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Abstract: The behavior of the analytical solutions of the fractional differential equation described
by the fractional order derivative operators is the main subject in many stability problems. In this
paper, we present a new stability notion of the fractional differential equations with exogenous
input. Motivated by the success of the applications of the Mittag-Leffler functions in many areas
of science and engineering, we present our work here. Applications of Mittag-Leffler functions in
certain areas of physical and applied sciences are also very common. During the last two decades,
this class of functions has come into prominence after about nine decades of its discovery by a
Swedish Mathematician Mittag-Leffler, due to the vast potential of its applications in solving the
problems of physical, biological, engineering, and earth sciences, to name just a few. Moreover,
we propose the generalized Mittag-Leffler input stability conditions. The left generalized fractional
differential equation has been used to help create this new notion. We investigate in depth here
the Lyapunov characterizations of the generalized Mittag-Leffler input stability of the fractional
differential equation with input.

Keywords: fractional differential equations with input; Mittag-Leffler stability; left generalized
fractional derivative; ρ-Laplace transforms

1. Introduction

The behavior of the analytical solutions of the fractional differential equation described by the
fractional order derivative operators is the main subject in stability problems [1]. There exist many
stability notions introduced in fractional calculus. Some examples are asymptotic stability, global
asymptotic uniform stability, synchronization problems, stabilization problems, Mittag-Leffler stability
and fractional input stability. In this paper, we extend the Mittag-Leffler input stability in the context of
the fractional differential equations described by the left generalized fractional derivative. We note here
that the left generalized fractional derivative is the generalization of the Liouville-Caputo fractional
derivative and the Riemann-Liouville fractional derivative [2]. There exist many works related to
stability problems. In [3], Souahi et al. propose some new Lyapunov characterizations of fractional
differential equations described by the conformable fractional derivative. In [4], Sene proposes a
new stability notion and introduce the Lyapunov characterization of the conditional asymptotic
stability. In [5,6], Sene proposes some applications of the fractional input stability to the electrical
circuits described the Liouville-Caputo fractional derivative and the Riemann-Liouville fractional
derivative. In [7], Li et al. introduce the Mittag-Leffler stability of the fractional differential equations
described by the Liouville-Caputo fractional derivative [8]. In [9], Song et al. analyze the stability of
the fractional differential equations with time variable impulses. In [10], Tuan et al. propose a novel
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methodology for studying the stability of the fractional differential equations using the Lyapunov
direct method. In [11], Makhlouf studies the stability with respect to part of the variables of nonlinear
Caputo fractional differential equations. In [12], Alidousti et al. propose a new stability analysis of the
fractional differential equation described by the Liouville-Caputo fractional derivative. Many other
works related to the stability analysis exist in literature, we direct our readers to the References section
for more related literature.

The generalized Mittag-Leffler input stability is a new stability notion. This new stability notion
studies the behavior of the analytical solution of the fractional differential equations with exogenous
input described by the left generalized fractional derivative [13]. We know from previous work in
stability problems, it is not trivial to get analytical solutions. The issue is to propose a method to
analyze the stability of the fractional differential equations with exogenous input. Classically, the most
popular method is the Lyapunov direct method as given in [14–18]. We propose the Lyapunov
characterization of the generalized Mittag-Leffler input stability here in this work. As we will be able
to show, the generalized Mittag-Leffler input stability generates three properties:

• the converging-input converging-state
• the bounded-input bounded-state
• the uniform global asymptotic stability of the trivial solution of the unforced fractional differential

equation (fractional differential equation without exogenous input).

We note here that the fractional differential equation with exogenous input is said to be generalized
Mittag-Leffler input stable when the Euclidean norm of its solution is bounded, by a generalized
Mittag-Leffler function, plus a quantity which is proportional to the exogenous input bounded
when the input is bounded and converging when the input converges in time. The fractional input
stability and its consequences are a good compromise in stability problems of the fractional differential
equations described by the fractional order derivative operators.

We organize the rest of the paper as follows. In Section 2, we recall the definition of the fractional
derivative operators with or without singular kernels. In Section 3, we propose our motivations
for studying the generalized Mittag-Leffler input stability. In Section 4, we give the Lyapunov
characterizations for the generalized Mittag-Leffler input stability of the fractional differential equations
with exogenous inputs. In Section 5, we provide numerical examples for illustrating the main results
of this paper. Finally, we finish with some concluding remarks in Section 6.

