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Abstract: We investigate the massive vector field equation with the WKB approximation.
The tunneling mechanism of charged bosons from the gauged super-gravity black hole is observed.
It is shown that the appropriate radiation consistent with black holes can be obtained in general under
the condition that back reaction of the emitted charged particle with self-gravitational interaction is
neglected. The computed temperatures are dependant on the geometry of black hole and quantum
gravity. We also explore the corrections to the charged bosons by analyzing tunneling probability,
the emission radiation by taking quantum gravity into consideration and the conservation of charge
and energy. Furthermore, we study the quantum gravity effect on radiation and discuss the instability
and stability of black hole.

Keywords: higher dimension gauged super-gravity black hole; quantum gravity; quantum tunneling
phenomenon; Hawking radiation

1. Introduction

General relativity is associated with the thermodynamics and quantum effect which are strongly
supportive of each other. A black hole (BH) is a compact object whose gravitational pull is so intense
that can not escape the light. It was proved by Hawking that a BH has an additional property of
emitting radiation. Since Hawking’s great contribution on BH thermodynamics, the radiation from
the BH has attained the attention of many researchers. There are many different process to obtain
the Hawking radiation by applying the quantum field equations or the semi-classical phenomena.
Different accesses to quantum gravity, as well as BH physics predict a minimum measure length
or a maximum evident momentum and associated modifications of the principle of the Heisenberg
uncertainty which is called the generalized uncertainty principle (GUP).

The thermal radiation coming from any stationary metric are calculated [1]. The physical image
is that the radiation develops in the quasiclassical tunneling of particles from a gravitational barrier.
They obtained a thermal spectrum and twice the temperature for Hawking radiation of non-rotating
BH. The expression exp(−2Im(

∫
pdr)) is not invariant under canonical transformation in generally

and expressed that this implies half the correct temperature for BH [2]. In the setting of black rings
significance, the radiation of the Dirac particles can be calculated by applying the Dirac wave equation
in both the charged and uncharged case. The formulate of the field equations of uncharged and
charged Dirac particles by using the covariant Dirac wave equation [3]. E. T. Akhmedov et al. [4]
calculated Hawking radiation by using the quasi-classical phenomenon. The temporal contribution to
gravitational WKB-like calculations are discussed in [5]. The authors analyzed that the quasiclassical
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method for gravitational backgrounds contains subtleties not found in the usual quantum mechanical
tunneling problem.

V. Akhmedova et al. [6] compared the anomaly method and the WKB/tunneling method for
finding radiation through non-trivial space-time. They conclude that these both method are not valid
for all types of metrics. The discreteness space effect of the GUP are investigated in space [7]. Corda [8]
analyzed interferometric detection of gravitational waves: the definitive test for general relativity.
He conclude that accurate angular and frequency dependent response functions of interferometers
for gravitational waves arising from various theories of gravity will be the definitive test for general
relativity. The authors investigated insights and possible resolution to the information loss paradox
via the tunneling picture [9]. They observe that the quantum correction give zero temperature for the
radiation as the mass of the BH is zero.

From F(R) theory to Lorentz non-invariant models in modified gravity are investigated as [10].
The extended theories of gravity are discussed in [11]. The authors analyzed the problems of
gravitational waves and neutrino oscillations through extended gravity theory. The authors [12]
examined the rule to all alternative gravities, a particularly significance of scalar-tensor and f(R)
theories. Yale [13] analyzed the exact Hawking radiation of scalars, fermions and bosons 1-spin
particles applying quantum tunneling phenomena without back reaction. The different dark energy
models like Λ cold dark matter, Pseudo-Rip and Little Rip universes, non-singular dark energy
universes, the quintessence and phantom cosmologies with different types are analyzed [14].

Sharif and Javed [15] analyzed the Hawking radiation of fermion particles applying quantum
tunneling phenomena from traversable wormholes. Corda [16] studied the important issue that
the non-strictly continuous character of the Hawking radiation spectrum generates a natural
correspondence between Hawking radiation and quasi-normal modes BH. Jan and Gohar [17]
examined the Hawking temperature by quantum tunneling of scalars particles applying Klein-Gordon
equation in WKB approximation. Kruglov [18] calculated the Hawking radiation by quantum
tunneling of vector particles of BHs in 2 dimension applying Proca equation in WKB approximation.
Matsumoto et al. [19] analyzed the time evolution of a thin black ring via Hawking radiation.

