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Abstract: In studying spherical submanifolds as submanifolds of a round sphere, it is more relevant
to consider the spherical Gauss map rather than the Gauss map of those defined by the oriented
Grassmannian manifold induced from their ambient Euclidean space. In that sense, we study
ruled surfaces in a three-dimensional sphere with finite-type and pointwise 1-type spherical Gauss
map. Concerning integrability and geometry, we set up new characterizations of the Clifford
torus and the great sphere of 3-sphere and construct new examples of spherical ruled surfaces
in a three-dimensional sphere.
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1. Introduction

In the 1960s, T. Takahashi proved that an isometric immersion x : M → Em of a Riemannian
manifold M into a Euclidean space Em satisfies ∆x = λx (λ 6= 0) if, and only if, it is part of a
hypersphere or a minimal submanifold of a hypersphere, where ∆ denotes the Laplacian of M [1] .
Generalizing such an eigenvalue problem of immersion, B.-Y. Chen introduced the notion of finite-type
immersion of a Riemannian manifold M into a Euclidean space Em in the late 1970s. Since then,
it has been used as a remarkably useful tool in differential geometry to classify and characterize
many manifolds including minimal submanifolds in Em. In particular, minimal submanifolds of
Euclidean space are considered as a spacial case of submanifolds of the finite-type, in fact they are of
1-type [2,3]. Thanks to Nash’s embedding theorem of Riemannian manifolds, it has been a natural
consideration of Riemannian manifolds as submanifolds in Euclidean space along with the notion of
finite-type immersion.

A ruled surface or a ruled submanifold of Euclidean space or Minkowski space is one of the most
natural geometric objects in classical differential geometry which has been examined under finite-type
related geometric conditions [4–7]. The well-known Catalan’s Theorem says that the only minimal
ruled surfaces in Euclidean 3-space are the planes and the helicoids. A general ruled submanifold of
a smooth manifold is defined by a foliation of totally geodesic submanifolds along a smooth curve.
In [8], it was shown that a regular and connected ruled surface M in S3 is of finite-type if and only if it
is an open part of a ruled minimal surface in S3 or an open part of a Riemannian product of two circles
of different radii.

Such a theory of finite-type immersion in a Riemannian sense was naturally extended to an
isometric immersion of a manifold M into a pseudo-Euclidean space Em

s with index s and the smooth
functions defined on a submanifold in Em or Em

s . In particular, the Gauss map on a submanifold in
Em or Em

s is the most interesting and useful object which involves rich geometrical and topological
properties on the submanifold.
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Regarding the Gauss map of finite-type, B.-Y. Chen and P. Piccinni initiated the study of
submanifolds with a finite-type Gauss map in Euclidean space [9]. Many works about submanifolds
in Em or Lm with a finite-type Gauss map have been achieved [9–13]. In [10], C. Baikoussis showed
that the only ruled submanifolds Mn+1 in Euclidean space Em with a finite-type Gauss map are the
cylinders over curves of finite-type and the (n + 1)-dimensional Euclidean spaces. Ruled surfaces and
ruled submanifolds with a finite-type Gauss map in Minkowski space were examined and completely
classified in [6,14–17].

During the last ten years or so, the present authors et. al have worked on submanifolds of
Euclidean or pseudo-Euclidean space which look similar to those of 1-type Gauss maps, which is
called pointwise 1-type. For example, the Gauss maps G of the helicoid and the right cone in E3

satisfy ∆G = f (G + C) for a nonzero smooth function f and a constant vector C (cf. [18–20]) . Since
it was introduced in [18], many works concerning pointwise 1-type Gauss maps were established
in [19–24]. In [22], the authors showed that the ruled submanifold M in Em is minimal if, and only
if, the Gauss map G of M is pointwise 1-type of the first kind. The classification theorems of ruled
submanifolds in the Euclidean space Em and the Minkowski space Lm with pointwise 1-type Gauss
maps were completed [25,26].

On the other hand, one of the important manifolds in differential geometry is a sphere or a
spherical submanifold. Regarding such manifolds, Obata studied the spherical Gauss map for a
spherical submanifold M in the unit hypersphere Sm (⊂ Em+1) [27]. The set S of all the great n-spheres
in Sm is naturally identified with the oriented Grassmannian manifold of (n + 1)-planes through the
center of Sm in Em+1 because such (n+ 1)-planes determine unique great n-spheres and conversely [27]:
A spherical Gauss map of an immersion x of a Riemannian manifold M into Sm is a map of M into the
oriented Grassmannian manifold G(n+ 1, m+ 1) which assigns to each point p of M the great n-sphere
tangent to M at x(p), or the (n + 1)-plane spanned by the tangent space of M at x(p) and the normal to
Sm at x(p) in Em+1. Granted, the spherical Gauss map is more meaningful than the classical Gauss map
in the study of spherical submanifolds (cf. [28,29]). Extending the notion of finite-type Gauss maps
of submanifolds of Euclidean space in the usual sense, B.-Y. Chen and H.-S. Lue initiated the study
of spherical submanifolds with finite-type spherical Gauss maps and obtained several fundamental
results in this respect [28]. Recently, some works on spherical submanifolds with low-type spherical or
pseudo-spherical Gauss maps have been made [30–32].

In this article, we study ruled surfaces in S3 by means of the spherical Gauss map to characterize
the Clifford torus and the great sphere in the three-dimensional unit sphere S3.

In the present paper, all geometric objects are assumed to be smooth, and manifolds under
consideration are connected unless otherwise stated.

