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Abstract: It is broadly known that Lie point symmetries and their subcase, Noether symmetries,
can be used as a geometric criterion to select alternative theories of gravity. Here, we use Noether
symmetries as a selection criterion to distinguish those models of f (R, G) theory, with R and G being
the Ricci and the Gauss–Bonnet scalars respectively, that are invariant under point transformations in
a spherically symmetric background. In total, we find ten different forms of f that present symmetries
and calculate their invariant quantities, i.e., Noether vector fields. Furthermore, we use these Noether
symmetries to find exact spherically symmetric solutions in some of the models of f (R, G) theory.
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1. Introduction

General relativity (GR) is known to be the most successful theory for gravitational interactions so
far. However, it possesses some shortcomings that have led many scientists to pursue an alternative
theory for the description of gravity. These are mostly related to the dark universe, i.e., the nature
of dark energy and dark matter, as well as the inability to find a TeV scale supersymmetry, the
nature of singularities, the value of the cosmological constant and other less important astrophysical
problems [1,2].

Based on these, numerous modifications of gravity have been proposed [3–5]. The addition of a
scalar field, originally proposed by Brans and Dicke [6] in the early 1960s, adds a new scalar degree of
freedom to the theory and gravity is no longer uniquely described from the metric. The most general
scalar tensor theory with a single scalar field, leading to second order field equations is the Horndeski
theory [7]. After the observation of gravitational waves, however, a significant part of it is severely
constrained from the speed of the graviton. Another significant modification (or better extension) of
gravity, is the so called f (R) gravity [4,8], which generalizes the Einstein–Hilbert action to an arbitrary
function of the Ricci scalar R. Many models of f (R) gravity have been studied in different contexts
in the literature. As appealing as they may be, most of them have partial success in specific scales;
some give a very good description of the early universe, but fail to describe late-time acceleration [9],
others succeed in describing today’s cosmology but lack in describing earlier epochs [10], others give a
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convincing explanation of the rotation curves of galaxies, without invoking exotic (i.e., dark) forms
of matter [11,12], and so on. Last but not least, many modifications have been also studied in the
so-called teleparallel geometry. There, the curvature of the manifold vanishes and gravity is purely a
torsional effect; the gravitational field is described by the tetrad (vierbein) and the spin connection of
the tangent space. The interested reader should read [13–18].

All the above theories mentioned are motivated from cosmology. There are many modifications
of gravity that find their origins in high energies, such as Kaluza–Klein [19], Dvali–Gabadadze–Porrati
(DGP) [20], Einstein–Dilaton–Gauss–Bonnet [21], or Randall–Sundrum [22].

A topological invariant in 3 + 1 dimensions appears in the low energy limit of string theories, that
is known as Gauss–Bonnet scalar [23] and is given by

G = R2 − 4RµνRµν + RαβµνRαβµν , (1)

with R, Rµν and Rαβµν being the Ricci scalar, the Ricci tensor and the Riemann tensor respectively.
Being a topological invariant, a linear term of it in a four-dimensional action would contribute a total
derivative which should vanish at infinity, yielding trivial equations of motion. It turns out though
that when it appears coupled to either a scalar field or to the metric (and its derivatives) one gets
significant phenomenology both in high energies and in cosmology [24].

It is well known that Noether symmetries (i.e., invariance under point transformations) can
be used as a geometric criterion to discriminate between alternative theories of gravity [25]. The
existence of symmetries means that the dynamical system has some conserved quantities that, in many
cases, are related to physical/observed quantities. Hence, this renders the possibility to use it as a
theoretical constraint in order to classify different models, based on the geometric symmetries of the
spacetime [25]. In addition, these symmetries could also help us in reducing the dynamics of a system
and thus find exact solutions more easily. This method has been extensively used in the literature, both
in cosmological and astrophysical scales [26–36]. Some cosmological paradigms, such as quintessence
and phantom ones, can be recovered in the framework of f (R, G) theories of gravity [37]. The
successful realization of the dark energy and of the inflationary era is studied for some classes of f (R, G)

models [38]. Both the vacuum and the non-vacuum theories of f (R, G) gravity-admitting Noether
symmetries are worked by [25,39,40], and they found some exact cosmological solutions. Obviously,
apart from Noether symmetries, one could use contact symmetries, Cartan symmetries [41], etc. for
studying the invariance of a system of differential equations under specific types of transformations.