The different writers [20] determined the Hawking temperature by Hamilton-Jacobi equation
of vector particles of Kerr and Kerr-Newman BHs by applying Proca and Lagrangian equations in
WKB approximation. Corda [21] analyzed precise model of Hawking radiation from the tunneling
mechanism and he found that pre-factor of the Parikh and Wilczek probability of emission depends
on the BH quantum level. Anacleto [22] analyzed the GUP in the tunneling phenomena through
Hamilton–Jacobi process to find the corrected temperature and entropy for three-dimensional
noncommutative acoustic BHs. Anacleto et al. [23] studied the Hawking temperature by the
Hamilton–Jacobi equation of spin 3

2 -particles of accelerating BHs, applying the Rarita–Schwinger
equation in the WKB approximation. Chen and Huang [24] determined the Hawking temperature by
quantum tunneling phenomena of vector particles of Vaidya BHs in applying the Proca equation
in WKB approximation. Anacleto et al. [25] examined the quantum-corrected of self-dual BH
entropy in tunneling phenomena with GUP. Li and Zu [26] analyzed the tunneling phenomena
by the Hamilton–Jacobi equation of scalar particles of Gibbons–Maeda–Dilation BHs, applying
the Klein–Gordon equation in the WKB approximation. Feng et al. [27] calculated the tunneling
phenomena by the Hamilton–Jacobi equation of scalar particles of 4D and 5D BHs, applying the Proca
equation in the WKB approximation. Saleh et al. [28] studied the Hawking radiation of 5D Lovelock
BH with the Hamilton–Jacobi equation by using the Klein–Gordon equation.
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The authors [29] analyzed the cosmology of inflation by modifying terms of gravity and
inflation in F(R) gravity. In the F(R) gravity, the Starobinsky inflation is discussed with the
geometry of gravitational theories to the inflationary models. Övgun and Jusufi [30] calculated
the tunneling phenomena by Hamilton–Jacobi process in a Lagrangian equation of spin-1 massive
particle noncommutative BHs. Jusufi and Övgun [31] examined the Hawking temperature of vector
and scalar particles from 5D Myers–Perry BHs and solved the Proca and Klein–Gordon equations by
using the WKB approximation and Hamilton–Jacobi process in these cases.

The cosmological solutions, BH solutions and spherically symmetric developing through F(T)
gravity were discussed in different cosmic expansion eras [32]. Singh et al. [33] discussed the Hawking
temperature of vector particles from Kerr–Newman BHs in the Proca equation by applying the WKB
approximation in the Hamilton–Jacobi process. Jusufi and Övgun [34] examined the Hawking radiation
of massive particles from rotating charged black strings. Li and Zhao [35] calculated the tunneling
process of massive particles from the neutral rotating anti-de Sitter BHs using the Proca wave equation
in the WKB approximation. The different authors [36,37] determined the temperature of massive
vector particles from the different types BHs by using tunneling phenomena. The nutshell, bounce,
late time evolution and inflation were studied through modified gravity theories [38]. The future of
gravitational theories in the framework of gravitational wave in astronomy was analyzed in [39]. The
charged vector particles tunneling from black ring and 5D BH [40] is studied by wave equation to
calculate the tunneling phenomena for charged particles as well as Hawking temperature. In this
article, the authors have calculated the tunneling probability/rate and Hawking temperature for
charged boson particles tunneling from horizon.

This paper is organization as follows: in Section 2 we discuss the tunneling rate and Hawking
temperature of charged vector W± boson particles for 4D gauged super-gravity BH and also calculate
quantum corrected tunneling probability and Hawking temperature. Section 3 is based on the analysis
of for 7D gauged super-gravity BH. In Section 4, we discuss the graphical behavior of radiation for
these types of BHs and visualize the stable and unstable state of BHs. In Section 5 we explain the
conclusions and discussion.