2. Preliminaries

Let x : M→ Sm−1 be an isometric immersion of an n-dimensional Riemannian manifold M into
a unit sphere Sm−1(⊂ Em). We identify x with its position in a vector field. Let (y1, y2, . . . , ym) be
a local coordinate system of M in Sm−1. For the components gij of the Riemannian metric 〈·, ·〉 on
M induced from that of Sm−1, we denote by (gij) (respectively, G) the inverse matrix (respectively,
the determinant) of the matrix (gij). Then the Laplace operator ∆ on M is defined by

∆ = − 1√
G ∑

i,j

∂

∂yi
(
√
Ggij ∂

∂yj
).

An immersion x of a manifold M into Sm−1 is said to be of finite-type if its position vector field x
can be expressed as a finite sum of spectral decomposition as follows

x = x0 + x1 + · · ·+ xk
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for some positive integer k, where x0 is a constant vector, and ∆xi = λixi for some λi ∈ R, i = 1, . . . , k.
If λ1, . . . , λk are mutually different, M is said to be of k-type. Similarly, a smooth map φ on an
n-dimensional submanifold M of Sm−1 is said to be of finite-type if φ is a finite sum of Em-valued
eigenfunctions of ∆. In particular, we say that a smooth map φ is harmonic if ∆φ = 0. If the manifold
M is compact without boundary, a harmonic map is constant and thus it is of finite-type. In general,
harmonic smooth map is not necessarily of finite-type if M is not compact.

Let Π be an oriented n-plane in Em and e1, ..., en an orthonormal basis of Π. If we identify an
oriented n-plane Π with a decomposable n vector e1 ∧ · · · ∧ en defined by the exterior algebra in a
natural way, the oriented Grassmannian manifold G(n, m) can be regarded as the set of all oriented
n-planes in EN = ΛnEm, where N = (m

n). Moreover, we can define an inner product in G(n, m) by

� ei1 ∧ · · · ∧ ein , ej1 ∧ · · · ∧ ejn �= det(〈eil , ejk 〉)

for two vectors ei1 ∧ · · · ∧ ein and ej1 ∧ · · · ∧ ejn in EN .
From now on we assume that the unit sphere Sm−1 is centered at the origin in Em. We identify

each tangent vector X of M in Sm−1 with the differential dx(X).
For a spherical submanifold M in Sm−1, the position vector x of each point p of Sm−1 and an

orthonormal basis {e1, e2, ..., en} of the tangent space Tp M determine an oriented (n + 1)-plane in Em.
Thus, we can have a map

G : M→ G(n + 1, m)

via G(p) = x ∧ e1 ∧ · · · ∧ en. We call G the spherical Gauss map of M in Sm−1. This map can be
viewed as

G : M→ G(n + 1, m) ⊂ S(
m

n+1)−1 ⊂ E( m
n+1)

by considering the norm of vectors. We now define the pointwise 1-type spherical Gauss map of the
spherical submanifold.

Definition 1. An oriented n-dimensional submanifold M of Sm−1 is said to have pointwise 1-type spherical
Gauss map G if it satisfies the partial differential equation

∆G = f (G + C) (1)

for a nonzero smooth function f on M and some constant vector C. In particular, if C is zero, the spherical
Gauss map G is said to be pointwise 1-type of the first kind. Otherwise, it is said to be of the second kind.

3. Ruled Surfaces in S3 with Harmonic Spherical Gauss Maps

Let M be a ruled surface in the sphere S3 (⊂ E4). Then, it is foliated by geodesics of S3 along a
spherical curve. So, we can put its parametrization with spherical curves α = α(s) and β = β(s) by

x = x(s, t) = cos tα(s) + sin tβ(s), s ∈ I, t ∈ J, (2)

where I and J are some open intervals. Without loss of generality, we may assume that

〈α, α〉 = 〈β, β〉 = 〈α′, α′〉 = 1 and 〈α, β〉 = 〈α′, β〉 = 0. (3)

From now on, we always assume that the Parametrization (2) satisfies Condition (3) unless
otherwise stated. Then, the spherical Gauss map G of M is given by

G =
x ∧ xs ∧ xt

||x ∧ xs ∧ xt||
=

1
√

q

(
cos tα(s) ∧ α′(s) ∧ β(s) + sin tα(s) ∧ β′(s) ∧ β(s)

)
, (4)
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where the function q = q(s, t) is defined by

q = 〈xs, xs〉 = cos2 t + 2u(s) cos t sin t + w(s) sin2 t, (5)

where u(s) = 〈α′, β′〉 and w(s) = 〈β′, β′〉 are functions of s.
By the definition of the Laplace operator ∆, we have

∆G =− q−
7
2 (qs)

2(cos tA + sin tB) +
3
2

q−
5
2 qs(cos tA′ + sin tB′)

+
1
2

q−
5
2 qss(cos tA + sin tB)− q−

3
2 (cos tA′′ + sin tB′′)

− 1
2

q−
5
2 (qt)

2(cos tA + sin tB) +
1
2

q−
3
2 qt(− sin tA + cos tB)

+
1
2

q−
3
2 qtt(cos tA + sin tB) + q−

1
2 (cos tA + sin tB),

(6)

where we have put

A = A(s) = α(s) ∧ α′(s) ∧ β(s) and B = B(s) = α(s) ∧ β′(s) ∧ β(s).

On the other hand, we note that the vector fields α(s), β(s) and α′(s) are mutually orthogonal for
all s. Therefore, we can choose another unit vector field γ(s) along the base curve α which forms an
orthonormal frame in E4 together with α(s), β(s) and α′(s).

