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Abstract: This review is devoted to tight-binding (TB) modeling of nucleic acid sequences
like DNA and RNA. It addresses how various types of order (periodic, quasiperiodic, fractal)
or disorder (diagonal, non-diagonal, random, methylation et cetera) affect charge transport.
We include an introduction to TB and a discussion of its various submodels [wire, ladder, extended
ladder, fishbone (wire), fishbone ladder] and of the process of renormalization. We proceed to a
discussion of aperiodicity, quasicrystals and the mathematics of aperiodic substitutional sequences:
primitive substitutions, Perron–Frobenius eigenvalue, induced substitutions, and Pisot property.
We discuss the energy structure of nucleic acid wires, the coupling to the leads, the transmission
coefficients and the current–voltage curves. We also summarize efforts aiming to examine the
potentiality to utilize the charge transport characteristics of nucleic acids as a tool to probe several
diseases or disorders.

Keywords: nucleic acids; aperiodic; quasiperiodic; fractal; order; disorder; energy structure;
charge transport

1. Introduction

Nucleic acids are polymeric macromolecules consisting of units that are called nucleotides.
The term nucleic acids is the overall name of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA).
DNA’s nucleotide sequence carries the genetic instructions for the development, function, growth and
reproduction of living organisms and several viruses. Although RNA’s primary role is to carry out the
instructions encoded in DNA for protein synthesis, it also acts like a catalyst of biochemical reactions,
while it is the genetic material of many viruses.

For more than sixty years now, the double-stranded structure of DNA has been known [1].
The nucleotides of each strand are composed of one of four planar, aromatic, nitrogenous bases,
i.e., guanine (G), cytosine (C), adenine (A) or thymine (T), a pentose sugar (deoxyribose), and a
phosphate group. Covalent, phosphodiester bonds between pentoses and phosphate groups of adjacent
nucleotides form an alternating sugar-phosphate backbone. The purines (G or A) of a nucleotide
belonging to a strand are joined together with the pyrimidines of the other strand (C or T, respectively)
via (three or two, respectively) hydrogen bonds, forming the double helix structure. This specificity in
the way bases match ensures that G is always bonded with C, and A is always bonded with T. Pairing
between non-complementary bases results in mutations that can be detrimental to the development of
an organism. In RNA, deoxyribose (whose 2-carbon is bonded with a hydrogen) is replaced by ribose
(whose 2-carbon is bonded with a hydroxyl group), and T is replaced by uracil (U). Furthermore, RNA
molecules are single-stranded; however, some viruses possess double-stranded RNA (other viruses
can contain even single-stranded DNA).
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Although the study of nucleic acids is mainly associated with molecular biology and genetics,
today, a broad interdisciplinary community is interested in biological systems, such as nucleic acids
and analogues. The base-pair stack of nucleic acids creates a nearly one-dimensional π-stack that
allows charge carrier movement, i.e., charge transfer and transport. Let us distinguish between these
two terms: transfer means that a carrier, created or injected at a specific nucleotide, moves to a more
favorable location, while transport implies the use of electrodes and the application of external voltage
between them. Charge transfer is the basis of many biological processes, e.g., in various proteins [2]
including metalloproteins [3], and enzymes [4], with medical and bioengineering applications [5,6],
while it plays a role in DNA damage and repair [7–9]. Charge transport might be an indicator to
distinguish pathogenic from non-pathogenic mutations at an early stage [10].

From a physicist’s point of view, the charge transfer and transport properties of nucleic acids
are studied in order to obtain a deeper understanding of their biological functions as well as for
potential applications, such as nanosensors, nanocircuits or molecular wires, due to their high yield
synthesis, near-unity purification, and nanoscale self-organization [11–13]. There are many external
(aqueousness, presence of counterions, extraction process, electrodes, contacts, purity, substrate),
and internal (such as the base-pair sequence and geometry) factors that affect carrier motion along
nucleic acids. Both ab initio calculations [14–22] and model Hamiltonians [23–34] have been used to
theoretically explore the variety of experimental results that predict electrical behavior ranging from
metallic to insulating, as well as the underlying mechanisms.

It has become evident that the influence of various types of order or disorder plays a central role
in the energy structure and the charge transport properties of nucleic acids. This interplay between
various types of order or disorder and charge transport is addressed in this brief review. This is done
in the context of one of the most widely applied theoretical methods, i.e., with Tight-Binding (TB),
because of its simplicity and low computational cost.

The rest of this review is organized as follows. In Section 2, we present the TB formulation and
explain some of its most common variations applied in the literature for the study of nucleic acids.
In Section 3, we overview several aperiodic substitutional sequences that highlight the influence of
disorder in the properties of nucleic acids. In Section 4, we discuss the energy spectra of ordered and
disordered nucleic acid sequences. In Section 5, we focus on electron transmission and on the influence
of coupling the examined systems with leads. Section 6 is dedicated to the influence of various types of
order or disorder on the current–voltage (I −V) curves of nucleic acids. Finally, in Section 7, we make
some concluding remarks.

2. Tight-Binding and Its Application in Nucleic Acids

TB is an approximate method widely used in condensed matter physics to determine the electronic
structure of a solid through the expansion of its wavefunction as a superposition of the wavefunctions
corresponding to the isolated moieties located at each lattice site [35]. As the name of the model
suggests, the main hypothesis in TB is that the system’s orbitals are tightly bound at the sites at which
they belong, so that the overlap with neighboring orbitals is small. Hence, the electronic wavefunction
of the moiety that occupies a lattice site is rather similar to the orbital of the free moiety. As a result,
the corresponding energy of the electron will be rather close to the (negative) ionization energy of
the free moiety due to the weak interaction with its neighbors. This picture is applicable at the
bands formed by the core electrons of metals, the valence and conduction bands of insulators and
semiconductors, as well as the valence and conduction bands arising from localized d or f states
(e.g., in transition metals and rare earths).

Today, several decades after its introduction [36], TB has evolved into a fast and efficient approach,
employable to numerous problems regarding the electronic structure and properties of matter,
requiring various degrees of accuracy [37,38]. Its main advantages include its intuitive simplicity,
the ability it gives to obtain analytic results in several cases, and its low computational cost [39].
The latter makes TB applicable to large systems, currently unreachable by the more sophisticated
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ab initio methods, such as Density Functional Theory (DFT). In contrast to those methods, TB is
semi-empirical, in the sense that an external set of parameters is needed in order to perform calculations.
These parameters are (a) the on-site energies that correspond to the energy of the electrons that belong
to each lattice site, and (b) the hopping (or transfer) integrals that correspond to the coupling of orbitals
which belong to neighboring sites.

Over the last few decades, TB has been widely used to describe, among others, polymers and
organic systems. One-dimensional TB models are commonly applied to study the energy structure
and thermal, magnetic as well as charge transfer and transport properties of π-conjugated organic
systems that are candidates for molecular wires, such as nucleic acids and analogues. Those models
have varying degrees of complexity, and each one of them requires a different number of parameters.
As far as nucleic acids are concerned, the models employed include, inter alia, the Wire Model
(WM), the Ladder Model (LM), the Extended Ladder Model (ELM), the Fishbone Model (FM) and the
Fishbone Ladder Model (FLM). Generally, the studied systems consist of N monomers extended at
L chains (L � N, since nucleic acids are approximately one-dimensional). The problem is reduced
to the solution of the so-called system of TB equations, which is a system of coupled stationary,
algebraic equations or differential equations of first order, equivalent to a discretized form of the
time-independent or time-dependent Schrödinger equation. As far as nucleic acids are concerned,
the stationary TB system of equations can be compactly written in the matrix form

E~Ψn = εεεn~Ψn + τττT
n−1

~Ψn−1 + τττn~Ψn+1, (1)

for n = 1, 2, . . . , N. ~Ψn is a vector matrix containing the elements of the wavefunction that correspond
to monomer n, i.e., ~Ψn = (ψ1

n ψ2
n . . . ψL

n)
T , εεεn is a symmetric L × L matrix containing the on-site

energies of each site, εl
n and the hopping integrals tll′

n between the sites of the monomer that belong to
different chains, and τττn is a generally non-symmetric L× L matrix containing the hopping integrals tll′

nn′

between each site of a monomer and the neighboring sites of the next monomer. Finally, E is the energy.
The situation is schematically presented in Figure 1. From Bloch’s theorem, it holds that ~ΨN+n = z~Ψn,
where z generally lies in the unit circle (z = z∗ = 1, for cyclic boundaries, or z = z∗ = 0 for fixed
boundaries). Hence, the solution of the system of Equation (1) can be reduced to the diagonalization of
the Hamiltonian matrix, written in block form as

