(s), r) is tangent to an arbitrary sub-luminal geodetics belonging to an
arbitrary 4-position r ≡ {rµ} of the space-time

(
Q4, ĝ(s)

)
[14]. Then, the LP is identified with the

geodetic curve

{rµ(s)} ≡
{

rµ(s)| ∀s ∈ R, rµ(so) = rµ
o

}
, (85)

which is a solution of the initial-value problem{
drµ(s)

ds = tµ(s),
rµ(so) = rµ

o .
(86)

Here, the 4-scalar proper-time s is defined along the same curve {rµ(s)} so that ds2 =

ĝµν(r)drµ(s)drν(s). Furthermore, tµ(s) identifies the LP-parametrized 4-vector tµ(s) ≡
tµ(ĝ(r(s)), r(s)). In Equation (86), d

ds ≡
∂
∂s identifies the ordinary derivative with respect to s.

According to the notation introduced in Ref. [19], we distinguish between implicit and explicit
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s−dependences, whereby the implicit ones are the dependences on the proper time s appearing in
the variational fields through the LP parametrization of the fields, while the explicit ones are the
proper-time dependences which enter either explicitly on s itself or through the dependence on
r(s) ≡ {rµ(s)}.

The parametrization obtained replacing everywhere, in all the relevant tensor fields, r ≡ {rµ}
with r(s) ≡ {rµ(s)}, namely obtained identifying

gµν(s) ≡ gµν(r(s)),
πµν(s) ≡ πµν(r(s)),

x̂(r) ≡ x̂(r(s)),
(87)

yields for the Hamiltonian density HR the so-called LP-parametrization. In terms of this formalism,
the reduced Hamilton Equation (44) and correspondingly the reduced Hamilton–Jacobi Equation (65)
can in turn be represented, where for greater generality the reduced Hamiltonian function is taken of
the form HR(s) ≡ HR (xR(s), x̂R(s), r(s), s) , i.e., including also a possible explicit dependence in terms
of the proper time s.

7. Hamilton–Jacobi Waves

In the previous section, we have shown that, given the set of requirements for the choice
of the projection operator, of the two available options Σα = kα and Σα = tα, only the latter is
physically-admissible as a single-direction representation of the conjugate momenta. In this section,
we explore in more detail the issue, starting directly from the point of view of the extended and
reduced Hamilton–Jacobi theory, in order to shed further light on the wave theory underlying
the canonical formulation of classical GR and its conceptual consequences on the corresponding
quantum formulation.

In fact, although Σα = kα remains excluded tout court as projection operator, there still remains
the possibility of considering a more complex solution expressed as a linear combination between
kα and tα, namely obtained decomposing the extended Hamilton principal function according to the
following type of representation:

Sα
2 = tαSt + kαSk, (88)

where St and Sk are 4-scalars and the sub-scripts identify their respective 4-vector projection direction.
Equation (88) is valid under the assumption that it must be St 6= 0, while Sk could also vanish in
principle, and if this happens the solution obtained in Section 6 is recovered. We notice however that
the two functions St and Sk have different physical dimensions, since tα is a tangent 4-vector, while kα

is a wave 4-vector. From the physical point of view, the first term proportional to tα is associated with
sub-luminal geodetics and massive-particle waves, while kα with luminal geodetics and corresponding
massless waves. We notice that the previous combination still satisfies the requirements set in Section
6, thanks to the dependence on the term tαSt. On the other hand, the same representation introduces
the two 4-scalar functions St and Sk, which cannot be both solved by the Hamilton–Jacobi equation, as
this is a 4-scalar equation. This requires therefore to determine Sk separately. To this aim, we substitute
the representation (88) in the extended Hamilton–Jacobi Equation (35) and we study the different
differential contributions:

∇̂αSα
2 −→ tα∇̂αSt + kα∇̂αSk, (89)

∂Sα
2

∂gµν
= tα ∂St

∂gµν
+ kα ∂Sk

∂gµν
, (90)

from which one has

∂Sα
2

∂gµν

∂S2α
∂gµν −→ tαtα

∂St
∂gµν

∂St
∂gµν + kαkα

∂Sk
∂gµν

∂Sk
∂gµν + 2tαkα

∂St
∂gµν

∂Sk
∂gµν

= ∂St
∂gµν

∂St
∂gµν + 2tαkα

∂St
∂gµν

∂Sk
∂gµν ,

(91)
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where in the last line we have used the properties tαtα = 1 and kαkα = 0.
Since the contribution kαSk in Equation (88) describes massless waves, we impose that the

representation of the 4-scalar Sk admits a variable separation of the type

Sk = So f
(
kµrµ

)
, (92)

where the dependence on the 4-position rµ only enters through the function f in terms of the 4-scalar
combination kµrµ associated with the wave 4-vector kα. A possible choice is through the wave