Since Λ3E4 is naturally identified with E4, we can define the inner product X1 ∧ X2 ∧ X3 with X4

as follows

� X1 ∧ X2 ∧ X3, X4 �= det


X4

X1

X2

X3

 ,

where the determinant is taken by the 4× 4 matrix made up of the components of the vectors X1, X2,
X3, X4 in E4. Using this inner product, the vector field A is represented by

A = −α ∧ β ∧ α′ = − � α ∧ β ∧ α′, γ(s)� γ(s) = −γ(s)

by considering the orientation and the lengths of vectors. Similarly, we also have

� (α ∧ β ∧ α′)(s), γ(s)�= 1,

� (α ∧ β ∧ γ)(s), α′(s)�= −1,

� (α ∧ α′ ∧ γ)(s), β(s)�= 1,

� (β ∧ α′ ∧ γ)(s), α(s)�= −1

(7)

for all s. By virtue of (7), we can obtain the following
A =− γ,

A′ =bβ + ϕα′,

A′′ =− ϕα + (b′ − uϕ)β + (ub + ϕ′)α′ + (b2 + ϕ2)γ,
B =bα′ − uγ,

B′ =− bα + (b′ + uϕ)α′ + (bϕ− u′)γ,

B′′ =− (2b′ + uϕ)α + (u′b− ub′ − u2 ϕ− b2 ϕ)β

+ (b′′ + 2u′ϕ + uϕ′ − b− bϕ2)α′ + (2b′ϕ + uϕ2 + bϕ′ − u′′)γ,

(8)
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which imply that the spherical Gauss map G represented by (4) reduces to

G =
1
√

q

(
(b sin t)α′ − (cos t + u sin t)γ

)
, (9)

where we have put b = b(s) = 〈β′(s), γ(s)〉 and ϕ = ϕ(s) = 〈α′′(s), γ(s)〉.

Theorem 1. Let M be a ruled surface in the sphere S3. Then, M has a harmonic spherical Gauss map if and
only if M is totally geodesic in S3.

Proof. Suppose that the spherical Gauss map G is harmonic, i.e., ∆G = 0, where 0 denotes zero vector.
Then, (6) implies {

− (qs)
2 +

1
2

qqss −
1
2

q(qt)
2 +

1
2

q2qtt + q3
}
(cos tA + sin tB)

+
3
2

qqs(cos tA′ + sin tB′)− q2(cos tA′′ + sin tB′′) +
1
2

q2qt(− sin tA+ cos tB) = 0.
(10)

By the orthogonality of vector fields α, β, α′ and γ, putting (8) into (10) gives us

3
2

qqsb sin t− q2 ϕ cos t− q2
(

2b′ + uϕ
)

sin t = 0, (11)

3
2

qqsb cos t− q2
(

b′ − uϕ
)

cos t− q2
(

u′b− ub′ − u2 ϕ− b2 ϕ
)

sin t = 0 (12)

as the coefficients of the vectors α and β, respectively. Using the equation for q of (5) and the fact that
q > 0, (11) and (12) can be expressed as

−ϕ cos3 t +
(
− 3uϕ− 2b′

)
cos2 t sin t

+
(

3u′b− 4ub′ − 3u2 ϕ− b2 ϕ
)

cos t sin2 t

+
(

3uu′b + b2b′ − 2u2b′ − u3 ϕ− ub2 ϕ
)

sin3 t = 0

(13)

and (
uϕ− b′

)
cos3 t +

(
2u′b + 3u2 ϕ− ub′ + b2 ϕ

)
cos2 t sin t

+
(

uu′b + 2b2b′ + 3u3 ϕ + 3ub2 ϕ + u2b′
)

cos t sin2 t

+
(

u4 ϕ + b4 ϕ + u3b′ − u2u′b + 2u2b2 ϕ + ub2b′ − u′b3
)

sin3 t = 0,

(14)

respectively. We easily see that the trigonometric functions of t of (13) and (14) are linearly independent
for all t. Therefore, we can see that

ϕ = 0 and b′ = 0 (15)

by considering the coefficients of the terms containing ‘cos3 t’ of (13) and (14), respectively. From the
coefficients of the term containing ‘cos t sin2 t’ of (13), we get

u′b = 0. (16)

Suppose that b is a nonzero constant on M. Then, (11) and (16) imply qs = 0. Putting it into (10) yields{
− 1

2
(qt)

2 +
1
2

qqtt + q2
}
(cos tA + sin tB)

−q(cos tA′′ + sin tB′′) +
1
2

qqt(− sin tA + cos tB) = 0.
(17)
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In this case, the vectors are reduced to 
A = −γ,

A′′ = ubα′ + b2γ,

B = bα′ − uγ,

B′′ = −bα′.

(18)

Using (18), we note that Equation (17) can be regarded as the form of the linear combination of two
orthogonal vectors α′ and γ with trigonometric functions in t as coefficients. By a straightforward
computation, we can see that the coefficient of γ of (17) is given by

−2b2(cos5 t+u cos4 t sin t + 2 cos3 t sin2 t + 2u cos2 t sin3 t + cos t sin4 t + u sin5 t)

= −2b2(cos t + u sin t)(cos2 t + sin2 t)2

= −2b2(cos t + u sin t) = 0

which implies that b = 0, a contradiction to b 6= 0. Therefore, the constant b is zero. With the help of
(15), we get from (8) that

A′ = 0 and B = uA.

Since the spherical Gauss map G = − 1√
q (cos t + u sin t)γ is a unit normal vector field of the ruled

surface M to the unit sphere S3, it is easily obtained that the shape operator S of M in S3 vanishes,
i.e., M is totally geodesic in S3.

Conversely, if M is a totally geodesic surface of S3, i.e., M is a great sphere of S3, it is not hard to
show that the spherical Gauss map of M is harmonic. It completes the proof.

4. A Ruled Surface in S3 with a Finite-Type Spherical Gauss Map

In this section, we will investigate a ruled surface M in S3 parameterized by (2) with a finite-type
spherical Gauss map.