2. Background on Fractional Derivatives

Let us first recall the fractional derivative operators and the comparison functions [19]. We will
use them throughout this paper. There exist many fractional derivative operators in fractional
calculus. There exist two types of fractional derivative operators. The first is fractional derivatives with
singular kernels and the second is fractional derivatives without singular kernels. With regards to
fractional derivatives with singular kernels, we cite the Riemann-Liouville fractional derivative [2],
the Liouville-Caputo fractional derivative [2], the Hilfer fractional derivative [20], the Hadamard
fractional derivative [2], and Erdélyi-Kober fractional derivative [21]. We note here that all previous
fractional derivatives are associated to their fractional integrals [2,20]. As fractional derivatives without
singular kernels we cite the Atangana-Baleanu-Liouville-Caputo derivative [22], the Caputo-Fabrizio
fractional derivative [23], and the Prabhakar fractional derivative [24]. We note here that all previous
fractional derivatives are associated to their fractional integrals [21–24]. Recently, the generalization of
the Riemann-Liouville and the Liouville-Caputo fractional derivative were introduced in the literature
by Udita [25]. Namely, the generalized fractional derivative and the Liouville-Caputo generalized
fractional derivative. Let us now observe the comparison functions used in this paper.
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Definition 1. The class PD function denotes the set of all continuous functions α : R≥0 → R≥0 satisfying
α(0) = 0, and α(s) > 0 for all s > 0. A class K function is an increasing PD function. The class K∞

represents the set of all unbounded K functions [17].

Definition 2. A continuous function β : R≥0 → R≥0 is said to be of class L if β is non-increasing and tends
to zero as its arguments tend to infinity [17].

Definition 3. Let the function f : [0,+∞[−→ R, the Liouville-Caputo derivative of the function f of order α

is expressed in the form

Dc
α f (t) =

1
Γ(1− α)

∫ t

0

f ′(s)
(t− s)α

ds, (1)

for all t > 0, where the order α ∈ (0, 1) and Γ(.) is the gamma function [2,26–29].

Definition 4. Let the function f : [0,+∞[−→ R, the Riemann-Liouville derivative of the function f of order
α is expressed in the form

DRL
α f (t) =

1
Γ(1− α)

d
dt

∫ t

0

f (s)
(t− s)α

ds, (2)

for all t > 0, where the order α ∈ (0, 1) and Γ(.) is the gamma function [2,26–30].

Definition 5. Let the function f : [0,+∞[−→ R, the Liouville-Caputo generalized derivative of the function f
of order α is expressed in the form

(
Dα,ρ

c f
)
(t) =

1
Γ(1− α)

∫ t

0

(
tρ − sρ

ρ

)−α

f ′(s)
ds

s1−ρ
, (3)

for all t > 0, where the order α ∈ (0, 1) and Γ(.) is the gamma function [2,26,28,29,31].

Definition 6. Let the function f : [0,+∞[−→ R, the left generalized derivative of the function f of order α is
expressed in the form

(Dα,ρ f ) (t) =
1

Γ(1− α)

(
d
dt

) ∫ t

0

(
tρ − sρ

ρ

)−α

f (s)
ds

s1−ρ
, (4)

for all t > 0, where the order α ∈ (0, 1) and Γ(.) is the gamma function [2,26,28,29,31].

Definition 7. Let us take the function f : [0,+∞[−→ R, the Caputo-Fabrizio fractional derivative of the
function f of order α is expressed in the form

DCF
α f (t) =

M(α)

1− α

∫ t

0
f ′(s) exp

(
− α

1− α
(t− s)

)
ds, (5)

for all t > 0, where the order α ∈ (0, 1) and Γ(.) is the gamma function [22].

Definition 8. Let the function f : [0,+∞[−→ R, the Caputo-Fabrizio fractional derivative of the function f of
order α is expressed in the form

DABC
α f (t) =

AB(α)
1− α

∫ t

0
f ′(s)Eα

(
− α

1− α
(t− s)α

)
ds, (6)

for all t > 0, where the order α ∈ (0, 1) and Γ(.) is the gamma function [22,30].
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Definition 9. Let us consider the function f : [0,+∞[−→ R, the Erdélyi-Kober fractional integral of the
function f of order α > 0, η > 0 and γ ∈ R is expressed in the form

Iγ,α
η f (t) =

t−η(γ+α)

Γ(α)

∫ t

0
τηγ (tη − τη)α−1 f (τ)d(τη), (7)

for all t > 0, and Γ(.) is the gamma function [21].