H =


εεε1 τττ1 z∗τττT

0
τττT

1 εεε2 τττ2

τττT
2 εεε3 τττ3

. . . . . . . . .
zτττN τττT

N−1 εεεN

 . (2)

Equivalently, Equation (1) can be written in the form(
~Ψn+1
~Ψn

)
=

(
τττ−1

n (E− εεεn) −τττ−1
n τττT

n−1
1 0

)(
~Ψn
~Ψn−1

)
= Qn(E)

(
~Ψn
~Ψn−1

)
, (3)

where Qn(E) is called the transfer matrix of monomer n, and 1, 0 are the unit and zero matrix of order
L. The product

MN(E) =
1

∏
n=N

Qn(E) (4)

defines the global transfer matrix of the system, which satisfies the relation,

MN(E)

(
~Ψ1
~Ψ0

)
=

(
~ΨN+1
~ΨN

)
= z

(
~Ψ1
~Ψ0

)
, (5)
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and contains all the information about its energetics. In fact, since z is an eigenvalue of the global

transfer matrix, with eigenvector
(
~Ψ1 ~Ψ0

)T
, the whole eigenvector of the Hamiltonian matrix of

Equation (2) can be reconstructed via a successive application of Equation (3) [40,41]. Hence, when z
is an eigenvalue of MN(E), E is an eigenvalue of the system’s Hamiltonian. Thus, both methods can
be used to determine the energy structure of the system. The form of the matrices in Equation (1) for
various TB models is presented in Table 1. Some details on each of these TB models are discussed below.
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Figure 1. Schematic representation of a TB model consisting of N monomers, extended at L chains.
Within the model, we take into account (a) the on-site energies of each site, εl

n, and the inter-chain
hopping integrals, tll′

n , i.e., between the sites of the monomer (blue), as well as (b) the inter-monomer
hopping integrals, tll′

nn′ , i.e., between each site of a monomer and the neighboring sites of the previous
(red) and the next (green) monomers. The former are contained in the matrix εεεn, while the latter in the
matrices τττn−1 and τττn, respectively.

Table 1. Form of the matrices ~Ψn, εεεn, τττn in the TB system of equations (Equation (1)) for several
models used to describe nucleic acids and analogues: the Wire Model (WM), the Ladder Model (LM),
the Extended Ladder Model (ELM), the Fishbone Model (FM) and the Fishbone Ladder Model (FLM).

Model L ~Ψn εεεn τττn

WM 1 ψn εn tn,n+1

LM 2
(

ψ1
n

ψ2
n

) (
ε1

n t1,2
n

t2,1
n ε2

n

) (
t1,1
n,n+1 0

0 t2,2
n,n+1

)

ELM 2
(

ψ1
n

ψ2
n

) (
ε1

n t1,2
n

t2,1
n ε2

n

) (
t1,1
n,n+1 t1,2

n,n+1
t2,1
n,n+1 t2,2

n,n+1

)

FM 3

ψ1
n

ψ2
n

ψ3
n


 ε1

n t1,2
n 0

t2,1
n ε2

n t2,3
n

0 t3,2
n ε3

n


0 0 0

0 t2,2
n,n+1 0

0 0 0



FLM 4


ψ1

n
ψ2

n
ψ3

n
ψ4

n




ε1
n t1,2

n 0 0
t2,1
n ε2

n t2,3
n 0

0 t3,2
n ε3

n t3,4
n

0 0 t4,3
n ε4

n




0 0 0 0
0 t2,2

n,n+1 0 0
0 0 t3,3

n,n+1 0
0 0 0 0



2.1. Wire Model

WM is the simplest TB model to describe nucleic acids and analogues [42,43]. It can be applied to
mimic either single-stranded nucleic acids and hairpins at the single-base level [44] or double-stranded
ones [45] at the base-pair level. In other words, if the WM refers to a single-stranded nucleic acid,
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then the on-site energies are related to the energy levels of the four possible bases and the hopping
integrals to the interaction between bases, while, if it refers to a double-stranded nucleic acid, then
the on-site energies are related to the energy levels of the two possible base-pairs (incorporating the
hydrogen bonding) and the hopping integrals to the interaction between base-pairs. It consists of just
one chain (L = 1) and the parameters needed for its employment are the on-site energies of the bases
or base pairs, εn, and the hopping integrals between successive bases or base pairs, tn. A schematic
representation of the WM is shown in Figure 2a.
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Figure 2. Schematic representation of the TB models listed in Table 1. (a) Wire Model (WM); (b) Ladder
Model (LM); (c) Extended Ladder Model (ELM); (d) Fishbone Model (FM); (e) Fishbone Ladder
Model (FLM).

2.2. Ladder Model

LM is the simplest model that can address the influence of base-pairing in the energetics of nucleic
acids [42,46]. It consists of two chains (L = 2) and the parameters needed for its employment are
the on-site energies of the bases, εl

n, the inter-strand hopping integrals between successive bases,
tll
n,n±1, and the intra-base-pair hopping integrals, tll′

n , due to the hydrogen bonds formed by the
complementary bases in a pair. A schematic representation of the LM is shown in Figure 2b.

2.3. Extended Ladder Model

ELM is a more detailed version of the LM, including the inter-strand hopping integrals, tll′
n,n±1,

between the bases of successive base pairs [46,47]. A schematic representation of the ELM is shown in
Figure 2c.

2.4. Fishbone Model

FM is the simplest model that can take into account the effect of the sugar-phosphate backbone [29,42].
It consists of three chains (L = 3). The central one corresponds to the base pairs, with each one being
interconnected with the top and bottom chains, which represent the backbone sites. The latter are
not connected with each other, since the insulating sugars are separating phosphate groups from
one another [11,48]. Hence, the parameters needed for its employment are the on-site energies, εl

n,
of the base pairs (l = 2) and the backbone sites (l = 1, 3), the intra-strand hopping integrals between
successive base pairs, t2,2

n,n±1, and the inter-strand hopping integrals, tll′
n , between the base pairs and

the backbone. A schematic representation of the FM is shown in Figure 2d.

2.5. Fishbone Ladder Model

FLM is a combination of the LM and the FM [29,42]. It thus includes both the effect of base-pairing
and the presence of the sugar-phosphate backbone. It consists of four chains (L = 4). The two central
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ones (l = 2, 3) correspond to the nitrogenous bases and the edge ones (l = 1, 4) to the backbone sites.
Hence, the parameters needed for its employment are the on-site energies, εl

n, of the base pairs (l = 2, 3)
and the backbone (l = 1, 4), the intra-strand hopping integrals between base pairs, tll

n,n±1 (l = 2, 3) and
the inter-strand hopping integrals between the bases of a base pair as well as between each base and
the backbone, tll′

n . A schematic representation of the FLM is shown in Figure 2e.

2.6. Additional Remarks

Apart from the models described above, one can introduce several other variants to describe
nucleic acids. For example, an obvious extension would be a fishbone extended ladder model.
Additionally, several other models have been proposed, including intra-backbone interactions [27,46,49],
single-stranded nucleic acids with a backbone [49] and explicit inclusion of helicity [50] strain [51],
and spin–orbit coupling [52] effects. We also mention that more complex models can be reduced
to simpler ones via a renormalization scheme, which reduces the degrees of freedom of the system.
Then, the on-site energies of the renormalized Hamiltonian are energy-dependent. This procedure is
important when environmentally induced effects are considered [29]. For example, the FLM can be
reduced into an LM via a one-step renormalization procedure [53], or to an even simpler WM via a
two-step renormalization procedure [54,55].

Several techniques can be applied to solve the models, depending on what is studied, such
as the numerical diagonalization of the Hamiltonian in Equation (2) [47,56,57], the transfer matrix
method [58–60] outlined above, and the Non-Equilibrium Green’s Function technique [61]. As it is
apparent from Equation (3), the transfer matrix method is not applicable if the matrices τττn are singular.
Generally, this is the case, e.g., for the FM and the FLM (cf. Table 1). Then, a renormalization scheme is
needed to apply the transfer matrix method.

Relevant parametrizations for nucleic acids have been proposed in many works and used within
various TB models. For example, for on-site energies and hopping integrals, cf. Refs. [16,17,20,62,63],
for on-site energies, cf. Refs. [64–70], and for hopping integrals, cf. Refs. [71–73]. Such parametrizations
allow researchers to go beyond the chemically unrealistic treatments, such as the assumptions that
all hopping integrals or on-site energies are equal, i.e., disorder in the Hamiltonian is either purely
diagonal or off-diagonal, respectively, and address in more detail the complexity of nucleic acid
energy structure.