Using (6), (8) and (9), the Laplacian ∆G can be put as

∆G = − (qs)2

q
7
2

(
(b sin t)α′ − (cos t + u sin t)γ

)
+

1

q
5
2

P1(s, t),

where P1 is a vector field formed with the linear combination of the orthogonal vector fields α, β, α′

and γ together with the coefficients of trigonometric functions in t and functions in s. Proceeding by
induction, we get

∆mG = am
(qs)2m

q3m+ 1
2

(
(b sin t)α′ − (cos t + u sin t)γ

)
+

1

q3m− 1
2

Pm(s, t) (19)

for any positive integer m, where Pm is a vector field formed with the linear combination of the
orthogonal vector fields α, β, α′ and γ together with the coefficients of trigonometric functions in t and
functions in s, and am is a nonzero constant satisfying am = (3m− 1)( 5

2 − 3m)am−1 with a0 = 1.
Suppose that the spherical Gauss map G of M is of finite-type. Then, we have

∆kG + c1∆k−1G + c2∆k−2G + · · ·+ ck−1∆G = 0 (20)

for some constants c1, c2, . . . , ck−1 ∈ R and a positive integer k. By the orthogonality of the vectors α, β,
α′ and γ, substituting (19) into (20) gives us the coefficients of α′ and γ as follows

(qs)
2kb sin t = qF1(s, t)
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and
(qs)

2k(cos t + u sin t) = qF2(s, t),

respectively, from which,(
2u′ cos t sin t + w′ sin2 t

)2k(
cos t + (u + b) sin t

)
=
(

cos2 t + 2u cos t sin t + w sin2 t
)

F(s, t)
(21)

for some polynomials F1 and F2 in ‘cos t’ and ‘sin t’ with functions of s as coefficients, where F(s, t) =
F1(s, t) + F2(s, t).

By the linear independence of the trigonometric functions cos2 t, cos t sin t and sin2 t, we may put

F(s, t) = (qs)
l R(s, t) = (2u′ cos t sin t + w′ sin2 t)l R(s, t),

where l is a non-negative integer less than 2k and R(s, t) is some polynomial in ‘cosn−k t sink t’,
k = 0, 1, . . . , n, with functions in s as coefficients such that R(s, t) and qs are relatively prime. That is,
R(s, t) is of the form

R(s, t) =
n

∑
k=0

Γk(s) cosn−k t sink t

for some functions Γk in s. Here, the degree of R(s, t) is n. Then, (21) becomes(
2u′ cos t sin t + w′ sin2 t

)2k−l(
cos t + (u + b) sin t

)
=
(

cos2 t + 2u cos t sin t + w sin2 t
)

R(s, t).
(22)

By putting θ = tan t in (22), we get

( 2u′θ
(1 + θ2)

+
w′θ2

(1 + θ2)

)2k−l( 1√
1 + θ2

+
(u + b)θ√

1 + θ2

)
=
( 1
(1 + θ2)

+
2uθ

(1 + θ2)
+

wθ2

(1 + θ2)

) 1

(
√

1 + θ2)n
R̄(s, θ),

or, equivalently, (
2u′θ + w′θ2

)2k−l(
1 + θ2

) n
2 +1(

1 + (u + b)θ
)

= (1 + 2uθ + wθ2)
(

1 + θ2
)2k−l+ 1

2
R̄(s, θ),

(23)

where R̄(s, θ) is a polynomial in θ with functions in s as coefficients such that

R̄(s, θ) =
(√

1 + θ2
)n

R(s, t(θ)).

We note that two polynomials (2u′θ + w′θ2) and R̄(s, θ) are relatively prime, where the former
one is obtained from qs.

Now, we will deal with possible cases derived from (23). Considering the degree of (23) with
respect to θ and the linear independence of (2u′θ + w′θ2) and R̄(s, θ), we can put(

2u′θ + w′θ2
)2k−l

= λ(s)(1 + 2uθ + wθ2)
(

1 + θ2
)2k−l−1

,

or, (
2u′θ + w′θ2

)2k−l
(1 + θ2) = λ(s)(1 + 2uθ + wθ2)

(
1 + θ2

)2k−l
(24)
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for some function λ in s.
Recall that (24) is a polynomial in θ. So, by comparing the smallest power of both sides of (24)

with respect to θ, we can see that ‘2k− l’ must be zero. Therefore, (24) becomes of the form

(1 + θ2) = λ(s)(1 + 2uθ + wθ2).

It follows that
u = 0 and w = 1,

from which, we get the function q is constant with value 1 and the metric tensor g of M is given by

g =

(
1 0
0 1

)
,

from which, we see that M is flat in E4. It also gives us ∆x = 2x and hence M is minimal
in S3. Therefore, M is one of the isoparametric surfaces in S3, which is the Clifford torus
S1(1/

√
2)× S1(1/

√
2).

Together with Theorem 1, we have

Theorem 2. Let M be a complete ruled surface in the sphere S3 with finite-type spherical Gauss map. Then, M
is either the Clifford torus S1(1/

√
2)× S1(1/

√
2) or a totally geodesic surface in S3.

Corollary 1. Let M be a ruled surface in the sphere S3. If the spherical Gauss map G of M is of finite-type, then
both M and G are of 1-type. In particular, ∆x = 2x and either ∆G = 0 or ∆G = 2G.

5. Ruled Surfaces in S3 with Pointwise 1-Type Spherical Gauss Maps of the First Kind

In this section, we will study a ruled surface in S3 with pointwise 1-type spherical Gauss map G
of the first kind, i.e., ∆G = f G for some nonzero smooth function f . Let M be a ruled surface in the
sphere S3 (⊂ E4) parameterized by (2). Then, using (6), equation ∆G = f G gives{

− (qs)
2 +

1
2

qqss −
1
2

q(qt)
2 +

1
2

q2qtt + (1− f )q3
}
(cos tA + sin tB)

+
3
2

qqs(cos tA′ + sin tB′)− q2(cos tA′′ + sin tB′′) +
1
2

q2qt(− sin tA + cos tB) = 0.
(25)

With the help of (8), by comparing two equations, (10) and (25), we can see that the coefficients of
the vectors α and β of (25) coincide with those of α and β of (10). Therefore, we obtain (13) and (14), or,
equivalently, we have

ϕ = 0, b′ = 0 and u′b = 0.