Sk = Soeı̀kµrµ
, (93)

where it is understood that only the real component matters. Instead, in Equation (92), the 4-scalar So

is either constant or dependent on gµν only. Thanks to this representation in Equation (89), we obtain
that kα∇̂αSk = 0 identically, since the derivative generates again a term proportional to kαkα = 0, so
that the contribution of Sk in the linear differential term of the Hamilton–Jacobi equation is null. The
only surviving contribution containing Sk is in the mixed quadratic term carried by the Hamiltonian
function, which according to Equation (91) becomes

2tαkα
∂St

∂gµν

∂Sk
∂gµν = 2tαkα f

(
kµrµ

) ∂St

∂gµν

∂So

∂gµν . (94)

A trivial realization is obtained when ∂So
∂gµν ≡ 0, namely So = const. In this case, the massless term

kαSk in Equation (88) becomes completely determined while its contribution to the Hamilton–Jacobi
equation obviously vanishes by construction. We remark, however, that it is possible to prove that the
choice So = const. remains the only admissible one. For completeness, the proof of this property is
reported in Appendix B.

In summary, a more general choice for the representation of the Hamilton principal function is
according to the type provided by Equation (88) as follows:

Sα
2 = tαSt + kαSoeı̀kµrµ

, (95)

where we set So = const. In this way, the classical solution presented in Section 6 as well as the
classical and quantum solutions investigated in Refs. [19,20] for the choice tαSt remain unaffected.
The conclusion in fact is the following: the extended Hamilton–Jacobi equation admits in principle
a representation of the solution for the Hamilton principal function which is more general than the
one considered so far and proportional only to the massive term tαSt, which is of the type (95). This
choice however leaves unaffected both the classical and quantum solutions previously investigated
elsewhere and corresponding to the existence of massive gravitons. The new term added here in
Equation (95) has a tensorial direction determined by the wave 4-vector kα and it describes the classical
contribution of luminal waves (i.e., massless gravitons in the language of quantum theory). For this
reason, the functional dependence on the coordinate 4-position rα has been chosen to be the wave-like
one. The solution expressed by the linear combination in Equation (95) is therefore an admissible
solution, which generalizes the particular case Sα

2 = tαSt. As a remarkable conclusion, however, we
stress that the same combination of massive and massless wave contributions to Sα

2 only matters for
the classical Hamilton–Jacobi theory, since after substitution the massless term cancels out and only the
massive term survives and is transferred to the realm of corresponding quantum theory. The quantum
dynamics can only treat wave-like solutions corresponding to massive gravitons. Therefore, according
to the present theory, the reduced representation can include both massive and massless classical wave
contributions, but the massless waves have only a classical connotation and they cannot pertain to the
quantum gravity theory built upon the GR canonical formalism.
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8. Conclusions

The manifestly-covariant approach to the canonical formulation of General Relativity provides
a new self-consistent route to Quantum Gravity and a promising scenario for the investigation of
the mathematical properties of an unconstrained Hamiltonian theory of the gravitational field in
which canonical variables are independent, with the canonical momentum being characterized, at
the same time, by a reduced dimension with respect to the standard deDonder–Weyl approach.
Indeed, it is generally agreed that a theory of this type—besides remaining in agreement with the
fundamental principles of the Einstein theory of GR—should also for consistency recover the Einstein
field equations, possibly without recurring to a semiclassical limit of the theory. In this investigation,
this refers specifically to the realization of the corresponding classical formulation, i.e., the covariant
classical gravity theory (CCG-theory).

More precisely, in this paper, a number of results have been reported.
These include, first, the analysis given in Section 2 of the deDonder–Weyl synchronous-variational

approach which is set at the basis of CCG-theory. In particular, for this purpose, here the connection
has been established between the extended Hamiltonian equations generated in this way with the
customary set of Einstein field equations (see Property 1). However, a non-uniqueness feature (of the
solutions of the same equations) has been pointed out which characterizes the extended mixed-order
canonical state x. Indeed, for arbitrary boundary conditions, the extended canonical momentum
Π ≡

{
Πα

µν

}
is found to remain actually undetermined (Property 2). Despite these conclusions, the

corresponding canonical transformations and extended Hamilton–Jacobi theories can still be formally
established and have been reported here for the first time (see Section 3).