3. Aperiodic One-Dimensional Wires

The dichotomy between the notions of order and disorder has expanded beyond a simple
distinction between periodicity and aperiodicity, since the first observation of icosahedral diffraction
patterns in the spectrum of an Al0.86Mn0.14 alloys [74] (2011 Nobel Prize in Chemistry for Prof.
Dan Shechtman). The discussion that opened in the scientific community following this and other
relevant discoveries led to a change in the very definition of the term crystal by the International Union
of Crystallography in 1992, expanding it from referring solely to periodically arranged structures
to “any solid having an essentially discrete diffraction diagram” [75]. This extended notion of
crystals encompasses a whole family of structures, called quasi-periodic crystals or quasicrystals.
Quasicrystals do not possess the translation symmetry that is inherent to classical (periodic) crystals;
however, they possess inflation/deflation symmetry which leads to long-range order as well.

The discovery of quasicrystals has turned scientific interest into the study of specific
one-dimensional aperiodic lattices, modeled with TB [76], i.e., described by Equation (1). The lattices
are typically created using substitutional sequences. Apart from the interest the study of such systems
has in itself, it is applicable, among other systems of physical relevance, in nucleic acids, as seen in
Section 2. The ability to produce synthetic, de novo, nucleic acid sequences of interest [77], using
mainly the phosphoramidite method [78] (although other promising methods have recently been
proposed [79]), provides a chance not only to examine theoretical predictions regarding aperiodic
structures, but also to create molecular wires with tailored properties. Below, we present some details
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about substitutional sequences as well as some of the most commonly used ones in the literature of
one-dimensional wires generally, and nucleic acids specifically.

3.1. Aperiodic Substitutional Sequences

Aperiodic substitutional sequences are based on an alphabet, e.g.,A = {A, B, C, D, . . . } equipped
with substitution rules that apply to each of its letters, s(j), ∀j ∈ A. In the case of nucleic acids,
the alphabet letters correspond to nitrogenous bases, i.e., G, C, A, T, U (for double-stranded chains
the complementary strand is implied). The sequences start with a seed, i.e., a letter belonging to the
alphabet (0th generation of the sequence). The substitution rules replace each alphabet letter by finite
words consisting of alphabet letters, i.e., s(j) = j′1 j′2, . . . j′k, ∀j ∈ A. Iterating this procedure g times
constructs the gth generation of the sequence.

Substitutional sequences can, in most cases, be described by introducing the substitution matrix, S.
It is a square, non-negative matrix of order card(A) (the cardinality of a set is the number of elements
of the set), and its elements are Sij = ni[s(j)], where ni[s(j)] is the number of times the letter i is present
in the substitution rule s(j). Notice that, by definition, S does not contain information about the
ordering of letters in the sequence, hence more than one substitutions can have the same substitution
matrix. However, the substitution matrix reveals much information about the underlying order and
other properties of the corresponding sequence at the thermodynamic limit.

3.2. Primitive Substitutions and the Perron–Frobenius Eigenvalue

The matrix S (and, hence, the substitution) is called primitive if there exists a natural number k
such that Sk is a positive matrix. For primitive substitutions, the Perron–Frobenius theorem [80,81]
guarantees that S has a largest, unique, real, positive eigenvalue, λPF, and its corresponding (left
and right) eigenvectors can be chosen to have strictly positive entries. The components of the right
eigenvector associated with λPF, normalized such as their sum is unity, give the asymptotic relative
frequencies of the letters in A. Hence, using S, one can determine the occurrence percentage of each
nucleotide in a substitutional nucleic acid sequence.

3.3. Induced Substitutions

In addition to the previous discussion, it is also possible to determine the letter frequencies of
the legal words of length k in a substitutional sequence with primitive S (corresponding to nucleotide
k-plets). This can be done as follows [82]; let W = {w = j1 j2 . . . jk, ∀j ∈ A} be the set of the legal
k-letter words in the sequence and s(w) = s(j1)s(j2) . . . s(jk) = j′1 j′2 . . . j′n the word constructed from a
letter-by-letter substitution of the word w. Then, the induced substitution of a k-letter word, sk(w) =

(j′1 j′2 . . . j′k)(j′2 j′3 . . . j′k+1) . . . (j′l j
′
l+1 . . . j′l+k−1), where l is the number of letters in s(j1), is also primitive.

Hence, an induced primitive substitution matrix Sk can be defined, from which the asymptotic letter
frequencies of the legal k-letter words of the sequence can be determined using the Perron–Frobenius
theorem. For sequences in which S is defined via a helping alphabet [83], k-letter word frequencies can
be deduced in the same fashion from the legal 2k-letter words of the helping alphabet.

3.4. The Pisot Property

A real algebraic integer (i.e., a real solution of a monic integer polynomial) is said to be a
Pisot–Vijayaraghavan number if its modulus is larger than unity, and all its algebraic conjugates
(i.e., the other solutions of the polynomial) have modulus strictly less than unity [84]. A substitution
has the Pisot property if the matrix S has a largest, unique, real, positive eigenvalue which is a
Pisot–Vijayaraghavan number, and for all the other eigenvalues, λ, it holds that |λ| < 1. If the
characteristic polynomial of S is irreducible over the rationals, the Pisot substitution is called irreducible.
Irreducible Pisot substitutions are a subclass of primitive substitutions [85].

Let us remember some definitions. Given n linearly independent vectors bbb1, bbb2, . . . bbbn ∈ Rm,
the lattice generated by them is defined as L(bbb1, bbb2, . . . bbbn) = ∑i xibbbi, xi ∈ Z. We call the set bbb1, bbb2, . . . bbbn
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a basis of the lattice. We say that the rank of the lattice is n and its dimension is m. The Fourier transform
of the (direct) lattice is a lattice that is called the reciprocal lattice.

Furthermore, according to the Lebesgue’s decomposition theorem, any measure on R can
be decomposed into three parts: a pure point (or discrete) part, an absolutely continuous part,
and singularly continuous part. This theorem helps to categorize the energy or Fourier spectra
of aperiodic substitutional sequences.

The first connections between the irreducible Pisot property and the Fourier spectrum of
a substitutional sequence were reported in Refs. [86,87], where it was conjectured that if the
Perron–Frobenius eigenvalue of a substitutional system is a Pisot–Vijayaraghavan number, then
the system is quasiperiodic. Later studies have revealed more details, providing a more sophisticated
classification of substitutional systems with respect to the nature of their diffraction spectrum. In the
one-dimensional case, sequences produced from irreducible Pisot substitutions have pure point Fourier
spectra [88]. (I) The Pisot property, together with (II) the extra condition λ 6= 0, provide the means to
distinguish between:

(1) strictly quasiperiodic sequences, in which the rank of the reciprocal lattice nr is finite and larger
than the dimension of the physical space of the sequence m, and

(2) limit-quasiperiodic sequences, in which the rank of reciprocal lattice nr is countably infinite (in a
1–1 correspondence with the natural numbers or integers).

The distinction criterion between categories (1) and (2) is the value of the determinant of S:
unimodular S implies strict quasiperiodicity, otherwise the structure is limit-quasiperiodic [89–91].
Limit-quasiperiodic structures can be interpreted as a superposition of an infinite number of strictly
quasiperiodic structures. Examples of strictly quasiperiodic structures are the classical Fibonacci
sequence [92] as well as all the precious means sequences [93] and the Fibonacci-class sequences [94]
(cf. Table 2, where several substitutional sequences studied in the literature are listed, together with
their substitution rules and matrices). Limit-quasiperiodic structure representatives are the mixed means
sequences with n ≥ m [95].

For substitutions not satisfying the above-mentioned conditions (I) and (II), the situation is more
complex. In such cases, the Fourier spectrum can be:

(3) limit-periodic, i.e., a superposition of countably infinite periodic structures. Some examples are the
period doubling sequence and metallic means sequences with n = l(l + 1) [96],

(4) singular continuous, i.e., non-constant, non-decreasing, continuous and has zero derivative,
everywhere that the derivative exists. Examples are the Thue–Morse sequence [97–99] and
metallic means sequences with n 6= l(l + 1) [96], or even

(5) absolutely continuous, such as the Rudin–Shapiro sequence [100,101].