Definition 10. Let us consider the function f : [0,+∞[−→ R, the Erdélyi-Kober fractional derivative of the
function f of order α > 0, η > 0 and γ ∈ R is expressed in the form

Dγ,α
η f (t) =

n

∏
j=1

(
γ + j +

1
η

d
dt

)(
Iγ+α,n−µ
η f (t)

)
, (8)

for all t > 0, and where n− 1 < α ≤ n [21].

Some special cases can be recovered with the above definitions. In Definition 8, when ρ = 1,
we recover the Liouville-Caputo fractional derivative. In Definition 9, when ρ = 1, we recover
the Riemann-Liouville fractional derivative. In Definition 10, when γ = −α and η = 1, we obtain
the relation existing between Erdélyi-Kobar fractional derivative and Riemann-Liouville fractional
derivative expressed in the form D−α,α

1 f (t) = tαDα,1 f (t).
The Laplace transform will be used for solving a class of the fractional differential equations.

The ρ-Laplace transform was recently introduced by Fahd et al. in order to solve differential equations
in the frame of conformable derivatives to extend the possibility of working in a large class of
functions [2]. We encourage readers to refer to [2] for more detailed information about ρ-Laplace
transforms and their applications.

The ρ-Laplace transform of the generalized fractional derivative in the Liouville-Caputo sense is
expressed in the following form

Lρ

{(
Dα,ρ

c f
)
(t)
}
= sαLρ { f (t)} − sα−1 f (0), (9)

The ρ-Laplace transform of the function f is given in the form

Lρ { f (t)} (s) =
∫ ∞

0
e−s tρ

ρ f (t)
dt

t1−ρ
. (10)

Definition 11. The Mittag–Leffler function with two parameters is defined as the following series

Eα,β (z) =
∞

∑
k=0

zk

Γ(αk + β)
(11)

where α > 0, β ∈ R and z ∈ C. The classical exponential function is obtained with α = β = 1. Here we see
that when α and β are strictly positive, the series is convergent [14].

3. New Stability Notion of the Fractional Differential Equations

In this section, we introduce a new stability notion for the fractional differential equation with
exogenous input described by the left generalized fractional derivative. Historically, the fractional
input stability and the Mittag-Leffler input stability of the fractional differential equation represented
by the Liouville-Caputo fractional derivative were stated in previous works [5,18]. Moreover, the idea
of a discrete version of fractional derivatives is studied in the seminal work [32]. The Lyapunov
characterizations of these new stability notions have been provided in [15,18]. In this section, we extend
the Mittag-Leffler input stability involving the left generalized fractional derivative. We provide
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some modifications in the structure of the definitions, however the idea is not modified. The new
stability notion addressed in this paper is called the generalized Mittag-Leffler input stability. In the
literature there exist many stability notions related to the fractional differential equations without
exogenous inputs such as the asymptotic stability [7,14], the practical stability [12,33], the Mittag-Leffler
stability [7] and many others notions. Let us consider the fractional differential equations with
exogenous inputs. In fractional calculus, we have not seen a lot of work related to the stability of the
fractional differential equations with inputs. The stabilization problems [3] of the fractional differential
equations with exogenous inputs is one of the most popular notion existing in the known literature.
The challenge consists of finding possible values of the input under which the trivial solution of
the obtained fractional differential equation is asymptotically stable. In this paper, we adopt a new
method. Let us consider the fractional differential equation with exogenous input described by the left
generalized fractional derivative

Dα,ρx = Ax + Bu, (12)

where x ∈ Rn is a state variable, the matrix A ∈ Rn×n satisfies the property |arg(λ(A))| > απ
2 ,

the matrix B ∈ Rn×n and u ∈ Rn represents the exogenous input. The initial boundary condition
is defined by

(
I1−α,ρx

)
(0) = x0. Firstly, we give the analytical solution of the fractional differential

equation with exogenous input described by the left generalized fractional derivative defined by
Equation (12). Applying the ρ-Laplace transform to both sides of Equation (12), we obtain

Lρ (Dα,ρx(t))−
(

I1−α,ρx
)
(0) = ALρ (x(t)) + Lρ (Bu)

sα x̄(s)− x0 = Ax̄(s) + Bū(s)

x̄(s)− x0 (sα In − A)−1 = (sα In − A)−1 Bū(s), (13)

where x̄ denotes the Laplace transform of the function x and ū denotes the Laplace transform of the
function u. Applying the inverse of the ρ-Laplace transform to both sides of Equation (13), we obtain

x(t) = x0

(
tρ − tρ

0
ρ

)α−1

Eα,α

(
A

(
tρ − tρ

0
ρ

)α)

+
∫ t

t0

(
tρ − sρ

ρ

)α−1
Eα,α

(
A

(
tρ − tρ

0
ρ

)α)
Bu(s)

ds
s1−ρ

. (14)

Applying the Euclidean norm to both sides of Equation (14), we obtain the following relationship

‖x(t)‖ ≤ ‖x0‖

∥∥∥∥∥∥
(

tρ − tρ
0

ρ

)α−1

Eα,α

(
A

(
tρ − tρ

0
ρ

)α)∥∥∥∥∥∥
+ ‖B‖ ‖u‖

∫ t

t0

∥∥∥∥∥
(

tρ − sρ

ρ

)α−1
Eα,α

(
A

(
tρ − tρ

0
ρ

)α)
ds

s1−ρ

∥∥∥∥∥ . (15)

From assumption |arg(λ(A))| > απ
2 , there exist a positive number M > 0 [4,18,34] such that, we have

∫ t

t0

∥∥∥∥∥
(

tρ − sρ

ρ

)α−1
Eα,α

(
A

(
tρ − tρ

0
ρ

)α)
ds

s1−ρ

∥∥∥∥∥ ≤ M. (16)
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This inequality is a classic condition in stability analysis of fractional derivatives shown in [34]. Finally,
the solution of the fractional differential Equation (12) described by the left generalized fractional
derivative with exogenous input satisfies the following relationship

‖x(t)‖ ≤ ‖x0‖

∥∥∥∥∥∥
(

tρ − tρ
0

ρ

)α−1

Eα,α

(
A

(
tρ − tρ

0
ρ

)α)∥∥∥∥∥∥+ ‖B‖ ‖u‖M. (17)

We first notice, when the exogenous input of the fractional differential Equation (12) described
by the left generalized fractional derivative is null ‖u‖ = 0. The solution obtained in Equation (17)
becomes

‖x(t)‖ ≤ ‖x0‖

∥∥∥∥∥∥
(

tρ − tρ
0

ρ

)α−1

Eα,α

(
A

(
tρ − tρ

0
ρ

)α)∥∥∥∥∥∥ . (18)

It corresponds to the classical Mittag-Leffler stability of the trivial solution of the fractional differential
equation without input Dα,ρx = Ax described by the left generalized fractional derivative.

Secondly, let us consider the exogenous input converging to zero when t tends to infinity. We know
when the identity |arg(λ(A))| > απ

2 is held, we have

Eα,α

(
A

(
tρ − tρ

0
ρ

)α)
−→ 0. (19)

From which we obtain ‖x(t)‖ −→ 0. Summarizing, we have the following

‖u‖ −→ 0 =⇒ ‖x(t)‖ −→ 0. (20)

In other words, a converging input generates a converging state. This property is called the CICS
property, derived in [15,18].

Finally, let us consider the exogenous input bounded (‖u‖ ≤ η). The solution of the fractional
differential Equation (12) described by the left generalized fractional derivative satisfies the following
relationship

‖x(t)‖ ≤ ‖x0‖

∥∥∥∥∥∥
(

tρ − tρ
0

ρ

)α−1

Eα,α

(
A

(
tρ − tρ

0
ρ

)α)∥∥∥∥∥∥+ ‖B‖ ηM. (21)

Furthermore, we consider the function
(

tρ−tρ
0

ρ

)α−1
Eα,α

(
A
(

tρ−tρ
0

ρ

)α)
∈ L, thus there exist σ > 0

such that we have the following relationship(
tρ − tρ

0
ρ

)α−1

Eα,α

(
A

(
tρ − tρ

0
ρ

)α)
≤ σ. (22)

Thus Equation (21) can be expressed in the following form

‖x(t)‖ ≤ ‖x0‖ σ + ‖B‖ ηM. (23)

Thus, the solution of the fractional differential given in Equation (12) described by the left generalized
fractional derivative is bounded as well. A bounded input for Equation (12), we obtain a bounded state
for Equation (12). This property is called the BIBS property, created in [15,18]. The objective in this
paper is to introduce a new stability notion taking into account a few things; namely the converging
input, the converging state, the bounded input bounded state and the generalized Mittag-Leffler
stability of the trivial solution of the unforced fractional differential equation. This stability notion
we refer to as the generalized Mittag-Leffler input stability. In other words, the fractional differential
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equation described by the Left generalized fractional derivative is said generalized Mittag-Leffler
stable, when its solution is bounded by a class KL function (contain a Mittag-Leffler function) plus
a class K∞ function proportional to the input of the given fractional differential equation. A similar
derivation leading to Equation (23) has also recently been applied to the study of fixed-time stability
in [35].

In this section, we introduce new stability notion in the context of the fractional differential
equations described by the left generalized fractional derivative operator. The fractional differential
equation under consideration is expressed in the following form

Dα,ρx = f (t, x, u) (24)

where the function f : R+ ×R×Rm → Rn is a continuous locally Lipschitz function, the function
x ∈ Rn is a state variable, and furthermore the condition f (t, 0, 0) = 0 is held. Given an initial condition
x0 ∈ Rn, the solution of the fractional differential Equation (24) starting at x0 at time t0 is represented
by x(.) = x(., x0, u).

Definition 12. The solution x = 0 of the fractional differential equation described by the left generalized
fractional derivative defined by Equation (24) is said to be generalized Mittag-Leffler stable if, for any initial
condition ‖x0‖ and initial time t0, its solution satisfies the following condition

‖x(t, ‖x0‖)‖ ≤

m(‖x0‖)
(

tρ − tρ
0

ρ

)α−1

Eα,α

(
η

(
tρ − tρ

0
ρ

)α)a

, (25)

where a > 0, η < 0 and the function m is locally Lipschitz on a domain contained in Rn and satisfies
m(0) = 0 [7,14].

In the following definition, we introduce the definition of the generalized Mittag-Leffler input
stability in the context of the fractional differential equation described by the left generalized fractional
derivative operator.

Definition 13. The fractional differential equation described by the left generalized fractional derivative defined
by Equation (24) is said to be generalized Mittag-Leffler input stable if, there exist a class γ ∈ K∞ function such
that for any initial condition ‖x0‖, its solution satisfies the following condition

‖x(t, ‖x0‖)‖ ≤

m(‖x0‖)
(

tρ − tρ
0

ρ

)α−1

Eα,α

(
η

(
tρ − tρ

0
ρ

)α)a

+ γ (‖u‖∞) , (26)

where a > 0 and η < 0.

From the condition γ ∈ K∞, we get γ(0) = 0. We recover Definition 13. That is, the generalized
Mittag-Leffler input stability of the fractional differential given in Equation (24) implies the generalized
Mittag-Leffler stability of the trivial solution of the fractional differential equation with no input
defined by Dα,ρx = f (t, x, 0). From the fact γ ∈ K∞, when the input is bounded implies the function
γ (‖u‖∞) is bounded as well. Thus the state of the fractional differential Equation (24) is bounded
too. We thus recover BIBS. From the fact γ ∈ K∞, a converging input causes γ (‖u‖∞) to converge.
Thus the state of the fractional differential Equation (24) is converging as well. We thus recover CICS.
In conclusion we can say that Definition 12 is well posed.
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4. Lyapunov Characterizations of the Generalized Mittag-Leffler input Stability

In this section, we give the Lyapunov characterization of the generalized Mittag-Leffler input
stability of the fractional differential equation. We know, it is not always trivial to get the analytical
solution of the fractional differential equation with exogenous inputs. An alternative is to propose a
method of analyzing the Mittag-Leffler input stability. The method consist of calculating the fractional
energy of the fractional differential equation along the trajectories. In other words, we use the Lyapunov
direct method.

Theorem 1. Let us consider that there exists a positive function V : R+ × Rn −→ R continuous and
differentiable, and a class K∞ function χ1 and class K functions χ2, χ3 satisfying the following assumptions:

1. ‖x‖a ≤ V(t, x) ≤ χ1 (‖x‖) .
2. If for any ‖x‖ ≥ χ2((|u|)) =⇒ Dα,ρ

c V(t, x) ≤ −χ3((‖x‖)).

Then the fractional differential Equation (24) described by the left generalized fractional derivative is generalized
Mittag-Leffler input stable.