Similarly as we did to the constant b in Section 3, we will show the constant b is nonzero and
hence u is a constant. Suppose that b = 0 on M. ∆G = f G with b = 0 gives{

− (qs)
2 +

1
2

qqss −
1
2

q(qt)
2 +

1
2

q2qtt + (1− f )q3
}
(− cos t− u sin t)

+
3
2

qqs(−u′ sin t)− q2(−u′′ sin t) +
1
2

q2qt(sin t− u cos t) = 0,

from which,
f (cos t + u sin t)7 = 0.
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It implies that f is vanishing. It is a contradiction and thus we conclude that b is nonzero. Then,
we have qs = 0. With the help of (18), (25) is reduced to{

− 1
2
(qt)

2 +
1
2

qqtt + (1− f )q2
}
(cos tA + sin tB)

−q(cos tA′′ + sin tB′′) +
1
2

qqt(− sin tA + cos tB) = 0

which provides us with

f q2 sin t =
{
− 1

2
(qt)

2 +
1
2

qqtt + q2 + q
}

sin t +
(1

2
qqt − uq

)
cos t

as the coefficients of the vector α′.
We note that w = u2 + b2. By a straightforward computation, we get

f =
2b2

q2 .

Consequently, if a ruled surface M has pointwise 1-type spherical Gauss map of the first kind,
we see that the constant b is nonzero and ϕ = 0, that is, the curves α and β satisfy

α′ ∧ β′ 6= 0 and α′′ ∧ α ∧ β = 0 (26)

for all s. Now, we consider the curve δ(s) on the sphere S3(
√

u2+1
b2 ) given by

δ(s) = −u
b

α(s) +
1
b

β(s).

We note that the curve δ(s) is an integral curve of γ, that is, δ′ = γ. Then, we can easily show that
the spherical Gauss map G of a ruled surface M in S3 parameterized by

M : x(s, t) = α(s) cos t + β(s) sin t

=
(

cos t + u sin t
)

α(s) + b sin tδ(s)
(27)

is of pointwise 1-type of the first kind. Indeed, it follows that

∆G =
(2b2

q2

)
G.

Therefore, we have

Theorem 3. Let M be a ruled surface in the unit sphere S3. If M has pointwise 1-type spherical Gauss map of
the first kind, then M is part of the ruled surface in S3 parameterized by (27) satisfying (26).

Example 1. The curves α(s) and δ(s), given by

α(s) =
( 1√

2
cos s,

1√
2

sin s,
1√
2

cos s,
1√
2

sin s
)

and
δ(s) =

( 1
2
√

2
sin(2s),− 1

2
√

2
cos(2s),− 1

2
√

2
sin(2s),

1
2
√

2
cos(2s)

)
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are unit speed curves on the sphere S3 and the sphere S3( 1
2 ), respectively. In this case, it is clear that u = 0 and

b = 2. Then, the ruled surface M in the sphere S3 defined by

M : x(s, t) = α(s) cos t + 2δ(s) sin t

=
1√
2

(
cos t cos s + sin t sin(2s), cos t sin s− sin t cos(2s),

cos t cos s− sin t sin(2s), cos t sin s + sin t cos(2s)
)

has pointwise 1-type spherical Gauss map G of the first kind

∆G =
8(

cos2 t + 4 sin2 t
)2 G.

6. Ruled Surfaces in S3 with Pointwise 1-Type Spherical Gauss Maps of the Second Kind

In this section, we will investigate a ruled surface M in S3 parameterized by (2) with a pointwise
1-type spherical Gauss map of the second kind, that is, the spherical Gauss map G of M satisfies

∆G = f (G + C)

for some nonzero function f of s and t and a non-zero constant vector C. If we consider a non-empty
open subset U = {(s, t) ∈ I × J | f (s, t) 6= 0}, then we can put

C =
∆G− f G

f
(28)

which yields that
f (∆G− f G)t = ft(∆G− f G) (29)

on U.

Now, we consider the open subset U0 = {(s, t) ∈ U | ft(s, t) 6= 0} and suppose that U0 is
non-empty. With the help of (8) and (25), we can get from (29),

f (q−
7
2 P)t = ft(q−

7
2 P) and f (q−

7
2 Q)t = ft(q−

7
2 Q), (30)

or, equivalently,

f
(
− 7

2
qtP + qPt

)
= q ftP and f

(
− 7

2
qtQ + qQt

)
= q ftQ

as the coefficients of the vectors α and β of (29), respectively, where we have put

P(s, t) =
3
2

qqsb sin t− q2 ϕ cos t− q2
(

uϕ + 2b′
)

sin t (31)

and
Q(s, t) =

3
2

qqsb cos t + q2
(

uϕ− b′
)

cos t− q2
(

u′b− ub′ − u2 ϕ− b2 ϕ
)

sin t. (32)

Now, we will consider a few lemmas to reach a conclusion for this section.
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Lemma 1. Let M be a ruled surface in the unit sphere S3 parameterized by (2) with a pointwise 1-type spherical
Gauss map of the second kind. If U0 = {(s, t) ∈ I × J | ft(s, t) 6= 0 } (⊂ U) is non-empty, then

α′ ∧ β′ = 0 on U0.