Apart from the above-mentioned sequences, there are others for which the substitution is not
primitive or the matrix S cannot even be defined at all. Examples of non-primitive substitutions
include the sequences inspired by the Cantor set [102], maybe the most well-known deterministic
fractal. A sequence for which a substitution matrix cannot be defined is the classical Kolakoski(1, 2)
sequence [103,104], and generally Kolakoski(p, q) sequences where p is odd and q even or
vice versa [105]. The situation is different when p and q are both even or odd; then, a primitive
S can be defined. In the former case, the sequences have been classified as limit-periodic [106]. In the
latter case, the irreducible Pisot property holds when 2(p + q) ≥ (p− q)2, and S is also unimodular
when p = q± 2 [105].
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Table 2. Substitutional sequences studied in the literature, together with the alphabets through which
they are defined, the corresponding substitution rules, and the substitution matrices. In the last row,
the subscripts o and e in the substitution rules denote substitutions that are applied on odd and even
positions in the sequence, respectively.

Sequence A Substitution Rule S

Fibonacci {A, B} s(A) = AB s(B) = A
(

1 1
1 0

)
Precious means {A, B} s(A) = AnB s(B) = A

(
n 1
1 0

)
Fibonacci-class {A, B} s(A) = Bn−1AB s(B) = Bn−1A

(
1 1
n n− 1

)
Mixed means {A, B} s(A) = AnBm s(B) = A

(
n 1
m 0

)
Metallic means {A, B} s(A) = ABn s(B) = A

(
1 1
n 0

)
Period doubling {A, B} s(A) = AB s(B) = AA

(
1 2
1 0

)
Thue–Morse {A, B} s(A) = AB s(B) = BA

(
1 2
1 0

)

Rudin–Shapiro {A, B, C, D}


1 1 0 0
1 0 1 0
0 1 0 1
0 0 1 1

s(A) = AB s(B) = AC
s(C) = DB s(D) = DC

Triadic Cantor set {A, B} s(A) = ABA s(B) = BBB
(

2 0
1 3

)
Asymmetric Cantor set {A, B} s(A) = ABAA s(B) = BBBB

(
3 0
1 4

)
Generalized Cantor set (t, d) {A, B} s(A) = A

t−d
2 BdA

t−d
2 s(B) = Bt

(
t− d 0

d t

)
Kolakoski (p = 2m, q = 2n) {A = pp, B = qq} s(A) = AmBm s(B) = AnBn

(
m n
m n

)
Kolakoski (p = 2m + 1, q = 2n + 1)

m m n
1 1 1
m n n

{A = pp, B = pq, s(A) = AmBCm s(B) = AmBCn

C = qq} s(C) = AnBCn

Kolakoski (p = 2m, q = 2m + 1) or {p, q} so(q) = pq so(p) = pp
undefinable(p = 2m + 1, q = 2m) se(q) = qq se(p) = qp

4. Energy Structure of Nucleic Acid Wires

The energy structure of a physical system is closely connected to many of its properties (electrical,
magnetic, thermal, optical, et cetera). A useful –and closely related to experimental data—quantity
that describes the energy structure of a given system is the density of states (DOS), which shows the
number of states that can be occupied by electrons at each energy. It can be formally defined as

g(E) = ∑
k

δ(E− Ek), (6)

where no spin degeneracies are included. The sum runs over all allowed states, each of which has an
eigenenergy Ek. A closely related quantity is the integrated density of states (IDOS), defined as

IDOS(E) =
∫ E

−∞
g(E′)dE′, (7)

i.e., it is the number of states that have energy smaller than E. Discontinuities in the IDOS indicate the
presence of energy gaps, and the height of an IDOS step gives information about the level population.
For periodic systems, the regions of allowed energies lead to smooth parts in DOS or IDOS curves,
separated by well defined gaps at specific energies, thus reflecting the continuous electronic band
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structure of a periodic crystal. On the contrary, the DOS and IDOS of random systems are rough,
indicative of the presence of a multitude of gaps between the allowed energy levels. As it has to do with
deterministic aperiodic sequences with a substitution rule, which reflects their self-similarity, it has been
conjectured (and proven, in several specific cases) that their energy spectrum is singular continuous,
i.e., in the thermodynamic limit, it exhibits an infinity of gaps and vanishing bandwidths [107].

Furthermore, for primitive substitutions described by a Hamiltonian corresponding to the WM,
the following gap-labeling theorem has been introduced by Bellissard et al. [108]:

Theorem 5.13 of Ref [108]. Let Ĥ be a Hamiltionian corresponding to the WM, where the
coefficients (i.e., parameters) are determined by a primitive substitution on a finite alphabet. Then,
the values of the IDOS of Ĥ on the spectral gaps in [0, 1] belong to the Z(λ−1

PF ) module generated by
the components of the eigenvectors~vPF and~vPF,2 of the substitution matrices S and S2, respectively.

From the above theorem, it follows that, in order to obtain the position of the gaps in the
(normalized) IDOS of a primitive substitutional sequence within the WM, it is sufficient to know the
substitution matrices of its legal 1- and 2-letter words (c.f. Section 3.3). Specifically, the gaps can be
labeled by the negative powers of λPF times integral linear combinations of the components of~vPF
and~vPF,2 that lie within the interval [0, 1] [108,109]. For example, in the case of Fibonacci sequences,
from the diagonalization of S (cf. Table 2), we get λPF = φ and~vPF = [φ−1 φ−2]T (where φ is the
golden ratio). Hence, the sequence consists of ≈61.8% A letters and ≈38.2% B letters. The legal
2-letter words in the Fibonacci sequence are BA, AB, and AA (i.e., BB is forbidden), thus the induced
2-substitution reads (cf. Section 3.3) s2(AA) = (AB)(BA), s2(AB) = (AB)(BA), s2(BA) = (AA), leading to
the induced substitution matrix

S2 =

0 0 1
1 1 0
1 1 0

 . (8)

The Perron–Frobenius eigenvector (cf. Section 3.2) of S2 is ~vPF,2 = [φ−3 φ−2 φ−2]T .
Hence, the gaps can be labeled by integer linear combinations of negative powers of φ. Since every
positive power of φ can be reduced to a linear expression of the form φg = Ngφ + Ng−1, where Ng

is the Fibonacci number of generation g, and it also holds that φg + φ−g ∈ N∗, the situation can be
reduced to an integral linear combination of 1 and φ. Thus, the positions of the gaps in the IDOS of a
Fibonacci sequence within the WM can by given by

{Gn} = {nφ mod 1, ∀n ∈ Z}. (9)

Another interesting remark, arising from the DOS values of a single-stranded Fibonacci DNA
sequence consisting of G and C, is that the ratio among the distances between DOS of consecutive
generations tends to φ [110]. The IDOS of periodic, several aperiodic, and random binary DNA
sequences with G and A on the same strand, calculated within the WM, taking into account both
diagonal and off-diagonal disorder is presented in Figure 3 [83]. Periodic sequences display two well
defined bands, separated by a single energy gap (the largest among all cases). Thue–Morse, Fibonacci,
Rudin–Shapiro, and Kolakoski sequences possesss a staircase-like IDOS, while the shape of random
sequence IDOS resembles, albeit it is more disrupted, to that of Rudin–Shapiro, and its main energy gap
is the smallest among all cases. The fractal, Cantor set based, sequences have a very rough spectrum.
For all sequences, the value of the IDOS at the largest energy gap is equal to the occurrence percentage
of A. Furthermore, it has been observed that there are steps in the IDOS, the relative value of which is
equal to the occurrence percentages of the possible base-pair triplets [83]. This remark holds for all
categories of deterministic aperiodic sequences, either generated by a primitive substitution matrix
or not, such as Kolakoski (1,2), further connecting the specific base-pair sequence of a DNA segment
with its energy structure. The above-mentioned IDOS steps and the corresponding values are marked
(where possible) in the left vertical axes of Figure 3.
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Apart from the sequential disorder, mentioned above, other disorder types are present or can
be induced in nucleic acid sequences. In Ref. [111], the authors study single poly(CG) or poly(CT)
DNA strands with diluted base-pairing, i.e., for example, the G sites are randomly attached to their
complementary C sites, with a probability p. The C-G base pairs are renormalized onto the first strand,
leading to two inter-penetrating lattices: a periodic one containing the G or T sites and a random
one containing bare and renormalized C sites. The DOS for three indicative cases, i.e., for p = 0, 0.5,
and 1, is presented at the top panels of Figure 4. When p = 0, there are two well defined bands
arising from the periodicity of the segment. The band character is maintained for p = 1, with a
smaller gap for poly(CG), while for poly(CT) the number of bands changes to three, reflecting the
total number of different sites (since the renormalization procedure takes into account the original
structure). When p = 0.5, for poly(CG), fluctuations of the same magnitude in both allowed energy
regions arise and the singularities are rounded off due to the induced disorder. For poly(CT), the bands
collapse at a single energy region, stronger fluctuations are present at smaller energies than at larger
ones, and there is a persisting van Hove singularity exactly at the on-site energy of T. Hence, in this
case, diluted base-pairing produces a gapless structure and keeps a number of states extended (around
the on-site energy of T), which is an ideal scenario for charge transport.