Second, the construction of reduced Hamiltonian and corresponding Hamilton–Jacobi theories
has been investigated (see Sections 4 and 5, respectively). Motivated by the intrinsic non-uniqueness
of the extended canonical momentum, this has been achieved by means of the introduction of a
suitable reduced-dimensional canonical state xR with the corresponding momentum π ≡

{
πµν

}
to be

determined by the corresponding (reduced) Hamilton equations.
Third, a formal projection-operator has been established (Section 6), which enables the

determination of the explicit connection between extended and reduced Hamiltonian theories.
The crucial feature displayed here is that all the relevant equations, in particular both in

the extended and reduced Hamiltonian representations, are frame-independent and hence do not
require the choice of a particular subset of coordinate-systems nor the introduction of any sort of
space-time foliation. The basic implication is that the compact tensorial formalism which characterizes
manifestly-covariant theories like GR remains preserved and represents by itself an asset able to gain
insight into the same canonical theory. More precisely, the manifestly-covariant representation allows
for displaying the symmetry relationships existing between the classical Einstein field equations of
General Relativity and its classical variational formulation, which is realized in terms of corresponding
Lagrangian, Hamiltonian and Hamilton–Jacobi theories. The equivalence and mutual implications of
these three levels of representations have been detailed in this paper. The primary interest of the work,
besides the theoretical foundations of General Relativity and the completeness of its conceptual
framework, lies in the possibility of providing an appropriate setting for the development of a
manifestly-covariant quantum gravity theory. This step can in principle be equivalently implemented
either in terms of a canonical Poisson-bracket formulation or passing through the Hamilton–Jacobi
quantization leading to the derivation of an appropriate Schroedinger-like quantum wave equation for
the gravitational field.

The main conclusions drawn here are relevant for their consequences also on covariant quantum
gravity theory. In fact, although the theory developed here describes consistently both luminal
and subluminal wave phenomenology of the gravitational field, only sub-luminal solutions pertain
the subsequent quantization. In particular, the manifestly-covariant Hamilton–Jacobi wave theory
proposed here and the mathematical investigation of some of its physical properties are expected to
help shedding further light on the long-standing problem of the canonical formulation of General
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Relativity and its corresponding quantum representation, and might provide also the basis for further
future theoretical developments on these issues.

Thus, the manifestly-covariant quantum gravity theory stemming from the classical reduced
Hamiltonian theory can only apply to describe the physics associated with massive gravitons,
namely massive quanta of the gravitational field, while massless gravitons remain excluded from the
spectrum of discrete gravitational solutions that can be predicted by the manifestly-covariant quantum
gravity theory.
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Appendix A. Extended Canonical Equation in 4-Vector Poisson Brackets Notation

For completeness, we report the representation of the extended canonical equations given above
(see Equations (16) and (17)) in terms of local 4-vector Poisson brackets. To this aim, let us consider
first two 4-scalars A and B and then two arbitrary tensor fields A ≡ Aα1..αn and B ≡ Bβ1..βm , generally
of different order, so that n 6= m, and all to be considered smoothly dependent only on the canonical
set x. Then, respectively for (A, B) and (A, B) , the canonical Poisson brackets are defined in terms of
the 4-vector operators

[A, B]x,j ≡
∂A

∂gµν

∂B

∂Πj
µν

− ∂A

∂Πj
µν

∂B
∂gµν , (A1)

[A, B]x,j ≡
∂A

∂gµν

∂B

∂Πj
µν

− ∂A

∂Πj
µν

∂B
∂gµν , (A2)

where in the second equation the two indices µ and ν saturate in both terms. On the contrary, the index
j does not saturate, a feature which is characteristic of the deDonder–Weyl manifestly-covariant theory,
in which coordinates and momenta have different tensorial orders. Hence, in the first case the rhs is a
4-vector, while in the second one the rhs is a tensor of dimension n + m + 1. The fundamental Poisson
brackets holding for the canonical set are therefore

[
gβγ, Πα

βγ

]
x,j
≡ ∂gβγ

∂gµν

∂Πα
βγ

∂Πj
µν

− ∂gβγ

∂Πj
µν

∂Πα
βγ

∂gµν = δ
β
µδ

γ
ν δα

j , (A3)

[
gβγ, gβγ

]
x,j
≡ ∂gβγ

∂gµν

∂gβγ

∂Πj
µν

− ∂gβγ

∂Πj
µν

∂gβγ

∂gµν = 0, (A4)

[
Πβγ

α , Πα
βγ

]
x,j
≡ ∂Πβγ

α

∂gµν

∂Πα
βγ

∂Πj
µν

− ∂Πβγ
α

∂Πj
µν

∂Πα
βγ

∂gµν = 0. (A5)

In terms of the fundamental brackets, the Poisson brackets with the Hamiltonian density H (x, x̂)
defined by Equation (11) are

[
gβγ, H

]
x,j
≡ ∂gβγ

∂gµν

∂H

∂Πj
µν

=
∂H

∂Πj
βγ

, (A6)

[
Πα

βγ, H
]

x,j
≡ −

∂Πα
βγ

∂Πj
µν

∂H
∂gµν = −δα

j
∂H

∂gβγ
. (A7)
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As a consequence, the continuum canonical Equations (16) and (17) can be equivalently represented in
terms of the 4-vector Poisson brackets as

∇̂αΠα
µν =

[
Πα

µν, H
]

x,α
, (A8)

∇̂αgµν = [gµν, H]x,α . (A9)

The fundamental Poisson brackets Equations (A3)–(A5) together with the continuum Hamilton
Equations (A8) and (A9) display the Hamiltonian structure characteristic of the extended Hamiltonian
theory obtained in the framework of the manifestly-covariant synchronous variational principle.