In this paper, we will study the invariance of the f (R, G) theory of gravity, which is a
generalization of f (R) theory containing a Gauss–Bonnet scalar in the arbitrary function, under
point transformations in a spherically symmetric background. We will present those models that
possess Noether symmetries, calculate their invariant functions and also find exact spherical solutions
in some of the cases.

The paper is organized as follows: In Section 2 we present the form of the theory f (R, G), we write
down its equations of motion and the form they take in a spherically symmetric spacetime. In Section 3
we derive its point-like Lagrangian in the same spacetime and show that while the configuration space
of it is five dimensional, i.e., Q = {A, B, M, R, G}, its tangent space is only nine dimensional because
there is no dependence on the derivative of the B potential. This means that B is a cyclic variable
and one can solve for it and substitute its form back in the Lagrangian to obtain its canonical form.
However, the Noether symmetry approach works even for non-canonical Lagrangians and for the sake
of simplicity we keep it as it is. The next section, Section 4, contains a review of the Noether symmetry
approach and the classification of f (R, G) models that present such symmetries, together with the
associated invariant quantities and solutions. We conclude our main results in Section 5.



Symmetry 2020, 12, 68 3 of 18

2. The f (R, G) Gravity in Spherically Symmetric Space-Time

Let us start from the most general action for modified Gauss–Bonnet gravity in 4-dimensions,

S =
∫

d4x
√
−g
[

1
2κ2 f (R, G) + Lm

]
, (2)

where κ2 = 8πG, Lm is any matter Lagrangian and f (R, G) is a function which depends on the scalar
curvature R and the Gauss–Bonnet invariant G being defined as in Equation (1). It is noted that any
linear combination of the Gauss–Bonnet invariant does not contribute to the effective Lagrangian in
4-dimension. Variations of the action (2) with respect to the metric tensor gµν yields

fRGµν = κ2Tµν +
1
2
( f − R fR − G fG) gµν +∇µ∇ν fR − gµν� fR + 2R∇µ∇ν fG − 2gµνR� fG

−4Rα
µ∇α∇ν − 4Rα

ν∇α∇µ + 4Rµν� fG + 4gµνRαβ∇α∇β fG + 4Rµαβν∇α∇β fG , (3)

where fR = ∂ f /∂R, fG = ∂ f /∂G and � is the d’Alembert operator in curved spacetime, respectively.
Hereafter, we have assumed the vacuum case where Lm = 0. Let us now consider that the space-time
is spherically symmetric such as the metric is

ds2 = −A(r)dt2 + B(r)dr2 + M(r)(dθ2 + sin θ2dϕ2) , (4)

where A(r), B(r) and M(r) are positive functions of the radial coordinate r. The scalar curvature and
Gauss–Bonnet invariant for this space-time are

R = − 1
B

[
2M′′

M
+

A′′

A
− A′B′

2AB
+

M′A′

MA
− M′B′

MB
− A′2

2A2 −
M′2

2M2 −
2B
M

]
, (5)

G = − 2
BM

(
2

A′′

A
− A′B′

AB
− A′2

A2

)
+

1
B2

[
M′2

M2

(
A′′

A
− 3A′B′

2AB
− A′M′

AM
− A′2

2A2

)
+ 2

A′M′M′′

AM2

]
. (6)