Several human diseases are associated with aberrant DNA methylation, which is heritable during
cell division but does not alter the DNA sequence. In Ref. [112], a poly(CG) single-stranded segment
is considered, with methyl groups randomly connected with the 5-carbon of C bases (forming the
so-called 5-methylcytosine), again, with probability p. For completely unmethylated or methylated
segments, the DOS consists of two smooth bands, derived by the on-site energy of G and C, for p = 0,
and of G and 5-methylcytosine for p = 1, respectively; the only difference is in the energy intervals of
the allowed states. For 0 < p < 1, the smooth profile of the DOS is degraded, since the presence of
randomly distributed methyl groups along the chain introduces a small disorder, which in turn leads
to an enhancement in the effective resistance that can reach one order of magnitude.
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Figure 3. Normalized IDOS of various categories of binary DNA segments with purines on the
same strand, within the WM. (a) Poly(GA); (b) Thue–Morse; (c) Fibonacci (d) Period-doubling;
(e) Rudin–Shapiro; (f) Cantor Set; (g) Generalized Cantor Set (4,2); (h) Kolakoski(1,2); (i) Kolakoski(1,3);
(j) Random (50% G, 50% A). Reprinted figure from K. Lambropoulos and C. Simserides, Periodic,
quasiperiodic, fractal, Kolakoski, and random binary polymers: Energy structure and carrier transport,
Phys. Rev. E 2019, 99, 032415 [83] http://dx.doi.org/10.1103/PhysRevE.99.032415, c© 2019 by the
American Physical Society.

http://dx.doi.org/10.1103/PhysRevE.99.032415
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Figure 4. DOS of (a) poly(CG), and (b) poly(CT) DNA strands with diluted base-pairing at random
cytosine sites with probability p. Figure reproduced with permission from F. A. B. F. de Moura, M.
L. Lyra and E. L. Albuquerque, Electronic transport in poly(CG) and poly(CT) DNA segments with
diluted base pairing, J. Phys. Condens. Matter 2008, 20, 075109 [111] http://dx.doi.org/10.1088/0953-
8984/20/7/075109, c© 2008 IOP Publishing. All rights reserved.

5. Coupling Nucleic Acids with Leads: Transmission Coefficients

In order to study the charge transport properties of nucleic acid nanowires within a TB framework,
the system under examination is attached to two semi-infinite homogeneous metallic leads, which
play the role of a carrier bath. The leads are characterized by a single on-site energy, εM, and a single
hopping integral, tM, so that the allowed energy states of the incident and outgoing waves lie in the
interval [εM − 2|tM|, εM + 2|tM|]. Since detailed information on the nucleic acid’s chemical bonding at
the contacts is not known, one introduces effective parameters dealing with the tunneling probability
between the frontier orbitals, roughly encompassing the bonding effects at the interface [113].
These parameters are tR(L) and couple the left (right) lead with the nucleic acid wire.

A first useful physical quantity to evaluate the charge transport properties of a quantum system
is the transmission coefficient, T(E). It is an energy-dependent quantity that describes the probability
that a carrier, incident to a quantum wire, transmits through its eigenstates. Charge transport will
experience a sequence-dependent contribution of backscattering, according to the distribution of
potential barriers, corresponding to bases or base pairs, over the length scale of the sequence [24].

The coupling between the nucleic acid and the leads plays an important role on the transmission
profiles. It has been shown that stronger coupling does not necessarily mean higher transmission.
In Ref. [114], the authors studied the transmission profiles of a single-stranded poly(GACT) DNA
chain within the WM, with purely diagonal disorder, assuming equal coupling parameters with both
leads (tR = tcL = τ), and arrived at the resonance condition τ =

√
tMt, where t is the hopping integral

between the wire sites. From Figure 5, it is evident that, when the value of the coupling parameter
is either smaller or larger than the one fulfilling the resonance condition, quite smaller transmission
peaks are obtained. This result properly illustrates the influence of contacts on electrical transport.
This extreme sensitivity is due to interference effects between the DNA molecular bands and the
electronic structure of the leads at the lead-DNA interface.

The above-mentioned results were generalized in an analytical manner for any periodic WM,
through the conditions ω = tMtu

tRtL
= ±1 (ideal coupling condition), where tu couples the moieties at the

end of a unit cell and at the start of the next, and χ = tL
tR

= ±1 (symmetric coupling condition) [60].
The ideal coupling condition, ω = ±1, implies that the system and the leads are interconnected as if
they were connected to themselves. When this condition is reached, the existence of fully resonant
states is guaranteed at specific energies determined by the zeros of Chebyshev polynomials of the

http://dx.doi.org/10.1088/0953-8984/20/7/075109
http://dx.doi.org/10.1088/0953-8984/20/7/075109
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second kind [115]. Hence, any periodic sequence can display full transmission, if appropriate couplings
are utilized. Deviations from the symmetric coupling condition give rise to secondary peaks. The effect
of the coupling strength and the asymmetry factors, together with the internal hoppings, is exemplified
in Figure 6, for a generic periodic WM with two sites per unit cell (hence, two hopping integrals t1 and
t2 connect the wire sites) and N = 10. It is evident that the ideal and symmetric coupling conditions
lead to the most efficient transmission. For ideal and asymmetric coupling, except for the peaks of
magnitude 1, there is one additional peak, which is of significant magnitude only when |t1| ≈ |t2|.
In the strong (weak) and symmetric coupling regimes, the peaks that are closer to the band gap vanish
(emerge) as

∣∣∣ t1
t2

∣∣∣ increases. When the coupling is asymmetric, transmission is enhanced only in one of
the two bands.

Analogous conclusions can be obtained for more complex TB models. In Ref. [31], a poly(G)-
poly(C) oligomer (N = 5) was studied within the FM. The authors report that, for small values of
coupling, the transmission shows sharp and narrow unit resonances due to the localization of states,
while, as the coupling increases, the well-arranged resonant peaks overlap. An inspection of Figure 7
of Ref. [31] indicates that there are intermediate values of tL(= tR) in which the overall transmission is
more enhanced compared to smaller and larger values.

In Ref. [116], the authors study a poly(G)-poly(C) chain within an extension of the FLM, which
allows hopping between backbone sites as well as all possible diagonal hoppings (between the
nitrogenous bases as well as between the bases and the backbone). Each of the two strands containing
the DNA bases is connected with each lead with equal coupling parameters. For diagonal hoppings
being switched either on or off, it can again be concluded that stronger coupling with the leads does
not necessarily lead to enhanced transmission (cf. the panels in the first two rows in Figure 7). This is
also evident by comparing the averaged transmission coefficient, which is defined as

Ta(E) =

∫ E

Emin

T(e)de

E− Emin
, (10)

cf. the panels in third row of Figure 7. Although T(E) and Ta(E) are indeed much smaller for
tL = tR = 0.1 eV, an increase from 0.5 eV to 0.9 eV does not lead to transmission enhancement. In fact,
for diagonal hoppings switched both on and off, Ta reaches larger values for the intermediate coupling
tL = tR = 0.5 eV.

The above discussion demonstrates that, apart from the internal degree of disorder of a given
sequence, other factors can significantly affect their charge transport properties.
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Figure 5. Transmission coefficient for a poly(GACT) chain within the WM, with N = 60, tM = 1.0 eV,
t = 0.4 eV, and τ = 0.4 eV; i.e., τ =

√
tMt (top), τ =

√
0.4 eV (middle), τ =

√
0.8 eV (bottom).

Reprinted figure with permission from E. Maciá, F. Triozon, and S. Roche, Contact-dependent effects
and tunneling currents in DNA molecules, Phys. Rev. B 2005, 71, 113106 [114] http://dx.doi.org/10.
1103/PhysRevB.71.113106, c© 2005 by the American Physical Society.