Appendix B. Admissible Form of Hamilton Principal Function

As a complementary development to Section 7, in this Appendix, we investigate whether it is
possible to give a proof of the functional dependence that is allowed for the function So, which was
taken above to be constant. To this aim, we start from considering again the linear combination (88), in
which the two 4-scalar functions St and Sk are independent. In order for this representation to be an
acceptable solution, it must hold also in the following two limiting cases:

(1) In the limit in which
lim

Sk→0
Sα

2 = tαSt. (A10)

This limit is valid, since the remaining contribution tαSt can be alone a solution, as has been
proved above.

(2) In the limit in which simultaneously

lim
St→0

Sα
2 ⇒ lim

Sk→0
Sα

2 = 0. (A11)

This means that, in the limit in which St vanishes, Sk must also vanish as well, since kαSk alone cannot
be a solution, as discussed in Section 6.

Let us turn our attention again to the functional form of the Hamilton principal functions. We
must admit St to be a generic function of the type St = St (g, ĝ, r, s) to be solved by the Hamilton–Jacobi
equation. Instead, for Sk, we have imposed that the variable separation (92) applies, namely that it is
possible to write in general

Sk = So (g, ĝ, s) f
(
kµrµ, ĝ

)
. (A12)

This choice allows one to represent the wave dependence associated with Sk. If we calculate back the
conjugate momentum Πµν

α = ∂S2α
∂gµν

using this representation, we get

Πµν
α = tα

∂St

∂gµν
+ kα f

(
kµrµ, ĝ

) ∂So (g, ĝ, s)
∂gµν

. (A13)

Then, the extended Hamilton Equations (16) and (17) yield

∇̂αΠα
µν = tα∇̂α

∂St

∂gµν + kα ∂So (g, ĝ, s)
∂gµν ∇̂α f

(
kµrµ, ĝ

)
= −∂H (x, x̂)

∂gµν , (A14)

∇̂αgµν =
1
κ

(
tα

∂St

∂gµν
+ kα f

(
kµrµ, ĝ

) ∂So (g, ĝ, s)
∂gµν

)
. (A15)
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In the first equation, we use again the wave-like dependence carried by f
(
kµrµ, ĝ

)
and the fact that

kαkα = 0, so that we can reduce the previous equations to the simplified form

tα∇̂α
∂St

∂gµν = −∂H (x, x̂)
∂gµν , (A16)

∇̂αgµν =
1
κ

tα
∂St

∂gµν
+

1
κ

kα f
(
kµrµ, ĝ

) ∂So (g, ĝ, s)
∂gµν

. (A17)

From Equation (A17), we notice in particular that the differential contribution due to St is
analogous to that due to So. Therefore, from the information derived from the Hamilton equations, we
can say that the limiting condition (A11) required for the validity of the solution (88) becomes now

lim
St→0

∂St

∂gµν
= lim

So→0

∂So

∂gµν
= 0. (A18)

Since So is undetermined, the previous condition requires that it is either

So = So (St) , (A19)

namely So depends functionally on St and they vanish jointly, or that it is separately

So = const. (A20)

However, the formal solution (A19) must be excluded ad absurdum, since it contradicts the initial
hypothesis (A12) on the functional dependence of the scalar function and the variable separation, as
generally one has that St = St (g, ĝ, r, s) and for St no analogous variable separation exists. In addition,
it contradicts also the initial hypothesis introduced in Equation (88), when in the linear combination
the two functions St and Sk are taken to be independent from each other.

In conclusion, the only choice that warrants validity of the representation (A11) is by selecting the
4-scalar function Sk as

Sk = So f
(
kµrµ, ĝ

)
, (A21)

with So = const. necessarily. In this context, the function Sk represents a sort of gauge function, which
however remain always in the classical domain and does not contribute to the corresponding quantum
solution. The simplest type of representation of the function f

(
kµrµ, ĝ

)
is in terms of a plane wave,

although more general expressions that differ from the planar wave case can be in principle accounted
for through suitably setting the dependence in terms of kµrµ.
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