Proof. We suppose that the function b(s) is non-vanishing on some open set U1 of U0. We first consider
the case that at least one of two equations P(s, t) and Q(s, t) is vanishing on some subset of U1, say
P(s, t) = 0. Then, we can easily show that

ϕ = 0 and b′ = 0 (33)

by considering the linear independence of the trigonometric functions of (31). Since b is a nonzero
constant, (31) and (33) imply qs = 0. Thus, the function Q(s, t) of (32) has to be identically zero on that
subset U1. Similarly, if Q(s, t) = 0, we can derive P(s, t) = 0. Therefore, we suppose that both Φ(s, t)
and Ψ(s, t) are identically zero on U1. In this case, Equation (29) can be put as(

ftq−
5
2 Λ1

)
α′ +

(
ftq−

5
2 Λ2

)
γ =

(
f (q−

5
2 Λ1)t

)
α′ +

(
f (q−

5
2 Λ2)t

)
γ

which yields that
ft

f
=

(q−
5
2 Λ1)t

q−
5
2 Λ1

=
(q−

5
2 Λ2)t

q−
5
2 Λ2

(34)

by comparing the coefficients of two orthogonal vectors α′ and γ, where we have put

Λ1(s, t) =
{
− 1

2
(qt)

2 +
1
2

qqtt + (1− f )q2

}
b sin t− qb(u cos t− sin t) +

1
2

qqtb cos t (35)

and
Λ2(s, t) =

{1
2
(qt)

2 − 1
2

qqtt − (1− f )q2

}
(cos t + u sin t)

− qb2 cos t +
1
2

qqt(sin t− u cos t).
(36)

By taking the integration to (34) with respect to t, we see that the function f takes the form

f = y1(s)(q−
5
2 Λ1) = y2(s)(q−

5
2 Λ2) (37)

for some non-vanishing functions y1 and y2 of s. If we put (35) and (36) into (37), then we can obtain
the formulas for f as

f =
2b3y1(s) sin t

q2
(

q
1
2 + by1(s) sin t

) =
−2b2y2(s)(cos t + u sin t)

q2
(

q
1
2 − y2(s)(cos t + u sin t)

) . (38)

Comparing the last two equations in (38), we get(
y2 cos t + (by1 + uy2) sin t

)
q

1
2 = 0

which implies
y2(s) = 0 and y1(s) = 0
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because of q 6= 0, but it contradicts f 6= 0. Consequently, this case never occurs. Therefore, we may
assume that both P(s, t) and Q(s, t) are both non-vanishing on U1(⊂ U0). Then, equations of (30) give

ft

f
=

(q−
7
2 P)t

(q−
7
2 P)

=
(q−

7
2 Q)t

(q−
7
2 Q)

(39)

on U1 and thus the function f is of the form

f = g1(s)q−
7
2 P(s, t) = g2(s)q−

7
2 Q(s, t) (40)

which implies

g1(s)
{3

2
b(2u′ cos t sin2 t + w′ sin3 t)− ϕ(cos3 t + 2u cos2 t sin t + w cos t sin2 t)

−
(

uϕ− 2b′
)
(cos2 t sin t + 2u cos t sin2 t + w sin3 t)

}
= g2(s)

{3
2

b(2u′ cos2 t sin t + w′ cos t sin2 t)

+
(

uϕ− b′
)
(cos3 t + 2u cos2 t sin t + w cos t sin2 t)

−
(

u′b− ub′ − u2 ϕ− b2 ϕ
)
(cos2 t sin t + 2u cos t sin2 t + w sin3 t)

}
(41)

for some non-vanishing functions g1 and g2 of s on U1 because of q > 0. By the linear independence of
trigonometric functions cos3−k t sink t of (41) for k = 0, . . . , 3, we have

g1 ϕ = g2

(
b′ − uϕ

)
, (42)

g1

(
− 3uϕ− 2b′

)
= g2

(
2u′b + 3u2 ϕ− ub′ + b2 ϕ

)
, (43)

g1

(
3u′b− 4ub′ − 3u2 ϕ− b2 ϕ

)
= g2

(
uu′b + 2b2b′ + 3u3 ϕ + 3ub2 ϕ + u2b′

)
(44)

and
g1

(
3uu′b + b2b′ − 2u2b′ − u3 ϕ− ub2 ϕ

)
= g2

(
u4 ϕ + b4 ϕ + u3b′ − u2u′b + 2u2b2 ϕ + ub2b′ − u′b3

) (45)

as the coefficients of terms containing ‘cos3 t’, ‘cos2 t sin t’, ‘cos t sin2 t’ and ‘sin3 t’, respectively.
Substituting (42) into (43), we get

−2b′g1 = g2

(
2ub′ + 2u′b + b2 ϕ

)
(46)

which implies

u′bg1 = g2

(
− uu′b + b2b′

)
(47)

with the aid of (42) and (44). Finally, putting (42), (46) and (47) into (45) allows us to have

3
2

b4 ϕg2 = 0

and hence ϕ = 0 because b and g2 are non-vanishing on U1. From (42) and (43), we can see that

b′ = 0 and u′ = 0,
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or, equivalently,
qs = 0 on U1.

Since ϕ = 0 and qs = 0 on U1, the non-vanishing function P(s, t) of (31) on U0 becomes identically
zero on U1 ⊂ U0, a contradiction. Therefore, we conclude that the set U1 is empty, which means that
β′ = uα′ on U0 as we desired.

Now, we will examine the set x(U0) of S3. In Lemma 1, we showed that b = 〈β′, γ〉 = 0 on U0.
Then, we have

q = (cos t + u(s) sin t)2

and the spherical Gauss map G of (9) is given by

G = −γ. (48)

From (41), we see that (
(g1 + ug2)ϕ

)
(s) = 0 on U0. (49)

If ϕ = 0 on some subset U2 of U0 with int(U2) 6= ∅, then

G′ = (−γ)′ = ϕα′ = 0

which means that the spherical Gauss map G is constant and thus ∆G = 0 on that subset. Since
the spherical Gauss map is of pointwise 1-type of the second kind and C is a constant vector,
G = −C globally.