For the metric (4), the field Equation (3) become

fR

(
2A′′

A
− A′B′

AB
− A′2

A2 + 2
M′A′

MA

)
= −2B( f − G fG) + 4

[
f ′′R + f ′R

(
M′

M
− B′

2B

)]
+

4
B

[
f ′′G

(
4B
M
− M′2

M2

)
− f ′G

{
B′
(

2
M
− 3M′2

2BM2

)
+

2M′M′′

M2 − M′3

M3

}]
, (7)

fR

(
2A′′

A
+

4M′′

M
− A′B′

AB
− 2M′B′

MB
− A′2

A2 −
2M′2

M2

)
= −2B( f − G fG) + 2 f ′R

(
A′

A
+

2M′

M

)
+

2A′ f ′G
A

(
4
M
− 3M′2

BM2

)
, (8)

fR

(
2M′′

M
− B′M′

BM
+

M′A′

MA
− 4B

M

)
= −2B( f − G fG) + 4

[
f ′′R +

1
2

f ′R

(
A′

A
− B′

B
+

M′

M

)]
− 4

B

[
f ′′G

M′A′

MA
+ f ′G

{
A′M′′

AM
+

M′

2M

(
2A′′

A
− A′M′

AM
− 3A′B′

AB
− A′2

A2

)}]
. (9)

In the above equations, primes denote differentiation with respect to r, therefore, the terms
f ′R = fRRR′ + fRGG′ and f ′G = fRGR′ + fGGG′.
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3. The Point-Like f (R, G) Lagrangian

This section is devoted to finding the point-like Lagrangian for f (R, G) gravity in spherical
symmetry. For simplicity let us express the scalar curvature R and the Gauss–Bonnet invariant G
as follows:

R̄ = R∗ − A′′

AB
− 2M′′

BM
, (10)

Ḡ = G∗ − 4
BM

A′′

A
+

M′

B2M

(
M′A′′

MA
+

2A′M′′

AM

)
, (11)

where R∗ and G∗,

R∗ =
A′B′

2AB2 −
A′M′

ABM
+

A′2

2A2B
+

B′M′

B2M
+

M′2

2BM2 +
2
M

, (12)

G∗ =
2

BM

(
A′B′

AB
+

A′2

A2

)
− M′

B2M

(
3A′B′M′

2ABM
+

M′A′2

2MA2 +
A′M′2

AM2

)
, (13)

contain only first derivatives terms. One can rewrite the action into its canonical form in such a way
that we can reduce the number of degrees of freedom. In our case, we have

S f (R,G) =
∫

drL(A, A′, B, B′, M, M′, R, R′, G, G′) . (14)

Then, the action (2) in a spherically symmetric space-time (4) becomes

S f (R,G) =
∫

dr
{

f (R, G)− λ1 (R− R̄)− λ2 (G− Ḡ)
}

M
√

AB . (15)

Here, λ1 and λ2 are the Lagrangian multipliers that can be directly found by varying with respect
to R and G, giving λ1 = fR and λ2 = fG respectively. Then, the above canonical action can be
rewritten as

S f (R,G) =
∫

dr
{

f (R, G)− fR

[
R−

(
R∗ − A′′

AB
− 2M′′

BM

)]
− fG

[
G−

(
G∗ − 4

BM
A′′

A
+

M′2 A′′

AB2 M2 +
2A′M′M′′

AB2 M2

)]}
M
√

AB , (16)

=
∫

dr
{

M
√

AB
[

f (R, G)− fR(R− R∗)− fG(G− G∗)
]
+ 2M′

(√A
B

fR

)′
+ A′

( M fR√
AB

)′
+4A′

(
fG√
AB

)′
− A′M′2

(
fG

M
√

AB3

)′ }
, (17)

where we have integrated by parts and ignored boundary terms. Then, the point-like
Lagrangian becomes

L f = fR

(
M′A′√

AB
+

√
A
B

M′2

2M

)
+ f ′R

(
MA′√

AB
+ 2

√
A
B

M′
)
+

f ′G√
AB

(
4A′ − A′M′2

MB

)
+
√

AB [M( f − G fG) + (2−MR) fR] . (18)