2. 4-Dimension Gauged Super-Gravity Black Holes

The super-gravity theory defined gauged theory through which the gauge boson, the super-partner
of the particle is charged in some internal gauge group. Moreover, this theory is more important as
compared to the ungauged case, therefore this theory has a negative cosmological constant (Λ), where
Λ is stated in an anti-de Sitter BH. Now, for the study of a boson particle tunneling process form a BH
in (3 + 1) dimension theory of gauged super-gravity, we calculate the Hawking temperature of BH by
tunneling phenomena at event horizon. The solution of BH occur in D = 4 N = 8 theory of gauged
super-gravity (symmetry) [41]. The metric for such theory is given by [41]

ds2 = − (H1H2H3H4)
− 1

2 f dt2 + (H1H2H3H4)
1
2
(

f−1dr2 + r2dΩ2
2,k

)
, (1)

where g = 1/L and L is related to the cosmological constant Λ = −3g2 = −3/L2 and the µ represent
the non-extremality parameter [42]

f = k− µ

r2 + g2r2H1H2H3H4, Hi =
qi
r2 + 1, (for i = 1, 2, 3, 4).

for radius k = 1 and k = 0, then dΩ2
2,k represents the metrics on S2 and R2 respectively. The four

electric potentials Ai
µ are defined as;

Ai
0 =

q̃i
r2 + qi

(for i = 1, 2, 3, 4),
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where qi and q̃i represent charges and physical charges of a BH. The line element from Equation (1)
can be rewritten as

ds2 = −F(r)dt2 + L−1(r)dr2 + M(r)dθ2 + N(r)dφ2, (2)

where

F(r) = f (H1H2H3H4)
− 1

2 L−1(r) = f−1(H1H2H3H4)
1
2

M(r) = r2(H1H2H3H4)
1
2 N(r) = r2 sin2 θ(H1H2H3H4)

1
2 .

The wave equation of motion comprises of GUP obtained from the Glashow–Weinberg–Salam
model [20,43]

∂µ(
√
−gΦνµ) +

√
−g

m2

h2 Φν +
√
−g

i
h

eAµΦνµ +
√
−g

i
h

eFνµΦµ + αh̄2∂0∂0∂0

(
√
−gg00Φ0ν)− αh̄2∂i∂i∂i(

√
−ggiiΦiν) = 0, (3)

where g is a determinant coefficient matrix, Φµν is anti-symmetric tensor and m is particles mass, since

Φνµ = (1− αh̄2∂2
ν)∂νΦµ − (1− αh̄2∂2

µ)∂µΦν + (1− αh̄2∂2
ν)

ι

h̄
eAνΦµ

− (1− αh̄2∂2
µ)

ι

h̄
eAµΦν

where α, Aµ, e and4µ are the quantum gravity parameter (dimensionless positive parameter), vector
potential of the charged BH, the charge of the particle and covariant derivative, respectively. As the
wave equations for the W+ and W− boson particles are alike, the tunneling actions should be alike
too (W+ = −W−). We will view the W+ boson particle case after simplification and the results of
such case can be changed to multiply negative sign W− boson particles due to the digitalization of the
metric. There value of Φµ and Φνµ are given by

Φ0 =
Φ0

F(r)
, Φ1 =

Φ1

L−1(r)
, Φ2 =

Φ2

M(r)
, Φ3 =

Φ3

N(r)
,

Φ01 =
Φ01

F(r)L−1(r)
, Φ02 =

Φ02

F(r)M(r)
, Φ03 =

Φ03

F(r)N(r)
,

Φ12 =
Φ12

L−1(r)M(r)
, Φ13 =

Φ13

L−1(r)N(r)
, Φ23 =

Φ23

M(r)N(r)
.

The WKB approximation is given in [44], i.e.,

Φν = cν exp[
i
h̄
⊕0 (t, r, θ, φ) +

i=n

∑
i=1

h̄i ⊕i (t, r, θ, φ)]. (4)
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Substituting the Equation (4) into the wave Equation (3), where i = 1, 2, 3, ... neglecting the terms.
We get the set of equations below:

L(r)[c1(∂0⊕0)(∂1⊕0) + c1α(∂0⊕0)
3(∂1⊕0)− c0(∂1⊕0)

2 − c0(∂1⊕0)
4α

+eA0c1(∂1⊕0) + eA0c1α(∂1⊕0)(∂0⊕0)
2] +

1
M(r)

[c2(∂0⊕0)(∂2⊕0) + αc2

(∂0⊕0)
3(∂2⊕0)− c0(∂2⊕0)

2 − αc0(∂2⊕0)
4 + eA0c2(∂2⊕0) + αeA0c2(∂0⊕0)