Proof. Summarizing [18], combining Assumption (1) and Assumption (2), we have

‖x‖a ≤ V(x, t) ≤ α1 ◦ α2 (‖u‖)
‖x‖ ≤ (α1 ◦ α2 (‖u‖))1/a

‖x‖ ≤ γ (‖u‖) , (27)

where the function γ (‖u‖) = (α1 ◦ α2 (‖u‖))1/a ∈ K∞.
From Assumption (2), using an exponential form of the Lyapunov function in, there exist positive

constant such that, we have

‖x‖ ≥ χ2((|u|)) =⇒ Dα,ρ
c V(t, x) ≤ −χ3((‖x‖))

=⇒ Dα,ρ
c V(t, x) ≤ −χ3((‖x‖)) ≤ −kV(x, t). (28)

It follows from Equation (28), the following inequality

‖x‖a ≤ V(t, x) ≤ V(‖x0‖)
(

tρ − tρ
0

ρ

)α−1

Eα,α

(
−k

(
tρ − tρ

0
ρ

))

‖x‖ ≤

V(‖x0‖)
(

tρ − tρ
0

ρ

)α−1

Eα,α

(
−k

(
tρ − tρ

0
ρ

))
1/a

. (29)

Finally, combining Equations (27) and (29), we obtain

‖x‖ ≤ max


V(‖x0‖)

(
tρ − tρ

0
ρ

)α−1

Eα,α

(
−k

(
tρ − tρ

0
ρ

))
1/a

; γ (‖u‖)

 . (30)

Thus the fractional differential equation defined by Equation (24) is generalized Mittag-Leffler input
stable.

The second characterization is a consequence of the first theorem. It is more simplest to be applied
in many cases. We have the following characterization.

Theorem 2. Let there exist a positive function V : R+ ×Rn −→ R continuous and differentiable, and a class
K∞ of functions χ1 and class K∞ function γ satisfying the following assumption:
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1. ‖x‖a ≤ V(t, x) ≤ χ1 (‖x‖) .
2. Dα,ρ

c V(t, x) ≤ −kV(x, t) + γ (‖u‖).

Then fractional differential Equation (24) described by the left generalized fractional derivative is generalized
Mittag-Leffler input stable stable.

Proof. From Assumption (2), we have the following relationships

Dα,ρ
c V(t, x) ≤ −kV(x, t) + γ (‖u‖)

Dα,ρ
c V(t, x) ≤ − (1− θ) kV(x, t)− θkV(x, t) + γ (‖u‖) , (31)

where θ ∈ (0, 1). We have

−θkV(x, t) + γ (‖u‖) ≤ 0 =⇒ Dα,ρ
c V(t, x) ≤ − (1− θ) kV(x, t)

V(x, t) ≥ γ(‖u‖)
θk

=⇒ Dα,ρ
c V(t, x) ≤ − (1− θ) kV(x, t). (32)

From first assumption, it yields that

θkχ1 (‖x‖) ≥ γ(‖u‖) =⇒ Dα,ρ
c V(t, x) ≤ − (1− θ) kV(x, t).

Thus the fractional differential equation described by the left generalized fractional derivative is
Mittag-Leffler input stable.

5. Practical Applications

In this section, we give many practical applications of the Mittag-Leffler input stability of the
fractional differential equation described by the generalized fractional derivative using the Lyapunov
characterizations.

Let us consider the fractional differential equation described by the left generalized fractional
differential equation defined by {

Dα,ρ
c x1 = −x1 +

1
2 x2 +

1
2 u1

Dα,ρ
c x2 = −x2 +

1
2 u2

(33)

where x = (x1, x2) ∈ R2 and u = (u1, u2) ∈ R2 represents the exogenous input. Let us take the
Lyapunov function defined by V(x) = 1

2
(
x2

1 + x2
2
)
. The left generalized fractional derivative of the

Lyapunov function along the trajectories is given by

Dα,ρ
c V(t, x) = −x2

1 +
1
2

x1x2 +
1
2

x1u1 − x2
2 +

1
2

x2u2

≤ −1
2

x2
1 −

1
2

x2
2 +

1
4
‖u‖2

≤ −V(x) +
1
4
‖u‖2 (34)

Consider γ(‖u‖) = 1
4 ‖u‖

2 ∈ K∞. It follows from Theorem 2, the fractional differential equation
described by the left generalized fractional derivative given in Equation (33) is Mittag-Leffler
input stable. Thus, the origin of the unforced fractional differential equation obtained with
u = (u1, u2) = (0, 0) {

Dα,ρ
c x1 = −x1 +

1
2 x2

Dα,ρ
c x2 = −x2

(35)

where x = (x1, x2) ∈ R2, is Mittag-Leffler stable.
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Let us consider the fractional differential equation described by the left generalized fractional
differential equation defined by {

Dα,ρ
c x1 = −x1 + x2 + u1

Dα,ρ
c x2 = −x2 + u2

, (36)

where x = (x1, x2) ∈ R2 and u = (u1, u2) ∈ R2 represents the exogenous input. Let the Lyapunov
function defined by V(x) = 1

2
(

x2
1 + x2

2
)
. The left generalized fractional derivative of the Lyapunov

function along the trajectories is given by

Dα,ρ
c V(t, x) = −x2

1 + x1x2 + x1u1 − x2
2 + x2u2

≤ −x2
1 +

1
2

x2
1 +

1
2

x2
1 − x2

2 +
1
2

x2
2 +

1
2

x2
2 + ‖u‖

2

≤ ‖u‖2 . (37)

Let γ(‖u‖) = 1
4 ‖u‖

2 ∈ K∞. It follows from Theorem 2, the fractional differential equation described
by the left generalized fractional derivative in Equation (35) is bounded as well [36].

Let us consider the electrical RL circuit described by the left generalized fractional differential
equation defined by

Dα,ρ
c x = −σ1−αR

L
x + u (38)

with the initial boundary condition defined by x(0) = x0. The parameter σ is associated with the
temporal components in the differential equation. u represents the exogenous input. Let us take
the Lyapunov function defined by V(x) = 1

2 ‖x‖
2. The left generalized fractional derivative of the

Lyapunov function along the trajectories is given by

Dα,ρ
c V(t, x) =

σ1−αR
L

x2 + xu

≤ −σ1−αR
L
‖x‖2 +

1
2
‖x‖2 +

1
2
‖u‖

≤ −
(

σ1−αR
L
− 1

2

)
‖x‖2 +

1
2
‖u‖ . (39)

Let us consider k = σ1−αR
L − 1

2 and θ ∈ (0, 1). We have the following relationship

Dα,ρ
c V(t, x) ≤ −(1− θ)k ‖x‖2 + kθ ‖x‖2 +

1
2
‖u‖ (40)

From Theorem 1, if ‖x‖ ≥ ‖u‖2kθ , we have Dα,ρ
c V(t, x) ≤ −(1− θ)k ‖x‖2. Thus, the electrical RL circuit

(36) is Mittag-Leffler input stable form.
Let us consider the fractional differential equation described in [4] by the left generalized fractional

differential equation defined by
Dα,ρ

c x = −x + xu, (41)

where x ∈ Rn is a state variable. u represents the exogenous input. Let’s the Lyapunov function
defined by V(x) = 1

2 ‖x‖
2. The left generalized fractional derivative of the Lyapunov function along

the trajectories is given by

Dα,ρ
c V(t, x) = −x2 + x2u

≤ −‖x‖2 + ‖x‖2 ‖u‖
≤ − (1− ‖u‖) ‖x‖2 . (42)
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We can observe, when we pick ‖u‖ > 1, using α-integration, the state x of Equation (42) diverge as t
tends to infinity. Then the fractional differential equation is not BIBS. Thus, the fractional differential
Equation (41) is not, in general, Mittag-Leffler input stable.

6. Conclusions

In this paper, the Mittag-Leffler input stability has been thoroughly investigated. We have tried to
motivate this study with its connection to many real world applications known to use Mittag-Leffler
functions. We also address the Lyapunov characterization of the fractional differential equations.
In doing so, we have created a further Lyapunov characterization which is more useful. Finally,
we give some numerical examples to help illustrate the work that was accomplished in this paper.
Analyzing the generalized Mittag-Leffer input stability of the fractional differential equations without
decomposing it can be non trivial. The possible issue is to decompose it as a cascade of triangular
equations and to find a method to analyze the generalized Mittag-Leffer input stability of the obtained
fractional differential equation. In other words, finding the conditions for the generalized Mittag-Leffer
input stability of the fractional differential cascade equations will be subject of future works.
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