Note again that f ′R = fRRR′ + fGG′.
Since the equation of motion (8) describing the evolution of the metric potential B does not depend

on its derivative, it can be written as a quadratic equation in terms of B,[
f +

(
2
M
− R

)
fR − G fG

]
B2 + F(A, M, R, G)B− 3 f ′G

A′M′2

AM2 = 0 , (19)
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which can be explicitly solved as a function of other coordinates for the roots of this quadratic equation
such that

B1,2 = − F(A, M, R, G)

f +
( 2

M − R
)

fR − G fG
±

√
F(A, M, R, G)2 + 12 f ′G

A′M′2
AM2

[
f +

( 2
M − R

)
fR − G fG

]
2
[

f +
( 2

M − R
)

fR − G fG
] , (20)

where f +
( 2

M − R
)

fR − G fG 6= 0 and F(A, M, R, G) is defined as

F(A, M, R, G) ≡ fR
M′

M

(
A′

A
+

M′

2M

)
+ f ′R

(
A′

A
+

2M′

M

)
+ 4 f ′G

A′

MA
. (21)

The discriminant ∆ is the part inside the square root in (20), where ∆ ≡ F2 +

12 f ′G
A′M′2
AM2

[
f +

( 2
M − R

)
fR − G fG

]
, which comes from the quadratic formula and we can use this

to find the nature of the roots. The roots of a quadratic equation with real coefficients are real and
distinct if the discriminant is positive, are real with at least two equal if the discriminant is zero, and
include a conjugate pair of complex roots if the discriminant is negative. The discriminant can be used
in the following way: There are no real roots if ∆ < 0, the roots are real and equal, i.e., one real root if
∆ = 0 and the roots are real and unequal, i.e., two distinct real roots if ∆ > 0. In this study, we discard
the case ∆ < 0 where the roots are not real. When there are two distinct real roots, then the condition
∆ > 0 means that f ′G

A′
A
[

f +
( 2

M − R
)

fR − G fG
]
> 0.

The energy functional EL or the Hamiltonian of the Lagrangian L is defined by

EL = q′i
∂L
∂q′i
−L . (22)

Now, we calculate the energy functional EL f for the Lagrangian density L f which has the form

EL f = M

√
A
B

{
fR

(
M′A′

MA
+

M′2

2M2

)
+ f ′R

(
A′

A
+ 2

M′

M

)
+ f ′G

A′

AB

(
4B
M
− 3M′2

M2

)
− B

M
[M( f − G fG) + (2−MR) fR]

}
. (23)

Note that the energy function EL f vanishes due to the field Equation (8) which is obtained by
varying the Lagrangian (18) according to the metric variable B. Therefore, the solution of equation
EL f = 0 in terms of B is given by (20).

As it is expected due to the absence of the generalized velocity B in the point-like Lagrangian (18),
the Hessian determinant of the Lagrangian (18), which is defined by ‖∂2L f /∂q′i∂q′j‖, is zero. It is
known that the metric variable B does not contribute to the dynamics due to the point-like Lagrangian
approach, but the equation of motion for B has to be considered as a further constraint equation.

4. Noether Symmetry Approach

In this section, we seek for the condition in order that the Lagrangian density (18) would admit
any Noether symmetry which has a generator of the form

X = ξ
∂

∂r
+ ηi ∂

∂qi , (24)

where qi are the generalized coordinates in the d-dimensional configuration spaceQ ≡ {qi, i = 1, . . . , d}
of the Lagrangian, whose tangent space is T Q ≡ {qi, q′i}. The components ξ and ηi of the Noether
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symmetry generator X are functions of r and qi. The existence of a Noether symmetry implies the
existence of a vector field X given in (24) if the Lagrangian L(r, A, B, M, R, G, A′, B′, M′, R′, G′) satisfies

X[1]L+ L(Drξ) = DrK , (25)

where X[1] is the first prolongation of the generator (24) in such a form

X[1] = X + η′i
∂

∂q′i
, (26)

and K(r, qi) is a gauge function, Dr is the total derivative operator with respect to r, