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Abstract: A data-driven adaptive iterative learning (IL) method is proposed for the active control of
structural vibration. Considering the repeatability of structural dynamic responses in the vibration
process, the time-varying proportional-type iterative learning (P-type IL) method was applied for
the design of feedback controllers. The model-free adaptive (MFA) control, a data-driven method,
was used to self-tune the time-varying learning gains of the P-type IL method for improving the
control precision of the system and the learning speed of the controllers. By using multi-source
information, the state of the controlled system was detected and identified. The square root values of
feedback gains can be considered as characteristic parameters and the theory of imprecise probability
was investigated as a tool for designing the stopping criteria. The motion equation was driven
from dynamic finite element (FE) formulation of piezoelectric material, and then was linearized and
transformed properly to design the MFA controller. The proposed method was numerically and
experimentally tested for a piezoelectric cantilever plate. The results demonstrate that the proposed
method performs excellent in vibration suppression and the controllers had fast learning speeds.

Keywords: time-varying P-type IL method; MFA control; imprecise probability; active control;
piezoelectric cantilever plate

1. Introduction

Many industrial systems accomplish tasks in a limited period of time and repeat control processes
continuously. In these systems, it is attractive to improve the system performance by repeating the
control process, which draws attention to intelligent control strategy, named the iterative learning
(IL) method. The IL method is applicable to controlled systems with repetitive motion properties.
The fundamental IL method is a learning process based on output errors and learning gains. To obtain
better control performances, the upgraded system inputs will be generated at the next repetitive
processes by the latest tracking errors [1]. In practical industrial processes, the IL method is an
effective approach to produce the control inputs, so the system outputs are as close as possible to
the desired system outputs, such as: control trajectory tracking for lower limb rehabilitation [2],
design of a shaping method for the residual vibration control of industrial robots [3], compensation
for aerodynamic disturbance of the aerial refueling system [4], design of the controller for homing
guidance of missiles [5]. Considering the repeatability of structural dynamic responses in the vibration
process, several research groups have applied the proportional-type iterative learning (P-type IL)
method with fixed gain to suppress the vibrations of piezoelectric laminated composite structures. The
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P-type IL method was first applied to vibration active control of piezoelectric structures by Zhu et
al. [6] and Tavakolpour et al. [7], and its control performance has also been studied. Zhang et al. [8]
designed a controller to compensate the disturbance estimation and disturbance rejection, where the
P-type IL method was used to estimate the system position.

In the P-type IL method, thousands of iterations are necessary to obtain the desired control precision,
which may reduce the convergence speed [7,9]. It is worth pointing out that the systems will spillover or
even become unstable in practice applications, as the fixed-learning gain are selected unreasonably [10].
For improving the convergence speed and the system stability, the adaptive control is necessary
to design the optimal learning gain in each iteration. To design vibration active control systems,
both control strategies and structure characteristics need to be seriously considered. Piezoelectric
flexible structures, such as plates and shells, challenge researchers in vibration active control for their
complexity in the vibration modes [11–13]. In addition, using one single actuator–sensor pair bonded
on a plate is obviously unreasonable to suppress all vibration modes and to identify dynamic responses
for all locations on the plate. A distributed method that piezoelectric actuator-sensor pairs at discrete
locations were bonded on the plate was constructed [14]. Piezoelectric laminated composite structures
have low weight and cannot achieve great changes in the dynamic characteristics of the plate. A flexible
plate with several piezoelectric actuator–sensor pairs, thus, is a multi-input–multi-output (MIMO)
system. If a piezoelectric actuator is not able to satisfactorily perform the given task, the actuators
nearby will be influenced negatively. The interaction between actuators will exist in the entire operating
process of the system, and the information of the interaction will be uncertain. The obstacle in dealing
with the system uncertainty challenges the model-based methods.

A model-free adaptive (MFA) control, a data-driven adaptive control method, can be operated
using only input and output (I/O) data from the system [15] and is suitable to deal with uncertainties [16].
Such a method can realize the adaptive adjust in parametric as well as structural manners, and have
been successfully incorporated into the IL method for different industrial applications, such as
particle quality control for spray fluidized-bed granulation [17], formation control of multi-agent
systems [18],freeway traffic iterative learning control [19], and vibration suppression [20]. In this
paper, the MFA control was applied to tune the learning gains of the P-type IL method by the system’s
dynamic behavior. The P-type IL method with time-varying learning gains was used to design the
feedback gains, which can accelerate the convergence speed.

To avoid system spillover, the feedback gains must be converged to appropriate values after a
period of time. The convergence properties of the controlled system should be seriously considered.
The conventional P-type IL method has two domains, namely, time domain and iteration domain.
The task of a conventional P-type IL method is implemented in a finite-time interval. Thus, the
convergence of the control system in the time domain is not considered, while the convergence of
the control system in the iteration domain is focused on. In this paper, the proposed method was
different from the conventional P-type IL method, which has only a single domain. In other words,
the time domain and iteration domain of the proposed method were overlapping. The convergence
properties of the proposed method in overlapping domain need to be considered seriously; however,
the convergence analysis in the overlapping domain is still an open problem. Bai et al. [20] designed
stopping criteria to guarantee that feedback gains can converge to the appropriate values using the
evidence theory. Based on the evidence theory, decision-makings on system states can be carried out
by comparing threshold values. However, the results of decision-making are counterintuitive when
the given evidence is conflicting [21,22]. In addition, dealing with conflict in evidence theory is still an
open question. To make the learning process of feedback gains smoother and to reduce conflicting
evidence caused by external noise, sliding mode control (SMC) is used to compensate learning gain in
real time [20]. However, the introduction of SMC brings a great computational burden, which results
in a great time delay. Generally speaking, the more actuator–sensor pairs that are bonded on the plate,
the more the vibration modes of the plate which can be controlled. The time delay also increases with
the increase in actuator–sensor pairs, which may limit the applications of the robust MFA-IL control.
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In contrast, the theory of imprecise probability can work as a more general model to deal with
uncertainties. The probability is represented by intervals, which interprets uncertainty from the
perspective of behavior and achieves good results in the application of state diagnosis. In addition,
the sliding model controller is removed, which can reduce the computational burden. The theory
of imprecise probability provides a formal framework to determine an optimal decision under
uncertainties of the state of system, which makes it suitable for a wide range of application areas [23,24].
In this paper, the theory of imprecise probability was used to design the stopping criteria. To deal
with the problems of the multicriteria and multiobjectives in vibration control systems, Dempster’s
combination rule was used to fuse multi-source information. Based on the imprecise probability theory
and the combination rule, the learning processes of all controllers can be monitored and diagnosed
in real-time.

In this paper, by combining the time-varying P-type IL method with the MFA method, a
data-driven adaptive IL method is presented for the vibration active control of piezoelectric laminated
composite structures. Considering the system uncertainty in practical applications, the MFA control
was incorporated into the time-varying P-type IL method to tune in real-time the learning gains.
The square root values of feedback gains were regard as characteristic parameters. Based on the
imprecise probability theory, a multi-source information diagnosis technology was presented for the
design of the stopping criteria. Decisions made under the imprecise probability theory were used to
decide whether the learning processes should be terminated. Numerical simulations and experimental
studies were carried out, and the results were analyzed and discussed.

In the rest of the paper, the state–space model of the system is established for the controller design.
The motion equation of the piezoelectric structure also driven by the P-type IL method is shown
in Section 2. Section 3 introduces the dynamic linearization technique for the state–space system,
and the MFA controller is given. The stopping criteria based on the imprecise probability theory
and Dempster’s combination rule is proposed in Section 4. The proposed method is summarized in
Section 5. In Section 6, numerical simulation results are presented for verifying the effectiveness of the
proposed method. A complete vibration control system is established, and the results are discussed in
Section 7. The conclusions and future outlooks are given in Section 8.

2. State–Space Model and P-Type IL Method

A finite element (FE) formulation for the dynamic response of piezoelectric material has been
given as [14]: [

Muu 0
0 0

] ¨
q
..
φ

+

[
Cuu 0

0 0

] .
q
.
φ

+

[
Kuu Kuφ
Kφu Kφφ

]{
q
φ

}
=

{
Fue

Fφ

}
(1)

where Muu and Cuu are the mass matrix and the damping matrix;Kuu, Kuφ, Kφu, and Kφφ represent
the stiffness matrix, the piezoelectric coupled matrix, the coupled capacity matrix, and piezoelectric
capacity matrix, respectively; Fue and Fφ are the external force vector and the electric load vector; q
and φ are the nodal displacement vector and the voltage vector.

.
� and

..
� denote the first and second

derivatives versus time.
The damping matrix is usually linear with respect to the mass matrix and stiffness matrix using

the Rayleigh damping coefficients α and β:

Cuu = αMuu + βKuu (2)

Equation (1) can be uncoupled into the electric potential:

φ = K−1
φφFφ −K−1

φφKφuq (3)
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and the reduced motion equation:

Muu
¨
q + Cuu

.
q + K∗q + KuφK−1

φφFφ = Fue (4)

where K∗ = Kuu −KuφK−1
φφKφu.

The electric load vector is usually equal to zero in the sensor. Again using Equation (3), the sensor
electric potential is given as φs = −K−1

φφKφuq. The first-time derivatives of φs can be given as:

.
φs = −K−1

φφKφu
.
q (5)

The system output error can be defined as:

e = yd − y (6)

where yd and y are the desired system output signal and the measured system output signal, respectively.
The desired system output signal yd is always zero. The measured system output signal y is equal

to the first-time derivatives of the sensor electric potential
.
φs in Equation (5). The system output error

at the kth moment as a discrete-time system is given as:

e(k) = 0−
.
φs(k) = K−1

φφKφu
.
q(k) (7)

According to the P-type IL method [7], the feedback gain can be expressed in the iteration form:

G(k) = G(k− 1) + δe(k− 1) (8)

where δ is the proportional learning gains matrix.
The actuation voltage can be written as:

Va(k) = G(k)e(k) = −G(k)
.
φs(k) (9)

The electric load vector at kth moment is given as:

Fφ(k) = CaVa(k) (10)

where Ca represents the capacitance constant of the piezoelectric material.
By combining Equations (5), (9), and (10), motion Equation (4) can be approximated as follows:

Muu
..
q(k) + [Cuu + KuφK−1

φφCaG(k)K−1
φφKφu]

.
q(k) + K∗q(k) = Fue(k) (11)

3. Dynamic Linearization and MFA Controller Design

Combining Equations (5) and (7), the state form of system (11) can be rewritten as:

.
y(k) = −(KMCuuK−1

φuKφφ)y(k) − [KMKCG(k)]y(k) + KMK∗q(k) −KMFue(k) (12)

where KM = K−1
φφKφuM−1

uu, KC = CaKuφK−1
φφ.

In the time-varying P-type IL version, the updated rule is given as [25]:

G(k) = G(k− 1) + δ(k− 1)e(k− 1) (13)

where δ(k− 1) is the time-varying learning gains matrix.
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For the sample period T, we have
.
y(k) = [y(k+1) − y(k)]/T, and the discrete-time of system (12)

can be transformed as follows using Equation (13):

y(k + 1) = −T[KMCuuK−1
φuKφφ + KMKCG(k− 1) + KMKCδ(k− 1)e(k− 1) −

1
T
]y(k) + TKMF∗(k) (14)

where F∗(k) = K∗q(k) − Fue(k), δ(k− 1), and y(k) are the system input and output, respectively.

Lemma 1: Defining the system output change at an adjacent sampling moment as ∆y(k) = y(k) − y(k− 1),
∆δ(k) = δ(k) − δ(k− 1) is the system input change at an adjacent sampling moment. From Equation (14), the
partial derivatives of y(k + 1) versus the measured signaly(k) and learning gains δ(k− 1) are continuous. For
each moment k, ‖[∆y(k), ∆δ(k− 1)]T‖ , 0, there must exist a pseudo-partial derivative (PPD) matrixσ(k), and
system (14) can be transformed to a full form dynamic linearization (FFDL) description:

∆y(k + 1) = σ(k)[∆y(k), ∆δ(k− 1)]T (15)

where σ(k) = [ρ1(k),ρ2(k)], ρ1(k),ρ2(k) ∈ RN×N and ‖σ(k)‖ < b, and b is a positive constant.

The proofs of Lemma 1 can be obtained by similar steps (see Reference [20]) and are omitted.
Based on Equation (15), the following dynamic linearization from can be obtained:

y(k + 1) = ρ1(k)∆y(k) + ρ2(k)∆δ(k− 1) + y(k) (16)

whereϕ1(k) andϕ2(k) are dynamically changed.
The MFA controller for calculating the learning gains δ is given as follows [20]:

δ(k− 1) = δ(k− 2) +
ϕρ2(k)

T[yd(k + 1) − y(k) − ρ1(k)∆y(k)]

‖ρ2(k)‖
2 + γ

(17)

where a step size constant ϕ ∈ (0, 1] is added to make Equation (17) general.
The parameters of the PPD matrix are estimated as follows [20]:

ρ̂1(k) = ρ̂1(k− 1) + η[∆y(k)−(ρ̂1(k−1),ρ̂2(k−1))(∆y(k−1),∆δ(k−2))T ]∆y(k−1)T

µ+‖∆y(k−1)‖2+‖∆δ(k−2)‖2

ρ̂2(k) = ρ̂2(k− 1) + η[∆y(k)−(ρ̂1(k−1),ρ̂2(k−1))(∆y(k−1),∆δ(k−2))T ]∆δ(k−2)T

µ+‖∆y(k−1)‖2+‖∆δ(k−2)‖2

(18)

where a step-size constant η ∈ (0, 1] is added to make Equation (18) general.

4. The Stopping Criteria Design

4.1. Preliminary Notion of Imprecise Probability

In the theory of imprecise probability, many decision criteria are developed [26]. The Γ−maximin
criterion was applied in this paper to design the stopping criteria.

Assuming that a decision d induces a real-value gain Jd, and the set of all available decisions is D,
d ∈ D. Our purpose was to identify the optimal decision d in D, and the solution is given as follows:

opt(D) = argmax
d∈D

(Jd) (19)

The variables whose values are uncertain can influence the gain Jd. According to the expected
utility of its gain, the decision can be ranked reasonably, and the expected utility should be maximized.

optEµ(D) = arg max
d∈opt>(D)

Eµ(Jd) (20)
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where Eµ(Jd) is the expected utility of the gain Jd, and µ is the probability measure.
As a simplified form for Equation (20), the Ep can be seen as the replacement of Eµ, and the

Γ−maximin criterion can be written as

optEP
(D) = arg max

d∈opt>(D)
EP(Jd) (21)

where Ep is a lower expected utility by minimizing Eµ. The Γ−maximin criterion can be understood as
a worst-case optimization, and a decision can be made by maximizing the worst expected gain.

4.2. The Diagnosis Method Design

4.2.1. Fault Reliability

The real-time feedback gains of controllers are obtained for diagnosing the system state. Assume
that there are N sensors glued on the laminated composite plate in the vibration control system. When
the jth sensor works, there are L j characteristic parameters to represent the state types of the system.
For the sake of simplicity, suppose that all state types are independent of each another. Only one state
can occur at any given time. Let S j represents the characteristic parameter vector obtained from the jth
sensor:

S j = [s j1s j2 · · · s jL j ]; j = 1, 2, . . . , N (22)

where s ji is the ith element of S j, the characteristic parameter s ji obtained from jth sensor can be used to
identify the certain state i in current circumstances, i = 1, 2, . . . , L j, L j is the number of the characteristic
parameters provided by the jth sensor.

Considering an exponential function form as the evidence generating function, a basic fault
reliability assignment can be defined as:

m ji = ri(1− a
αis ji

i ) (23)

where ri, ai, and αi are constants, which can be directly determined by expert experience or prior
knowledge. In state diagnostics, m ji can be considered as the degree of reliability in the certain state i
by evaluating the measurements obtained from the jth sensor.

The fault reliability for the jth sensor can be calculated as follows:

m j =
1
L j

L j∑
i=1

m ji (24)

4.2.2. Establish Fault Probability Interval

The fault reliabilities obtained from N controllers can be expressed in vector form M =

{m1, m2, · · · , mN}. After sorting the elements from small to large, a new fault reliability vector
can be obtained M′ = {m′1, m′2, · · · , m′N}, which are divided into two groups, namely, a low fault
reliability group Mmin and a high fault reliability group Mmax.{

Mmin = {m′1, m′2, · · · , m′l}, Mmax =
{
m′l+1, m′l+2, · · · , m′N

}
, N = 2l

Mmin =
{
m′1, m′2, · · · , m′l+1

}
, Mmax =

{
m′l+1, m′l+2, · · · , m′N

}
, N = 2l + 1

(25)

where l is a natural number. The fault reliability conflicts of the Mmin and Mmax are smaller than that
of the M′, thus better fused results can be obtained using Dempster’s combination rule.
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Suppose m′Π and m′Λ are two fault reliabilities obtained from the same fault reliability group.
The degree of conflict among these two fault reliabilities is shown by the conflict coefficient K as
follows [27,28]. The larger the value of K, the more conflicting the two fault reliabilities are:

K =
∑

Π∩Λ=∅
m′Πm′Λ (26)

where ∅ is an empty set.
In the same fault reliability group, Dempster’s combination rule is given as follows [28,29]:

1
1−K

∑
Π∩Λ=Ω

m′Πm′Λ Ω , ∅

0 Ω = ∅
(27)

Dempster’s combination rule in Equation (27) is applied to fuse the fault reliabilities in groups
Mmin and Mmax, and the two fused fault reliabilities are denoted as mmin and mmax. Based on the
Pignistic probability transformation (PPT), the fused fault reliabilities will be the fault probability,
namely, Pmin = mmin and Pmax = mmax, when there is only one element in the fault reliability vector.
The fault probability interval can be established as [Pmin, Pmax].

The system in this paper consists of two types of states: learning termination and normal
learning. The fault probability interval mentioned above is the prediction of the following fault
indication function.

g(ω) =

1, ω = ω1

0, ω = ω2
(28)

4.2.3. Diagnosis Cost Functions and Decision-Making

The diagnosis cost functions can be designed as follows:

f1 =

a(e), ω = ω1

b(e), ω = ω2
; f2 =

c(e), ω = ω1

d(e), ω = ω2
(29)

where f1 expresses that the fault is occurrence, a(e) is the gain when the fault actually occurs and the
state is diagnosed correctly,b(e) is the gain when the fault does not occur and the state is diagnosed
incorrectly; f2 denotes that the fault is not occurrence, c(e) is the gain when the fault actually occurs
and the state is diagnosed incorrectly, d(e) is the gain when the fault does not actually occur and the
state is diagnosed correctly, and satisfying a(e) > b(e) and d(e) > c(e), and e is the parameter, which
can be directly determined by expert experience or prior knowledge.

Considering the fault indication function Equation (28) is predicted, the fault diagnosis problem
is transformed into the process of decision-making for the expected intervals of f1 and f2. In the
Γ−maximin criterion, the decision is made by comparing the lower expected utility of f1 and f2. The
expected intervals of f1 and f2 can be calculated as follows:

E( f1) = a(e)Pmin + b(e)(1− Pmin)

E( f1) = a(e)Pmax + b(e)(1− Pmax)

E( f2) = c(e)Pmax + d(e)(1− Pmax)

E( f2) = c(e)Pmin + d(e)(1− Pmin)

(30)

The square root values of feedback gains are regarded as the characteristic parameters. The
basic fault reliability assignment value can be calculated using the exponential function. The fault
reliability vectors are divided into two groups, including the high fault reliability group and low fault
reliability group. By Dempster’s combination rule, the fused results of the two groups above are
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used to establish the fault probability interval. The Γ−maximin criterion in the theory of imprecise
probability is adopted for state diagnosis. The threshold value is predefined to serve as the stopping
criteria. Based on the diagnosis results of the Γ−maximin criterion, decision-making can be fulfilled by
comparison with the threshold value.

5. The Summary of the Proposed Method

In summary, the flow chart is shown in Figure 1 and detailed as follows:Symmetry 2019, 11, 746 9 of 22 
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Figure 1. Flow chart of the proposed method.

Step 1. Construct the full-form dynamic linearization model in Equation (15).
Step 2. Predict the time-varying PPD values in Equation (18) merely using the on-line system

input δ(k) and output y(k) data.
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Step 3. Design the MFA controller in Equation (17).
Step 4. Calculate the feedback gain matrix G(k) in Equation (13).
Step 5. Extract real-time feedback gains used to transfer the characteristic parameters Sk.
Step 6. Calculate the fault reliabilities in Equation (24) for all sensors.
Step 7. Divide the fault reliability value vector into two groups: the high fault reliability group

and the low fault reliability group Equation (25).
Step 8. Respectively fuse the elements of the two groups above using Dempster’s combination

rule Equation (27).
Step 9. Establish the fault probability interval by the fused results and calculate the expected

interval Equation (30) of the diagnoses cost function Equation (29).
Step 10. Make decisions based on the lower expected utility and stopping criteria.

6. Numerical Simulations

6.1. FE Modeling and Setting of Controller Parameters

The numerical simulations were carried out via vibration active control on the cantilevered plate
with piezoelectric patches. The piezoelectric cantilevered plate comprise done laminated composite
plate (414 mm × 120 mm × 1 mm), on which six piezoelectric patches (60 mm × 24 mm × 1 mm)
were bonded in pairs at the plate, as shown in Figure 2. The laminated composite plate was made
of graphite-epoxy (GE, carbon-fiber reinforced) composite material, which included five substrate
layers. Its total thicknesswas1mm with the angle-ply (0/90/0/90/0), and the thickness of each substrate
was 0.2 mm. The upper piezoelectric patches were actuators and the lowers ones worked as sensors.
We distinguished the three actuator–sensor pairs as a, b and c, respectively. The positions of the
piezoelectric patches were chosen via Reference [29]. The locations of Point A, Point B and Point C
are given in Figure 2. The root of the laminated composite plate was clamped. The properties of the
laminated composite plate and piezoelectric material are listed in Table 1.
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Table 1. Material properties.

Graphite-Epoxy (GE) Piezoelectric Material

Yong’s modulus (GPa) Elastic stiffness (GPa)

E11 = 40.51 C11 = 126
C12 = 79.5

E22 = E33 = 13.96 C13 = 84.1
C33 = 117

Shear modulus (GPa) C44 = 23.3
C66 = 23

G12 = G13 = 3.1 Piezoelectric stain (C/m2)
G23 = 1.55 e16 = e25 = 17

Poisson’s ratio e31 = e32 = −6.5
v12 = v13 = 0.22 e33 = 23.3

v23 = 0.11 Permittivity (F/m)
Density (kg/m3) ε11 = ε22 = 1.503× 10−8

ρ = 1830 ε33 = 1.3× 10−8

Density (kg/m3)
ρ = 7500

In this paper, the dynamic FE model for simulating the piezoelectric cantilevered plate was
constructed using ANSYS. The laminated composite plate and piezoelectric patches were modeled by
SOLID46 elements and SOLID5 elements, respectively. The laminated composite plate was meshed
with 69 × 20 × 1 elements, and each piezoelectric patch was meshed with10 × 4× 1 elements. For the
degree of electric freedom, the nodes at the surface of piezoelectric patches were coupled by command
CP. Modal analysis was carried out to identify the natural frequencies of the piezoelectric cantilevered
plate and to design the sampling period for the numerical simulations [30]. The first three natural
frequencies of the piezoelectric cantilevered plate were calculated, which also implied good agreement
with the comparison between the numerical results and experimental results in Table 2. The largest
error percentage, 13.9%, arose in the second modal frequency. Since the numerical results of the modal
frequencies were used to get approximate values to verify the dynamic FE model, the difference in the
modal frequencies between the numerical and experimental results were acceptable. The sampling
period was taken as T = 1/(20ω1), whereω1 represented the first natural frequency of the piezoelectric
cantilevered plate. α = 2β = 0.003 were the Rayleigh damping coefficients.

Table 2. The results of natural frequencies.

Mode Numerical (Hz) Experimental (Hz) Error Percentage

1 5.4377 5.326 2.1%
2 24.217 21.259 13.9%
3 28.683 31.593 −9.2%

The constants of the MFA controllers were given as: γ = 1, ϕ = 1, µ = 1, and η = 1. The fault
reliability can be calculated in Equation (24). The system in this paper consisted of two types of
states: learning termination and normal learning. The square root values of the feedback gains were
regarded as the characteristic parameters. The constants for the calculation of the basic fault reliability
assignment Equation (23) are given as: r = 1, a = 2.924, and α = −1. The constants of the diagnosis cost
functions are defined as: a(e) = 1, b(e) = 1, c(e) = 1,and d(e) = 1. The threshold value is predefined
to serve as the stopping criteria, and decision-making can be fulfilled by comparing with the threshold
value. The controllers connected with different sensors may have distinct convergence speeds. To make
all controllers sufficiently learn, two threshold values were defined as: for the lower expected utility of
fused fault reliabilities, the threshold value was specified at 0.9323; for the single fault reliability, the
threshold value was specified at 0.7978. The learning process should be terminated as long as one of
the two threshold values above was met. Otherwise, the learning process should be continued. In the
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P-type IL method, the maximum iteration number was defined as 500, and the fixed learning gains
were given as δ1 = 0.078 and δ2 = 0.068 for various simulations.

6.2. Harmonic Excitation

The vibration active control for the first mode of the piezoelectric cantilevered plate was
investigated in this case. Considering the harmonic excitation generated by the function f (t) =

5 cos(ω1t)N, the plate was driven at Point C, the constant ω1 = 17.083rad/s(5.4377Hz) was the first
natural frequency. All numerical results corresponding to the robust MFA-IL control are also given in
this section.

In Figure 3a,b, the time-history dynamic responses at Point A and Point B are, respectively, given,
and the figure illustrates that the first mode vibration was suppressed effectively by the proposed
method, the P-type IL method and robust MFA-IL control. The control performance of the piezoelectric
actuators was not able at the places with (e.g., Point A) or without piezoelectric sensors (e.g., Point B).
Nevertheless, it is worth noting that the conclusions obtained above were distinct from Saleh′s [31].
Saleh pointed out that the P-type IL method cannot effectively control the unwanted vibration at
locations of the observation points. Furthermore, it was also noteworthy that the P-type IL method
could not obviously control the first mode vibration of the piezoelectric structures.
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As an effective vibration active control system, it is possible to reduce the amplitude of the overall
structure not merely the parts of the structure. Before designing the vibration active control system,
the control rule needs to be considered carefully for achieving satisfactory control results. The control
performance of the system also relates to the positions and sizes of the piezoelectric patches [32].
The best positions for the piezoelectric patches were always chosen at the places where the mechanical
strain was the largest. To generate satisfactory control forces, the dimensions of the piezoelectric
actuators should be investigated and designed. The dimensions of the piezoelectric sensors should
be selected appropriately, and then precise information on the structural vibration can be acquired.
A misreading of sensor measurement signals may generate unreasonable control force, and the dynamic
performance of the system may seriously deteriorate. As long as the positions and dimensions of the
piezoelectric patches were chosen appropriately, the P-type IL method presented good performance on
the first mode vibration control. Besides, the controllability of structural vibration was notable at the
locations with sensors and without sensors.

The actuator time-history voltages are presented in Figure 4a,b, and the actuator voltages changed
suddenly at 4.4s while the system was controlled by the P-type IL method. After the learning processes
were terminated, the amplitudes of the actuator voltages reconstructed smoothness. The controllers
connected with distinct sensors had different convergence speeds in the learning processes, which may
cause the control force to mismatch among each other. If a piezoelectric actuator cannot perform as
desired, the adjacent piezoelectric actuators will be negatively affected. To avoid this phenomenon,
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more iterations are needed to improve the control stability. Less iteration numbers may directly lead
to system spillover. The instability phenomenon did not occur when the system was controlled by
the proposed method and the robust MFA-IL control. The measurement signals from sensor a/b and
sensor c are shown in Figure 4c,d. In comparison with the P-type IL method, smaller amplitudes
were obtained as long as the piezoelectric cantilevered plate was controlled by the robust MFA-IL
control and the proposed method. The root mean square (RMS) values of the dynamic responses and
measurement signals were used to quantitatively analyze the performance of the P-type IL method,
the robust MFA-IL control, and the proposed method, which are listed in Table 3. From Table 3, both
the robust MFA-IL control and the proposed method had better control performance by comparing the
P-type IL method. The vibration amplitude was reduced 41.22% under the control of the proposed
method, and the vibration amplitudes reduced 40.36% under the control of the robust MFA-IL control.
The proposed method and the robust MFA-IL had similar control precision.
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Table 3. Root mean square (RMS) results.

Algorithm Case 1 Case 2 Experiment

Point A Point B Sensor
a/b Sensor c Point A Point B Sensor

a/b Sensor c Sensor
a/b Sensor c

Uncontrolled 2.262 × 10−3 8.805 × 10−3 7.420 4.314 3.430 × 10−3 12.793 × 10−3 9.934 5.249 3.764 2.167
P-type IL 1.526 × 10−3 5.909 × 10−3 4.590 2.706 2.238 × 10−3 8.169 × 10−3 6.323 3.356 2.563 1.488

Robust MFA-IL 1.479 × 10−3 5.719 × 10−3 4.348 2.561 - - - - - -
Proposed
method 1.488 × 10−3 5.763 × 10−3 4.413 2.598 2.080 × 10−3 7.590 × 10−3 5.800 3.065 2.480 1.444

The computational time for the various algorithms is shown in Figure 5, including the time for
running each iteration and the time for convergence of the feedback gains. From Figure 5, both the
robust MFA-IL and the proposed method have fast convergence speed, which makes them overcome
the inherent shortcoming of the P-type IL method. By comparing with the proposed method, the
computational burden of the robust MFA-IL control was higher when the controller implemented
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each iteration. The extension of computational time resulted in increasing the time delay. Large time
delays will bring uncontrollability to the vibration suppression system. In the proposed method, the
main computational cost focused on the part of the MFA control, which was implemented by iterative
computation for determining the learning gains in real time. Apart from the MFA control, the SMC was
also integrated into the robust MFA-IL control. The introduction of SMC brings great computational
burden, and results in great time delays. Generally speaking, the more actuator–sensor pairs bonded
on the plate, the more the vibration modes of the plate which can be controlled. Therefore, the time
delay also increases with the increase in pairs of actuators–sensors, which may limit the application
are as for the robust MFA-IL control. To obtain a slight improvement in control precision, the robust
MFA-IL control brings a larger time delay. In practical applications, the design of the vibration control
system should be composed of control precision and realization of vibration suppression. The proposed
method can be based on a compromise.
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The learning processes of feedback gains are depicted in Figure 6a,b. From Figures 4 and 6, the
proposed method and the robust MFA-IL had fast learning speed and maintained a good control
performance and system stability.
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The real-time diagnosis results for the fused information and single information source are given
in Figure 7. From Figure 7, the controllers connected with actuator a/b had faster convergence speed
than that connected with actuator c. Based on the theory of imprecise probability, all controllers could
learn sufficiently, and satisfactory control performance could be achieved.
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To verify the stability of the controllers, an instability test is carried out in this section. The
noise signals are shown in Figure 8 are added to excite the piezoelectric cantilevered plate at Point A.
The noise signals start at 6s and lasts only one second. The parameters of controllers are set up the same
as mentioned above. The time-history dynamic responses at Point A and Point B are given in Figure 9a,
and the measurement signals from sensor a/b and sensor c are shown in Figure 9b. When noise signals
begin to excite, the dynamic responses of the plate and measurement signals from sensors change
greatly; however, the divergence phenomenon was not found. After stopping the excitation of the
noise signals, the vibration control system was restored to the stability state by the proposed method.
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6.3. Random Excitation

In this case, the plate was driven at Point C by the random force as follows in Figure 10.
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The time-history dynamic responses at Point A and Point B are shown in Figure 11. The control
voltages of actuator a/b and actuator c are presented in Figure 12a,b. The measurement signals from
sensor a/b and sensor c are displayed in Figure 12c,d. The feedback gains are depicted in Figure 13.
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Figure 13. The learning processes of feedback gains: (a) actuator a/b; (b) actuator c.

From the results above, the proposed method makes the system have smaller amplitudes of
dynamic responses and faster convergence speed. The learning gain δ in P-type IL method is the fixed
constant, which is selected based on the practical experience of researchers. A larger learning gain
can lead to system instability and robustness reduction [10], thus, a smaller learning gain is necessary
to improve the system control precision. However, the smaller the learning gain selected, the more
iterations are needed, thus the learning speeds of controllers slow down [7,9]. In the proposed method,
the learning gain can be self-tuned by the system’s dynamic behavior. The convergence speeds of the
controllers are improved, and the high control precision can also be obtained.

In this case, the RMS values for evaluating the proposed method and the P-type IL method are
listed in Table 3. The real-time diagnosis results of the system states are given in Figure 14.
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7. Experiments

7.1. ExperimentSetup

To validate the feasibility and control effect of the proposed method, an experimental system
to control the vibration of the piezoelectric cantilevered plate was developed, as shown in Figure 15.
Experiments on the first mode vibration control were conducted. The experiment setup consisted of
a piezoelectric cantilevered plate with one laminated composite plate and six piezoelectric patches,
the vibration excitation system, the data acquisition system, and the vibration active control system.
The laminated composite plate was made up of GE composite material. The dimensions of the
piezoelectric cantilevered plate are given in Section 6.1. The excitation position Point C was replaced
by a metal patch.
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The signal generator (DH1301, Taizhou, China) was used to generate the external excitation
signals. After digital to analog (D/A) conversion, the excitation signals were amplified by the voltage
amplifier (YE5872A, PA, USA) and then were used to drive the piezoelectric cantilevered plate by
the electric-eddy current exciter (JZF-1, Beijing, China). The electric signals were transformed into
a mechanical force. Three piezoelectric sensors were applied to detect the vibration information,
and their measurement signals were selected as the feedback signals. After analog-to-digital (A/D)
conversion, all measurement data were acquired and stored in the PC. Since the control target of
the piezoelectric cantilevered plate was the first mode, a low-pass filter was applied to eliminate
the high-frequency noise. The controllers implemented the signal processing and calculation in the
real-time semi-physical simulation system (Quarc, Toronto, Canada). Running the proposed method,
the controllers generated the control signals. After D/A conversion, the control outputs were sent to
the high-voltage amplifier (E70, Harbin, China) and then were applied to piezoelectric actuators for
vibration suppression. The experimental sample period was chosen as 3 ms.

7.2. Modal Analysis

A swept sine (chirp) signal with an amplitude of 100 V was used to identify the modal frequencies
of the system and excite actuator a. The initial frequency was 0.5 Hz, and the terminal frequency
was50 Hz.

Fourth-order Butterworth filters were utilized to eliminate high-frequency noises. The cutoff

frequency of low-pass filters was specified at 30 Hz in the modal identification, and the cutoff frequency
was14 Hz in the first mode control. After filtering, the time-domain response signal measured by
sensor a was stored and shown in Figure 16a. The fast Fourier transform (FFT) of the time-domain
response data was computed to depict the frequency response of the system in Figure 16b. From
Figure 16b, the first three modal frequencies were obtained and are listed in Table 2.
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7.3. ExperimentResults

The proposed method and the P-type IL method were investigated for vibration active control of
the flexible plate during the experiments. In this section, the plate was driven at 5.326 Hz for the first
mode control. In the P-type IL method, the number of iterations was predefined as 1500 to improve
the system stability and control precision, and the value of learning gain was specified as Φ1 = 0.54. In
the MFA controller, the parameters were selected as γ = 1, ϕ = 0.1, µ = 0.1,and η = 1. The stopping
criteria in this section were the same with those above in Section 6.1. The measurement signals of the
sensors (shown in Figure 17a,b) were moved forward for the phase delay compensation due to the
hardware factors. The P-type IL method and the proposed method were performed at 5 s after the
harmonic excitation started.
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The measurement signals from sensor a/b and sensor c are presented in Figure 17a,b, and the
control voltages of actuator a/b and actuator c are presented in Figure 17c,d. The data used to calculate
the RMSs are recorded after learning termination, and the RMSs are given in Table 3. From Table 3,
the proposed method reached the comparatively ideal control performance: the vibration amplitudes
were reduced 33.9% under the control of the proposed method, and the vibration amplitudes were
reduced 31.8% under the control of the P-type IL method. This excellent performance was obtained
by integrating the MFA method into time-varying P-type IL method. The learning processes of the
feedback gains are depicted in Figure 18. The proposed method is feasible to simultaneous maintain
the control performance and damp down quickly for structural vibration. Under the control of different
methods, the feedback gains obtained from the same controllers result in distinct values. The real-time
diagnosis curves for the fused information and single information sources are given in Figure 19.
By the theory of imprecise probability, the learning processes of feedback gains can be diagnosed in
real time. The decisions made based on the designed stopping criteria causes all controllers to learn
sufficiently, and excellent control performance was obtained.
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8. Conclusions and Outlooks

A data-driven adaptive IL method was proposed for vibration active control of piezoelectric
laminated composite structures. Based on the P-type IL method, the motion equation of the piezoelectric
cantilevered plate was derived by the dynamic FE equations. The PPD matrix is estimated by the
modified projection algorithm for dynamically linearizing the motion equation. Considering the
uncertain non-linear dynamic processes, the MFA controller was designed. The MFA method was
applied to self-tune the learning gains of the time-vary P-type IL method for accelerating the learning
speed. The square root values of the feedback gains were regarded as characteristic parameters to
diagnose the state of the vibration control system. Based on the theory of imprecise probability, the
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stopping criteria were designed. On this basis, the decisions were carried out to avoid the over-learning
of controllers.

When the positions and dimensions of the piezoelectric patches are chosen appropriately, the
P-type IL method shows good effectiveness on the first mode control of the piezoelectric cantilevered
plate. Besides, the good controllability of the structural vibration was notable at the locations with
sensors or without sensors. The conclusions obtained above in this paper were different other
published studies.

Considering the system uncertainties, the MFA method was applied to self-tune in real-time the
learning gains by the system’s dynamic behavior. The introduction of the MFA method accelerated
the convergence speed of the controller and improved the system’s control precision. The stopping
criteria based on the theory of imprecise probability allowed all controllers to learn sufficiently, and
satisfactory control performance was achieved. The proposed method overcomes the shortcomings
of the P-type IL method to achieve the expected control performance. The robust MFA-IL control
improved control precision at the expense of great time delay, while the proposed method reduced the
computational burden and misdiagnosis for system states at the expense of a slight decrease in control
precision. The proposed method in this paper can be a compromise.

The proposed method has an open scheme, which can be integrated with other methods, including
a model-based method. The data-driven method and model-based method can be complementary and
cooperative in the design of a control system. The more precise information and model of the system
obtained, the better the control performance of the system can be expected. In the future, the proposed
method can be integrated with a model identification method to handle more complex problems
in practical applications, which will simplify the structure of controllers and obtain a satisfactory
control precision.
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