Now, we suppose that the function ϕ is non-vanishing on U0. From (49), we see that (g1 +ug2) ≡ 0
on U0 and then, the function f of (40) is simplified as

f (s, t) = − ϕ(s)g1(s)
(cos t + u(s) sin t)2 , (50)

so equation ∆G = f (G + C) can be expressed as follows

u′ sin t
(cos t + u sin t)3 γ′ − 1

(cos t + u sin t)2 γ′′ =
ϕg1

(cos t + u sin t)2 (−γ + C).

With the help of (8), it follows that

u′ϕ sin tα′ + (cos t + u sin t)(ϕα + uϕβ− ϕ′α′ − ϕ2γ)

= ϕg1(cos t + u sin t)(γ−C)
(51)

which guarantees that
ϕα + uϕβ− ϕ′α′ − ϕ2γ = ϕg1(γ−C) (52)

by considering the terms containing ‘cos t’. Thus, the constant vector C can be put

C = − 1
g1

α− u
g1

β +
ϕ′

ϕg1
α′ +

( ϕ

g1
+ 1
)

γ, (53)

from which,

0 =−
(( 1

g1

)′
+

ϕ′

ϕg1

)
α−

(( u
g1

)′
+

uϕ′

ϕg1

)
β

+
(
− 1

g1
− u2

g1
+
( ϕ′

ϕg1

)′
− ϕ2

g1
− ϕ

)
α′ +

( ϕ′

g1
+
( ϕ

g1

)′)
γ.
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By (51) and (52), we note that u′ = 0 on U0. Thus, the above equation provides us with the
following equations 

( 1
g1

)′
= − ϕ′

ϕg1
,( ϕ′

ϕg1

)′
=

1 + u2 + ϕ2

g1
+ ϕ,( ϕ

g1

)′
= − ϕ′

g1

(54)

as the coefficients of the orthogonal vectors. Comparing the first and the third equations of (54),
we can obtain

ϕ′ = 0

which yields that

g′1 = 0 and
(1 + u2 + ϕ2

g1
+ ϕ

)
= 0 on U0.

Therefore, we see that the function ϕ is nonzero constant on U0. The functions u and g1 are also
constant on U0, so is the function g2 by virtue of (49). Since g1 ϕ = −(1 + u2 + ϕ2), we have

f =
1 + u2 + ϕ2

(cos t + u sin t)2

and
C =

1
1 + u2 + ϕ2

(
ϕα + uϕβ + (1 + u2)γ

)
from (50) and (53), respectively.

According to the results so far, we are ready to construct a ruled surface M in S3 with a pointwise
1-type spherical Gauss map of the second kind which is not totally geodesic, i.e., ∆G 6= 0: As we saw
in Lemma 1, if a ruled surface M in S3 has a pointwise 1-type spherical Gauss map G of the second
kind, then α′ ∧ β′ = 0 on M. Furthermore, we showed that qs = 0 on M and hence

β(s) = uα(s) + N,

where N is some constant vector satisfying

〈α, N〉 = −u and 〈N, N〉 = 1 + u2.

Since the function ϕ is nonzero constant, we can see that the vector field α′′ given by

α′′ = −α− uβ + ϕγ

has the constant length
√

1 + u2 + ϕ2. Thus, we can naturally define a ruled surface M in S3 (⊂ E4)

parameterized by
M : x(s, t) = cos tα(s) + sin tβ(s)

= (cos t + u sin t)α(s) + sin tN
(55)

which has pointwise 1-type spherical Gauss map G of the second kind, that is,

∆G =
1

(cos t + u sin t)2 γ′′

=
1

(cos t + u sin t)2

(
ϕ(1 + u2)α + uϕN− ϕ2γ

)
= f (G + C),
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where we have put

f =
1 + u2 + ϕ2

(cos t + u sin t)2

and
C =

1
1 + u2 + ϕ2

(
ϕ(1 + u2)α + uϕN + (1 + u2)γ

)
,

respectively.

Meanwhile, we note that the function ϕ is constant on U0. By continuity, we see that either ∆G = 0
on U0, or it does not. This means that either G = −C on U0 or x(U0) is an open part of a ruled surface
parameterized by (55).

Now, we consider W = {(s, t) ∈ U | ft(s, t) = 0}, the complement of U0, and let W0 = int(W).
Then, we will show that if W0 is non-empty, the constant vector C = 0 on W0, which implies that W0

must be empty. Therefore, we have

Lemma 2. Let M be a ruled surface parameterized by (2) in the unit sphere S3. If the spherical Gauss map
G of M is of pointwise 1-type of the second kind, i.e., ∆G = f (G + C) for some non-zero function f and a
non-zero constant vector C, then we may assume that the function ft, the partial derivative of f with respect to t,
is non-vanishing on U = {(s, t) ∈ I × J | f (s, t) 6= 0}, that is, W0 = ∅.

Proof. We suppose that W0 is non-empty. From (30), we have

(q−
7
2 P)t = (q−

7
2 Q)t = 0,

or, equivalently,
7
2

qtP = qPt and
7
2

qtQ = qQt (56)

on W0. By a straightforward computation, 7
2 qtP = qPt of (56) implies

15
4

bqsqt sin t =
3
2

bqqst sin t +
3
2

bqqs cos t +
3
2

ϕqqt cos t + ϕq2 sin t

+
3
2
(uϕ + 2b′)qqt sin t− q2(uϕ + 2b′) cos t.

(57)

We note that 
q = cos2 t + 2u cos t sin t + w sin2 t,

qs = 2u′ cos t sin t + w′ sin2 t,

qt = 2u cos2 t + 2(w− 1) cos t sin t− 2u sin2 t,

qst = 2u′ cos2 t + 2w′ cos t sin t− 2u′ sin2 t.

(58)

Therefore, we can see that Equation (57) is a polynomial in cos5−k t sink t, k = 0, 1, . . . , 5, with functions
of s as coefficients. By considering the linear independence of the trigonometric functions, we get

uϕ = b′ (59)

as the coefficients of terms containing ‘cos5 t’. Thus, the function Q of (32) becomes

Q(s, t) =
3
2

bqqs cos t− q2(u′b− ub′ − u2 ϕ− b2 ϕ) sin t
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and then 7
2 qtQ = qQt of (56) provides

15
4

bqsqt cos t =
3
2

bqqst cos t− 3
2

bqqs sin t +
3
2
(u′b− ub′ − u2 ϕ− b2 ϕ)qqt sin t

− q2(u′b− ub′ − u2 ϕ− b2 ϕ) cos t.
(60)

Similarly, using (58), we obtain
2u′b + 2u2 ϕ + b2 ϕ = 0 (61)

and
u(u′b− u2 ϕ) = 0 (62)

as the coefficients of the terms containing ‘cos5 t’ and ‘sin5 t’ of (60), respectively. If u 6= 0 on some
open subset W1 of W0, then we have

u′b = u2 ϕ

which helps (61) lead to
(4u2 + b2)ϕ = 0,

or,
ϕ = 0 on W1 (63)

because of u 6= 0. Since ϕ = 0, (59) and (62) yield that

b′ = u′b = 0 on W1. (64)

If b = 0, the function q = (cos t + u sin t)2 and the spherical Gauss map G is given by

G = A = −γ

that is constant because of (8) and (63). In this case, we can easily show that the shape operator on W1

is identically zero, which means that x(W1) is totally geodesic in S3.
Now, we may assume that b 6= 0 on W1. It follows that u′ = 0 of (64) and hence, by continuity, u

and b are nonzero constant on W0, which tells us that

qs = 0 on W0.

If u = 0 on W0, it is obvious that b′ = 0 of (59) and hence qs = 0 on W0. But, in the course of
proving qs = 0, we showed that ϕ = 0 on W0. For the case of u 6= 0 on W0, we have (63). If u = 0 on
W0, (61) yields that ϕ = 0 on W0. Using these results on W0, we have

∆G =q−
5
2

{(
− 1

2
(qt)

2 +
1
2

qqtt + q2
)
(cos tA + sin tB)

− q(cos tA′′ + sin tB′′) +
1
2

qqt(− sin tA + cos tB)
}

,

{
A = −γ,

A′′ = ubα′ + b2γ
and

{
B = bα′ − uγ,

B′′ = −bα′.

By a straightforward computation, we can obtain

∆G =
2b2

q2 G

which means that the spherical Gauss map G defined on W0 cannot be of pointwise 1-type of the
second kind.



Symmetry 2019, 11, 1076 17 of 19

By Lemma 2, we conclude that U = U0. Then, according to the value of the constant function
ϕ, that is, zero or not, it follows that either G = −C on U or x(U) is an open part of a ruled
surface parameterized by (55). On the other hand, Theorem 1 shows that if the interior of the set
{p ∈ M| f (p) = 0} of M is non-empty, then it is an open part of a totally geodesic surface in S3. In fact,
a totally geodesic surface of S3 has a constant spherical Gauss map. And, we can easily show that the
function ϕ defined on a totally geodesic surface of S3 is identically zero for all s.

Lemma 3. Let M be a ruled surface in S3 parameterized by (2) with pointwise 1-type spherical Gauss map of
the second kind. Then, the function ϕ(s) = 〈α′′(s), γ(s)〉 defined on M is constant for all s.

By continuity of ϕ, we can see that if a ruled surface M of S3 has the spherical Gauss map of
pointwise 1-type of the second kind, then we may assume that either M is part of the ruled surface
parameterized by (55) or ∆G = 0 on M, given by G = −C. Therefore, we have

Theorem 4. Let M be a ruled surface in the unit sphere S3 with a pointwise 1-type spherical Gauss map
of the second kind. Then, M is an open part of either the ruled surface parameterized by (55) or a totally
geodesic surface.

Example 2. Let us consider a unit speed curve α on S3 and a constant vector N in E4 given by

α(s) =
( 1√

2
cos
√

2s,
1√
2

sin
√

2s,
1√
2

, 0
)

and
N =

(
0, 0, 1,− 1√

2

)
.

Then, we get 〈α, N〉 = 1√
2

for all s. By the same argument to get (55), we have

β(s) =
(
− 1

2
cos
√

2s, −1
2

sin
√

2s,
1
2

, − 1√
2

)
,

γ(s) =
(
− 1

2
cos
√

2s, −1
2

sin
√

2s,
1
2

,
1√
2

)
.

Therefore, the ruled surface M on S3 parameterized by

M : x(s, t) = cos tα(s) + sin tβ(s)

=
( 1√

2
(cos t− 1√

2
sin t) cos

√
2s,

1√
2
(cos t− 1√

2
sin t) sin

√
2s,

1√
2

cos t +
1
2

sin t, − 1√
2

sin t
)

,

has the spherical Gauss map G of the form

G = −γ =
(1

2
cos
√

2s,
1
2

sin
√

2s, −1
2

, − 1√
2

)
,

which satisfies

∆G =
2(

cos t− 1√
2

sin t
)2

(
G + (0, 0,

1
2

,
1√
2
)
)

.
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