Figure 6. Transmission coefficient of a periodic WM with two sites per unit cell and N = 10 for ideal
(top), strong (middle), and weak (bottom) coupling with the leads. (Left column) Symmetric coupling.
(Middle column) Asymmetric coupling with |χ| > 1. (Right column) Asymmetric coupling with |χ| < 1.
The leads parameters are such that all the eigenstates of the system are contained. Reprinted from
Ref. [60], K. Lambropoulos and C Simserides, Spectral and transmission properties of periodic 1D
tight-binding lattices with a generic unit cell: an analysis within the transfer matrix approach, J. Phys.
Commun. 2018, 2, 035013 [60] http://dx.doi.org/10.1088/2399-6528/aab065, CC BY 3.0.

http://dx.doi.org/10.1103/PhysRevB.71.113106
http://dx.doi.org/10.1103/PhysRevB.71.113106
http://dx.doi.org/10.1088/2399-6528/aab065
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Figure 7. Transmission spectra as a function of energy without (a–c) and with (d–f) the diagonal
hoppings; (g–i) average transmission spectra as a function of energy: gray line (diagonal hoppings
switched off) and black line (diagonal hoppings switched on). (Left column) tL = tR = 0.1 eV.
(Middle column) tL = tR = 0.5 eV. (Right column) tL = tR = 0.9 eV. Reprinted from S. Malakooti, E. R.
Hedin, Y. D. Kim, and Y. S. Joe, Enhancement of charge transport in DNA molecules induced by the next
nearest-neighbor effects, J. Appl. Phys. 2012, 112, 094703 [116], http://dx.doi.org/10.1063/1.4764310,
with the permission of AIP Publishing.

6. Current–Voltage Curves

The situation is more complex as far as the calculation of I −V characteristic curves is concerned.
The I − V curve of a given nucleic acid segment can be given, using the Landauer–Büttiker
formalism [61,117,118], by the relation

I(V) =
2e
h

∫ ∞

−∞
T(E, V)[ fL(E− µL)− fR(E− µR)]dE, (11)

under the assumption that charge propagates from left to right. µL(R) and fL(R)(E) are the chemical
potential and the Fermi–Dirac distribution at the left (right) lead, respectively. From Equation (11),
we deduce that there are several factors, apart from the structure of the sequence under examination
that have an effect on the magnitude of currents, the bias regime and the shape of the I −V curves.
These factors include:

(a) The choice of the Fermi level of the leads EF, which coincides with εM if one electron per site is
assumed. If EF is not aligned with an allowed energy region of the segment, then no currents
occur in the vicinity of V = 0, while a metallic behavior is expected otherwise.

(b) The way the external bias is applied. For example, only one of the leads’ energy bands can
be shifted, so that µL = EF + eV, and µR = EF, or, alternatively, both leads’ bands can be
symmetrically shifted so that µL

R
= EF ± eV

2 . This choice affects both the way the voltage drop is

induced in the nucleic acid sequence and the energy limits of the conductance channel. At zero
temperature, the Fermi–Dirac distributions become Heaviside step functions and determine the
limits of integration. Hence, Equation (11) can be simplified to

I(V) =
2e
h

∫ µL

µR

T(E, V)dE, (12)

while, at finite temperatures, it can be written in the form

I(V) =
2e
h

sinh
(

eV
2kBT

) ∫ ∞

−∞

T(E, V)dE

cosh
(

E−EF
kBT

)
+ cosh

(
eV

2kBT

) , (13)

http://dx.doi.org/10.1063/1.4764310
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i.e., the I −V curve occurs from the modulation of the hyperbolic function sinh
(

eV
2kBT

)
by the

integral factor expression [119].
(c) Whether or not the transmission coefficient is considered as bias-dependent. Although assuming

bias-independent transmission coefficient could be a justified choice in the small bias regime,
and it is indeed less computationally costly, this assumption cannot lead, under any circumstances,
to the occurrence of negative differential resistance, since an increasingly larger part (as V
increases) of a nonnegative function is integrated.

There are several works discussing the I − V curves of nucleic acid sequences, considering
different types of order or disorder. Regarding sequential order or disorder, in Ref. [83], the I − V
curves of periodic, deterministic aperiodic, and random binary DNA segments have been studied
within the WM. The curves have been shown to have clearly distinct shapes for different sequence
categories. It has also been demonstrated that periodic sequences lead to the most enhanced currents.
Additionally, there are several categories deterministic aperiodic sequences (specifically, Fibonacci,
Period-doubling, Cantor and generalized Cantor) that can also display significant currents, depending
on the Fermi level of the leads. Random sequences represent the least efficient category, since they
were found to always display smaller currents than all their deterministic aperiodic counterparts with
similar base-pair content.

In Ref. [120], the authors study dry and hydrated DNA sequences with correlated and uncorrelated
disorder within a WM, for N = 50 and at a temperature of 300 K. For different concentrations of G and
A sites, the resulting currents are larger for correlated disorder, both for dry and backbone-hydrated
sequences. Generally, the authors report a conductor to semiconductor to insulator transition as a
function of three effects, i.e., sequence size, disorder, and hydration, suggesting that an appropriate
choice of chain size and relative concentration of base pairs can be used to tailor the electrical behavior
of DNA strands.

A similar transition has been reported by introducing conformal variation at the helical symmetry
as well as backbone disorder into a FLM [121]. Helical symmetry is taken into account via the inclusion
of hopping integrals between bases in adjacent pitches (i.e., turns of the helix). The number of base-pairs
within a given pitch is denoted by n. Backbone disorder is introduced by a random distribution of
backbone on-site energies, characterized by a disorder strength w. The results for poly(G)-poly(C) and
poly(A)-poly(T) chains with N = 50, for different values of n and w are shown in Figure 8. At low
disorder, the effect of n is smaller, since, in that case, any path of charge conduction is equivalent, as an
electron feels almost no potential variation. As the disorder increases, the effect of n becomes more
distinctive, since there is substantial variation of the effective potential at different sites and an increase
of n gives an electron more shortcut pathways to move along the DNA chain. The current is enhanced
with increasing n, and the effect is more vivid for strong disorder. Furthermore, for weak disorder,
a cut-off voltage is observed in the I −V curves, which reduces with increasing n. At strong disorder,
the current is enhanced and almost linear response is observed at larger values of n, which indicates a
transition from the insulating to the metallic phase.

Thermal structural disorder has been studied in Ref. [122], by introducing a random variation in
the hopping integrals of a poly(G)-poly(C) chain with N = 5, within an FLM allowing inter-backbone
hoppings. Comparing the I −V curves of such systems for T = 0 K and T = 300 K, the authors report
that the voltage threshold for current onset is about the same, indicating that the thermal structural
disorder does not affect the voltage gaps. Above that threshold, as the temperature increases, the linear
behavior of the current changes to a step-like behavior, and the current is reduced, since the static
distortion increases elastic scattering of electrons through the DNA molecule.
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Figure 8. I −V curves for poly(dA)-poly(dT) and poly(dG)-poly(dC) various disorder strengths w and
pitch-size values n. For weak disorder, the cut-off voltage reduces with n, showing semiconducting
behaviour. For strong disorder, the current is considerably enhanced with increasing n, giving a
insulator to metal transition. Reproduced from Ref. [121], S. Kundu and S. N. Karmakar, Conformation
dependent electronic transport in a DNA double-helix, AIP Adv. 2015, 5, 107122 [121] http://dx.doi.
org/10.1063/1.4934507, CC BY 3.0.

http://dx.doi.org/10.1063/1.4934507
http://dx.doi.org/10.1063/1.4934507
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The effect of cytosine methylation disorder on the I − V curves of a single stranded
GAGCTGACGTTCACGG segment retrieved from the first sequenced human chromosome
(chromosome 22) has been studied within the WM in Ref. [123]. The effect of all possible single,
double, and triple methylation defects (out of the totally four C sites) is addressed. It is demonstrated
that even a single methylated site reduces the currents by one order of magnitude. This reduction
is directly associated with the fact that such sites act as additional impurity centers. The observed
sensitivity of the saturation current on the position of the methylated cytosine is related to the impact
of methylation on the hopping integrals to the neighboring bases. Thus, for a single methylation defect,
the saturation current is strongly suppressed when cytosine is connected with guanine; for two defects,
this suppression is smaller; for three methylations, the non-methylated base is the one that acts as
a defect, hence the suppression of the saturation current will be larger when the cytosine has both
hopping amplitudes to the neighboring bases enhanced by methylation. These results suggest the
feasibility of using I −V curves to develop biosensors for the purpose of diagnosis.

There also exist efforts aiming to examine the potentiality to utilize the charge transport
characteristics of nucleic acids as a tool to probe several diseases or disorders. In Ref. [124], the I −V
characteristics of twenty seven single-stranded microRNA chains (with 21 to 23 nucleotides) related to
the autism spectrum disorder have been studied. The authors classified the chains into five groups
according to their conductivity (from high to negligible), suggesting that a kind of electronic biosensor
can be developed to distinguish different profiles of autism disorders.

In Ref. [125], a similar treatment was employed to study DNA sequences related to the
Huntington’s Disease. A segment of the human chromosome 4p16.3 was modified by the addition of
a variant number of CAG repeats, the number of which determines whether a person does or does
not have Huntington’s Disease; repeats smaller than 27 are normal; repeats between 27 and 35 are
rarely associated with the disease, but it may expand in paternal transmission; repeats between 36
and 39 are associated with reduced penetration, so individuals may or may not develop the disease;
40 and above are associated with the disease [126]. The increasing presence of periodicity leads to
enhanced transmission and thus to more efficient electronic transport. I −V calculations revealed that
the above-mentioned groups based on the number of repeats can be characterized by different value
ranges for the saturation currents, indicating a promising method for identifying Huntington’s disease.

7. Conclusions

This review was devoted to tight-binding (TB) modeling of nucleic acid sequences like DNA and
RNA. We briefly presented the TB approach and discussed its various submodels: wire, ladder,
extended ladder, fishbone (wire), and fishbone ladder. We addressed various types of orders
(periodic, quasiperiodic, fractal) or disorder (diagonal, non-diagonal, random, methylation) and
explained how these various types of order or disorder affect charge transport. We proceeded to a
discussion of aperiodicity, quasicrystals and the mathematics of aperiodic substitutional sequences.
Specifically, we discussed the notions of primitive substitutions, Perron–Frobenius eigenvalue, induced
substitutions, and Pisot property. We explained how the energy structure of nucleic acid wires is
affected by order or disorder. We also discussed the corresponding transmission coefficients, focusing
on the effects of coupling the nucleic acids to external leads, and demonstrating that, apart from
the internal degree of order or disorder of a given sequence, there are several other factors that can
significantly affect their charge transport properties. We also discussed the effects that various types of
order or disorder induce on the current–voltage curves and presented some efforts aiming to examine
the potentiality to utilize the charge transport characteristics of nucleic acids as a tool to probe several
diseases or disorders. The sensitivity that the results demonstrate regarding the choice of the nucleic
acids sequence, the recruited models and parametrizations, the way the systems are coupled to external
leads, the nature of the leads, the environmental conditions, etc, indicate that much work is needed in
order to reach a thorough description of the effect the combination such a multitude of factors has on
charge transport. Furthermore, other factors, such as the sequence geometry or the use of modified
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nitrogenous bases could be potentially used to tailor the above-mentioned properties of nucleic acids
and analogues.
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91. Kolář, M.; Iochum, B.; Raymond, L. Structure factor of 1D systems (superlattices) based on two-letter substitution
rules. I. delta (Bragg) peaks. J. Phys. A Math. Gen. 1993, 26, 7343–7366.10.1088/0305-4470/26/24/011. [CrossRef]

92. Sigler, L. Fibonacci’s Liber Abaci: A Translation into Modern English of Leonardo Pisano’s Book of Calculation;
Springer: New York, NY, USA, 2003.

93. Birch, J.; Severin, M.; Wahlström, U.; Yamamoto, Y.; Radnoczi, G.; Riklund, R.; Sundgren, J.E.; Wallenberg, L.R.
Structural characterization of precious-mean quasiperiodic Mo/V single-crystal superlattices grown by
dual-target magnetron sputtering. Phys. Rev. B 1990, 41, 10398–10407.10.1103/PhysRevB.41.10398. [CrossRef]

94. Fu, X.; Liu, Y.; Zhou, P.; Sritrakool, W. Perfect self-similarity of energy spectra and gap-labeling properties in
one-dimensional Fibonacci-class quasilattices. Phys. Rev. B 1997, 55, 2882–2889.10.1103/PhysRevB.55.2882.
[CrossRef]

95. Maciá, E. Spectral Classification of One-Dimensional Binary Aperiodic Crystals: An Algebraic Approach.
Ann. Phys. 2017, 529, 1700079, doi:10.1002/andp.201700079. [CrossRef]

96. Baake, M.; Grimm, W.; Mañibo, N. Spectral analysis of a family of binary inflation rules. Lett. Math. Phys.
2018, 108, 1783–1805.10.1007/s11005-018-1045-4. [CrossRef]

97. Prouhet, E. Mémoire sur quelques relations entre les puissances des nombres. CR Acad. Sci. Paris 1851,
33, 225. (In French)

98. Nagell, T.; Selberg, A.; Selberg, S.; Thalberg, K. (Eds.) Selected Mathematical Papers of Axel Thue;
Universitetsforlaget: Oslo, Norway, 1977.

99. Morse, H.M. Recurrent Geodesics on a Surface of Negative Curvature. Trans. Am. Math. Soc. 1906,
22, 84–100.10.2307/1988844. [CrossRef]

100. Rudin, W. Some theorems on Fourier coefficients. Proc. Am. Math. Soc. 1959,
10, 855–895.10.1090/s0002-9939-1959-0116184-5. [CrossRef]

101. Shapiro, H.S. Extremal Problems for Polynomials and Power Series. Master’s Thesis, Massachusetts Institute
of Technology, Cambridge, MA, USA, 1951.

102. Cantor, G. Über unendliche, lineare Punktmannigfaltigkeiten. Math. Ann. 1883, 21, 545–586. (In German)
[CrossRef]

https://doi.org/10.1038/nbt.4173
http://dx.doi.org/10.1038/nbt.4173
https://doi.org/10.1007/bf01449896
http://dx.doi.org/10.1007/BF01449896
https://doi.org/10.1103/PhysRevE.99.032415
http://dx.doi.org/10.1103/PhysRevE.99.032415
https://doi.org/10.1007/3-540-45714-3_1
http://dx.doi.org/10.1090/S0002-9947-01-02797-0
https://doi.org/10.1051/jphyscol:1986303
http://dx.doi.org/10.1051/jphyscol:1986303
https://doi.org/10.1017/S0143385797084988
http://dx.doi.org/10.1017/S0143385797084988
https://doi.org/10.1088/0305-4470/26/8/020
http://dx.doi.org/10.1088/0305-4470/26/8/020
https://doi.org/10.1103/PhysRevB.47.5489
http://dx.doi.org/10.1103/PhysRevB.47.5489
https://doi.org/10.1088/0305-4470/26/24/011
http://dx.doi.org/10.1088/0305-4470/26/24/011
https://doi.org/10.1103/PhysRevB.41.10398
http://dx.doi.org/10.1103/PhysRevB.41.10398
https://doi.org/10.1103/PhysRevB.55.2882
http://dx.doi.org/10.1103/PhysRevB.55.2882
https://doi.org/10.1002/andp.201700079
http://dx.doi.org/10.1002/andp.201700079
https://doi.org/10.1007/s11005-018-1045-4
http://dx.doi.org/10.1007/s11005-018-1045-4
https://doi.org/10.2307/1988844
http://dx.doi.org/10.1090/S0002-9947-1921-1501161-8
https://doi.org/10.1090/s0002-9939-1959-0116184-5
http://dx.doi.org/10.1090/S0002-9939-1959-0116184-5
http://dx.doi.org/10.1007/BF01446819


Symmetry 2019, 11, 968 25 of 26

103. Vaidya, A.M.; Simon, H.; Garrett, P.; Shapiro, H.S.; Kolakoski, W.; Dapkus, F.; Gross, F.; Cohen, M.J.; Comtet,
L.; Feller, E.H. Advanced Problems: 5300–5309. Am. Math. Mon. 1965, 72, 673–675, doi:10.2307/2313883.
[CrossRef]

104. Oldenburger, R. Exponent trajectories in symbolic dynamics. Trans. Am. Math. Soc. 1939,
46, 453–466.10.2307/1989933. [CrossRef]

105. Sing, B. Kolakoski sequences—An example of aperiodic order. J. Non-Cryst. Solids 2004,
334, 100–104.10.1016/j.jnoncrysol.2003.11.021. [CrossRef]

106. Sing, B. Kolakoski-(2m,2n) are limit-periodic model sets. J. Math. Phys. 2003, 44, 899–912.10.1063/1.1521239.
[CrossRef]

107. Bovier, A.; Ghez, J.M. Remarks on the spectral properties of tight-binding and Kronig-Penney models with
substitution sequences. J. Phys. A Math. Gen. 1995, 28, 2313–2324.10.1088/0305-4470/28/8/022. [CrossRef]

108. Bellisard, J.; Bovier, A.; Ghez, J.M. Gap Labelling Theorems for One Dimensional Discrete Schrödinger
operators. Rev. Math. Phys. 1992, 4, 1–37.10.1142/S0129055X92000029. [CrossRef]

109. Bellisard, J.; Bovier, A.; Ghez, J.M. Discrete Schrödinger Operators with Potentials Generated by Substitutions.
In Differential Equations with Applications to Mathematical Physics; Ames, W.F., Harrell, E.M., Herod, J.V., Eds.;
Elsevier: Amsterdam, The Netherlands, 1993; Volume 192, pp. 13–23, doi:10.1016/S0076-5392(08)62368-1.