2

(∂2⊕0)] +
1

N(r)
[c3(∂0⊕0)(∂3⊕0) + αc3(∂0⊕0)

3(∂3⊕0) + c0(∂3⊕0)
2

+αc0(∂3⊕0)
4 + eA0c3(∂3⊕0) + αc3eA0(∂0⊕0)

2(∂3⊕0)]−m2c0 = 0 (5)
−1

F(r)
[c0(∂0⊕0)(∂1⊕0) + c0α(∂0⊕0)(∂1⊕0)

3 − c1(∂0⊕0)
2 − c1α(∂0⊕0)

4

−eA0c1(∂0⊕0)− αeA0c1(∂1⊕0)
2(∂0⊕0)] +

1
M(r)

[c2(∂1⊕0)(∂2⊕0)

+αc2(∂1⊕0)
3(∂2⊕0)− c1(∂2⊕0)

2 − αc1(∂2⊕0)
4] +

1
N(r)

[c3(∂1⊕0)(∂3⊕0)

+c3α(∂1⊕0)
3(∂3⊕0)− c1(∂3S0)

2 − c1α(∂3⊕0)
4]−m2c1 −

1
F

eA0

[c0(∂1⊕0) + αc0(∂1⊕0)
3 − c1(∂0⊕0)− αc1(∂0⊕0)

3 − c1eA0

−eA0αc1(∂1⊕0)
2] = 0 (6)

1
F(r)

[c0(∂0⊕0)(∂2⊕0) + αc0(∂0⊕0)(∂2⊕0)
3 − c2(∂0⊕0)

2 − αc2(∂0⊕0)
4

−eA0(∂0⊕0)c2 − eA0(∂0⊕0)
3c2α]− 1

L−1(r)
[c2(∂1⊕0)

2 + αc2(∂1⊕0)
4

−c1(∂1⊕0)(∂2⊕0)− αc1(∂1⊕0)(∂2⊕0)
3] +

1
N(r)

[c3(∂2⊕0)(∂3⊕0)

+αc3(∂2⊕0)
3(∂3⊕0)− c2(∂3⊕0)

2 − αc2(∂3⊕0)
4]− eA0

F(r)
[c0(∂2⊕0)

+αc0(∂2⊕0)
3 − c2(∂0⊕0)− αc2(∂0⊕0)

3 + c2eA0 + αc2eA0(∂0⊕0)
2]

−m2c2 = 0 (7)

1
F(r)

[c0(∂0⊕0)(∂3⊕0) + αc0(∂0⊕0)(∂3⊕0)
3 − c3(∂0⊕0)

2 − αc3(∂0⊕0)
4

−eA0(∂0⊕0)c3 − eA0(∂3⊕0)
2(∂0⊕0)c3α] +

1
L−1(r)

[c3(∂1⊕0)
2 + αc3(∂1⊕0)

4

−c1(∂3⊕0)(∂1⊕0)− αc1(∂1⊕0)(∂3⊕0)
3] +

1
M(r)

[c3(∂2⊕0)
2

+αc3(∂2⊕0)
4 − c2(∂2⊕0)(∂3⊕0)− αc2(∂3⊕0)

3(∂2⊕0)] +
eA0

F(r)
[c0(∂3⊕0)

+αc0(∂3⊕0)
3 − c3(∂0⊕0)− αc3(∂0⊕0)

3 − c3eA0 − αc3eA0(∂3⊕0)
2]

−m2c3 = 0. (8)

We can choose the separation of variables,

⊕0 = −(E− jΩ)t + W(r) + jφ + υ(θ), (9)
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where j, E and Ω represent angular momentum, energy and angular velocity of particle, respectively.
Here, W(r) and υ(θ) are two arbitrary functions. The matrix equation can be obtain from the
Equations (5)–(8),

K(c0, c1, c2, c3)
T = 0,

which gives “K” is a order of ‘4× 4′ matrix and its components are given by:

K00 =
Ẇ2 + αẆ4

L−1(r)
− j2 + αj4

M(r)
+

υ̇3 + αυ̇4

N(r)
−m2,

K01 = −Ẇ(E− jΩ) + αẆ(E− jΩ)3

L−1(r)
+

ẆeA0 + αẆeA0(E− jΩ)2

L−1(r)
,

K02 = − (E− jΩ)j + α(E− jΩ)j
M(r)

+
eA0 j + α(E− jΩ)2eA0 j

M(r)
,

K03 = − υ̇(E− jΩ) + αυ̇(E− jΩ)3

N(r)
+

eA0υ̇ + αeA0υ̇(E− jΩ)2

N(r)
,

K10 =
(E− jΩ)Ẇ + α(E− jΩ)Ẇ3

F(r)
− eA0Ẇ + αeA0Ẇ3

F(r)
,

K11 =
(E− jΩ)2 + α(E− jΩ)4

F(r)
+

(E− jΩ)eA0 − αẆ(E− jΩ)eA0

F(r)

− j2 − αj4

M(r)
− υ̇2 − αυ̇4

N(r)
−m2 − 1

F(r)
eA0[(E− jΩ) + α(E− jΩ)3

− eA0 − αeA0Ẇ2],

K12 =
Ẇj + αẆ3 j

M(r)
, K13 =

υ̇Ẇ + υ̇αẆ3

N(r)
,

K20 = − j(E− jΩ) + αj3(E− jΩ)

F(r)
− eA0

j + αj3

F(r)
, K21 =

Ẇj + αẆj3

L−1(r)
,

K22 = − 1
F(r)

[−(E− jΩ)2 − α(E− jΩ)4 + eA0(E− jΩ) + eA0α(E− jΩ)3]

− Ẇ2 + αẆ4

L−1(r)
− υ̇2 + αυ̇4

N(r)
−m2, K23 =

jυ̇ + αj3υ̇

N(r)
,

K30 =
−1

F(r)
[(E− jΩ)υ̇ + α(E− jΩ)υ̇3] +

eA0υ̇ + eA0αυ̇3

F(r)
,

K31 =
−Ẇυ̇− αẆυ̇3

L−1(r)
, K32 =

−jυ̇− αjυ̇3

M(r)
,

K33 = − 1
F(r)

[(E− jΩ)2 + α(E− jΩ)4 − (E− jΩ)eA0 − α(E− jΩ)eA0υ̇3] +

Ẇ2 + αẆ4

L−1(r)
− j2 + αj4

M(r)
+

eA0

F(r)
[(E− jΩ) + α(E− jΩ)3 − eA0 − αeA0υ̇3]

−m2,

where Ẇ = ∂r⊕0, υ̇ = ∂θ⊕0 and j = ∂φ⊕0. The non-trivial solution is | K |= 0 and solving these
equations yields:

imW± = ±
∫ √√√√ (E− eA0 − jΩ)2 + X1(1 +

X2
X1

α)

L(r)
dr, (10)

where − and + denote the incoming and outgoing particles, respectively. The function ‘X′1 can

be defined as X1 = j2

M(r) and X2 = α(E−jΩ)4

F(r) − α(E−jΩ)eA0 υ̇3

F(r) − αẆ4

L−1(r) + α
j4

M(r) −
eA0
F(r) [α(E − jΩ)3 −



Symmetry 2019, 11, 631 7 of 12

αeA0υ̇3] + m2 represent the angular velocity at the event horizon. Integrating Equation (10) around the
pole, we get

imW± = ±iπ
(E− A0e− jΩ)

2κ(r+)
(1 + Ξα), (11)

and the surface gravity of the 4D gauged super-gravity BH [41] is given by

κ(r+) =
3r4

+ + 2r3
+q1q2q3q4 + r2

+(∑
4
i<j qiqj + 1)− q1q2q3q4

2r+
√

∏4
i=1(r+ + qi)

. (12)

The tunneling probability Γ(imW+) for boson vector particles is given by

Γ(imW+) =
Prob[emission]

Prob[absorption]
=

exp[−2(imW+ + imυ)]

exp[−2(imW− − imυ)]
= exp[−4imW+]

= exp

−π
(E− eA0 − jΩ)r+

√
∏4

i=1(r+ + qi)

3r4
+ + 2r3

+q1q2q3q4 + r2
+(∑

4
i<j qiqj + 1)− q1q2q3q4


× (1 + Ξα). (13)

The particles that tunnel outside the event horizon will fall into the BH, and one has
Prob[emission] = 1 then imW− − imυ = 0.

Now, we can calculate the TH(imW+) by comparing the Γ(imW+) with the Boltzmann formula
ΓB(imW+) ≈ e−(E−eA0−jΩ)/TH(imW+), we get

TH(imW+) =
3r4

+ + 2r3
+q1q2q3q4 + r2

+(∑
4
i<j qiqj + 1)− q1q2q3q4

4πr+
√

∏4
i=1(r+ + qi)

× (1 + Ξα)−1. (14)

The Γ(imW+) depends on the radial coordinate at the outer horizon r+, A0 vector potentials, E
energy, j angular momentum, e charge of particles, qi charge of a 4D gauged super-gravity BHs, α

quantum gravity and Ω represent the angular velocity on this horizon.

3. 5-Dimension Gauged Super-Gravity Black Holes

This BH solution occurs for N = 8, D = 5, in gauged super-gravity theory (symmetry) [41].
Now, a particular case is discussed, where the solution was developed (STU-model) for the results of
N = 2, D = 5, gauged super-gravity theory wave equation of motion. The line element for 5D BH in
the theory of gauged super-gravity is given as [41]

ds2 = − f (H3H2H1)
− 2

3 dt2 + f−1 (H3H2H1)
1
3 dr2 + (H3H2H1)

1
3 r2dΩ2

3,k, (15)

where
f = g2r2H3H2H1 −

µ

r2 + k, Hi = 1 +
qi
r2 ,

here i = 1,2,3 and for radius k = 1 and k = 0, then dΩ2
3,k represents the metrics on S3 and R3 respectively.

It is connected to ADM mass i.e., g = 1/L, which indicates AdS5’s inverse radius and depends upon
the cosmological constant, Λ = −6/L2 = −6g2, and the qi are BH charges. The result of the wave
equation is the form of the three gauge potential field Ai

µ from

Ai
0 =

q̃i
qi + r2 , (16)
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here, i = 1, 2, 3 and q̃i are BH physical charges. It is observed that Gauss’s theorem is applicable for
these charges. The corrected temperature (T′H) can be calculated as

T′H(imW+) =
(Σ3

i=1qi + 1)r4
+ −∏3

i=1 qi + 2r6
+

2πr2
+

√
∏3

i=1(qi + r2
+)

(1 + Ξα)−1. (17)

The corrected tunneling rate depends on energy (E), potential (A0), angular momentum (ΩH),
the outer horizon (r+) radial coordinate, correction parameter (α) and BH charge (qi). We notice that
the corrected temperature of boson particles denoted by Equation (17) is same as (α = 0), the 5D BH
temperature in the theory of gauged super-gravity in Equation (3.12) of Reference [43]. The TH(imW+)

is related to the radial coordinate on the outer horizon r+, α quantum gravity and charge qi of a 4D
gauged super-gravity BHs respectively.

4. 7-Dimension Black Holes in Theory of Gauged Super-Gravity

We calculate a boson particle’s quantum tunneling spectrum from a BH in 7D gauged
super-gravity theory and also determine the tunneling rate of boson particles and the corresponding
temperature at BH outer horizon r+. The solutions of BH occur when D = 7 and N = 4 in the gauged
super-gravity theory (symmetry) [41]. Firstly, this result was developed in as a special case of solutions
of cases when D = 7, N = 4 gauged super-gravity through the equations of motion. The metric of a
BH in 7D gauged super-gravity theory is [41]

ds2 = − (H1H2)
− 4

5 f dt2 + (H1H2)
1
5
(

f−1dr2 + r2dΩ2
5,k

)
, (18)

where
f = g2r2H1H2 −

µ

r4 + k, Hi =
qi

r4 + 1, (for i = 1, 2)

where g = 1/L = 1 and L is related to the cosmological constant Λ = −15/L2. The two gauge field
electric potentials Ai

µ through the result ofthe wave equation of motion are given by

Ai
0 =

q̃i

r4 + qi
(for i = 1, 2).

The corresponding Hawking temperature at the horizon can be obtained as

Ť(imW+) =

3r8
+ + 2r6

+ + r4
+(q1 + q2)− q1q2

πr3
+

√
(r4

+ + q1)(r4
+ + q2)

 (1 + Ξα)−1. (19)

The Hawking temperature depends on parameters r0, q2, and q1.

5. Graphical Analysis

In this section, we describe the graphical behavior of quantum corrected Hawking temperature in
Equations (14), (17) and (19) as shown in Figures 1–3, respectively, for arbitrary parameter Ξ = 1 and
also study the stable and unstable states of BHs.
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Figure 1. TH(imW+) versus r+ for q1 = q2 = q3 = q4 = 0.5 and q1 = q2 = q3 = q4 = 5.
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Figure 2. T′H(imW+) versus r+ for q1 = q2 = q3 = 0.5 and q1 = q2 = q3 = 5.
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Figure 3. Ť(imW+) versus r+ for q1 = q2 = 0.5 and q1 = q2 = 5.

TH Versus r+

In this subsection, we analyze the graphical behavior of corrected Hawking temperature TH w.r.t
the horizon r+ for the 4D, 5D and 7D gauged super-gravity BHs. Moreover, we study the physical
significance of these graphs in the presence of correction parameter α and discuss the stable and
unstable condition of corresponding BHs.

The TH(imW+) slightly increase with increasing horizon and a slight change in the value of the
correction parameter α = 1 can cause a small increase in temperature, but the non-physical behavior
identifies the unstable state of BHs.
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In Figures 1–3, after initial increases in the particular range the temperature sharply increases
with positive value. The non-physical behavior of the temperature increases with increasing horizon
shows the instability of BH.

6. Conclusions and Discussion

In summary, applying the Hamilton–Jacobi phenomena of the tunneling formalism, we have
studied the metric of the four, five and seven dimensional gauged super-gravity BHs. For this
aim, we applied the Lagrangian wave equation with the setting of electromagnetism to analyze the
tunneling of a massive charged boson (1-spin) particles from four, five and seven dimensional gauged
super-gravity BHs having charges and physical charges. In this paper, we have extended the work of
massive vector particles tunneling probability/rate for more generalized BHs in four, five and seven
dimensional spaces and also observed the Hawking temperatures at which the particles tunnel through
horizons. We have applied the Lagrangian equation to study the tunneling probabilty/rate of massive
boson particles from four, five and seven dimensional gauged super-gravity BHs. In the Lagrangian
equation, we applied the WKB approximation and which implies to the set of field wave equations,
then apply separation of variables to find these wave equations.

The radial part can be obtained by applying the matrix of coefficients, whose determinant is equal
to zero. We have developed the tunneling probability and temperature for these BHs at the outer
horizon using surface gravity. The tunneling and temperature depend on the setting parameters of the
BHs and quantum gravity. It is worth to study that the back-reaction and self-gravitating effects of
boson charged particles on these BHs have been ignored, the calculated temperature are the parameters
of BHs and quantum gravity.

The significance of the BHs, for the all types of particles having charged and uncharged,
the tunneling rate will be change by viewing their semi-classical phenomenon and corresponding
temperatures must be same for all types of charged and uncharged particles. We analyzed the part of
the action which is imaginary, the tunneling probability/rate and temperature were introduced by
charged massive vector particles due to gravity near the outer horizon r+. Moreover, for the correction
to the energy and tunneling rate of the massive boson particle GUP was introduced near the outer
horizon r+ in our computation. From our analysis, we have analyzed that the corrected temperature at
which charged boson particles tunnel through the outer horizon r+ is independent of the dimension of
a BHs, and temperature is dependent on parameters of a metric and quantum gravity. The corrected
temperature is shown to depend on the quantum gravity effect α. Both temperatures have the standard
Hawking temperature limit when (α = 0), then the GUP effect completely vanished.

From our analysis we also concluded that the temperature at which particles tunnel through the
outer horizon r+ does not depend of the dimension of BHs in space. In particular the BH geometries,
for the particles having different spin up and spin down the tunneling probabilities will be discovered
to be the same by considering semi-classical phenomenon. Thus, their corresponding temperatures
must be the same for all spin up and spin down particles. For these cases, we have carried out
the calculations for more general BHs. Hence, the result still applies if the set BH parameters are
more general.

• In the presence of charges, the BH was initially stable and attained a stability in a small domain
and then becomes unstable till r+ → +∞.

• The 4D, 5D and 7D BHs remained stable and unstable in quantum gravity minima and maxima
respectively.

• The 4D, 5D and 7D BHs in the theory of gauged super-gravity remains unstable in the presence of
the charge and correction parameter α.
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