110. De Oliveira, B.P.W.; Albuquerque, E.L.; Vasconcelos, M.S. Electronic density of states in sequence dependent
DNA molecules. Surf. Sci. 2006, 600, 3770–3774.10.1016/j.susc.2006.01.081. [CrossRef]

111. De Moura, F.A.B.F.; Lyra, M.L.; Albuquerque, E.L. Electronic transport in poly(CG) and
poly(CT) DNA segments with diluted base pairing. J. Phys. Condens. Matter 2008,
20, 075109.10.1088/0953-8984/20/7/075109. [CrossRef]

112. De Moura, F.A.B.F.; Lyra, M.L.; de Almeida, M.L.; Ourique, G.S.; Fulco, U.L.; Albuquerque, E.L.
Methylation effect on the ohmic resistance of a poly-GC DNA-like chain. Phys. Lett. A 2016,
380, 3559–3563.10.1016/j.physleta.2016.07.069. [CrossRef]

113. Maciá Barber, E. Aperiodic Structures in Condensed Matter: Fundamentals and Applications; CRC Press:
Boca Raton, FL, USA, 2008.10.1201/9781420068283. [CrossRef]

114. Maciá, E.; Triozon, F.; Roche, S. Contact-dependent effects and tunneling currents in DNA molecules.
Phys. Rev. B 2005, 71, 113106.10.1103/PhysRevB.71.113106. [CrossRef]

115. Mason, J.; Handscomb, D.C. Chebyshev Polynomials; Chapman and Hall/CRC: London, UK, 2002.
116. Malakooti, S.; Hedin, E.R.; Kim, Y.D.; Joe, Y.S. Enhancement of charge transport in DNA molecules induced

by the next nearest-neighbor effects. J. Appl. Phys. 2012, 112, 094703.10.1063/1.4764310. [CrossRef]
117. Landauer, R. Spatial Variation of Currents and Fields Due to Localized Scatterers in Metallic Conduction.

IBM J. Res. Dev. 1957, 1, 223–231.10.1147/rd.13.0223. [CrossRef]
118. Buttiker, M. Symmetry of electrical conduction. IBM J. Res. Dev. 1988, 32, 317–334.10.1147/rd.323.0317.

[CrossRef]
119. Roche, S.; Maciá, E. Electronic Transport and Thermopower in Aperiodic DNA Sequences. Mod. Phys. Lett. B

2004, 18, 847–871.10.1142/S021798490400744X. [CrossRef]
120. Plazas, C.A.; Fonseca-Romero, K.M.; Rey-González, R.R. Insulator-to-Semiconductor-to-Conductor

Phase-Like Transition of DNA Chains. J. Nanosci. Nanotechnol. 2018, 18, 5042–5048.10.1166/jnn.2018.15339.
[CrossRef]

121. Kundu, S.; Karmakar, S.N. Conformation dependent electronic transport in a DNA double-helix. AIP Adv.
2015, 5, 107122, doi:10.1063/1.4934507. [CrossRef]

122. Joe, Y.S.; Lee, S.H.; Hedin, E.R.; Kim, Y.D. Temperature and Magnetic Field Effects on Electron Transport
Through DNA Molecules in a Two-Dimensional Four-Channel System. J. Nanosci. Nanotechnol. 2013,
13, 3889–3896.10.1166/jnn.2013.7206. [CrossRef]

123. De Almeida, M.L.; Oliveira, J.I.N.; Lima Neto, J.X.; Gomes, C.E.M.; Fulco, U.L.; Albuquerque, E.L.;
Freire, V.N.; Caetano, E.W.S.; de Moura, F.A.B.F.; Lyra, M.L. Electronic transport in methylated fragments of
DNA. Appl. Phys. Lett. 2015, 107, 203701, doi:10.1063/1.4936099. [CrossRef]

124. Oliveira, J.I.N.; Albuquerque, E.L.; Fulco, U.L.; Mauriz, P.W.; Sarmento, R.G.; Caetano, E.W.S.; Freire, V.N.
Conductance of single microRNAs chains related to the autism spectrum disorder. EPL 2014, 107, 68006,
doi:10.1209/0295-5075/107/68006. [CrossRef]

https://doi.org/10.2307/2313883
http://dx.doi.org/10.2307/2313883
https://doi.org/10.2307/1989933
http://dx.doi.org/10.1090/S0002-9947-1939-0000352-9
https://doi.org/10.1016/j.jnoncrysol.2003.11.021
http://dx.doi.org/10.1016/j.jnoncrysol.2003.11.021
https://doi.org/10.1063/1.1521239
http://dx.doi.org/10.1063/1.1521239
https://doi.org/10.1088/0305-4470/28/8/022
http://dx.doi.org/10.1088/0305-4470/28/8/022
https://doi.org/10.1142/S0129055X92000029
http://dx.doi.org/10.1142/S0129055X92000029
https://doi.org/10.1016/S0076-5392(08)62368-1
https://doi.org/10.1016/j.susc.2006.01.081
http://dx.doi.org/10.1016/j.susc.2006.01.081
https://doi.org/10.1088/0953-8984/20/7/075109
http://dx.doi.org/10.1088/0953-8984/20/7/075109
https://doi.org/10.1016/j.physleta.2016.07.069
http://dx.doi.org/10.1016/j.physleta.2016.07.069
https://doi.org/10.1201/9781420068283
http://dx.doi.org/10.1201/9781420068283
https://doi.org/10.1103/PhysRevB.71.113106
http://dx.doi.org/10.1103/PhysRevB.71.113106
https://doi.org/10.1063/1.4764310
http://dx.doi.org/10.1063/1.4764310
https://doi.org/10.1147/rd.13.0223
http://dx.doi.org/10.1147/rd.13.0223
https://doi.org/10.1147/rd.323.0317
http://dx.doi.org/10.1147/rd.323.0317
https://doi.org/10.1142/S021798490400744X
http://dx.doi.org/10.1142/S021798490400744X
https://doi.org/10.1166/jnn.2018.15339
http://dx.doi.org/10.1166/jnn.2018.15339
https://doi.org/10.1063/1.4934507
http://dx.doi.org/10.1063/1.4934507
https://doi.org/10.1166/jnn.2013.7206
http://dx.doi.org/10.1166/jnn.2013.7206
https://doi.org/10.1063/1.4936099
http://dx.doi.org/10.1063/1.4936099
https://doi.org/10.1209/0295-5075/107/68006
http://dx.doi.org/10.1209/0295-5075/107/68006


Symmetry 2019, 11, 968 26 of 26

125. Sarmento, R.G.; Silva, R.N.O.; Madeira, M.P.; Frazão, N.F.; Sousa, J.O.; Macedo-Filho, A. Electronic
Transport in Single-Stranded DNA Molecule Related to Huntington’s Disease. Braz. J. Phys. 2018,
48, 155–159.10.1007/s13538-018-0554-z. [CrossRef]

126. Walker, F.O. Huntington’s disease. Lancet 2007, 369, 218–228.10.1016/S0140-6736(07)60111-1. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1007/s13538-018-0554-z
http://dx.doi.org/10.1007/s13538-018-0554-z
https://doi.org/10.1016/S0140-6736(07)60111-1
http://dx.doi.org/10.1016/S0140-6736(07)60111-1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Tight-Binding and Its Application in Nucleic Acids
	Wire Model
	Ladder Model
	Extended Ladder Model
	Fishbone Model
	Fishbone Ladder Model
	Additional Remarks

	Aperiodic One-Dimensional Wires
	Aperiodic Substitutional Sequences
	Primitive Substitutions and the Perron–Frobenius Eigenvalue
	Induced Substitutions
	The Pisot Property

	Energy Structure of Nucleic Acid Wires
	Coupling Nucleic Acids with Leads: Transmission Coefficients
	Current–Voltage Curves
	Conclusions
	References

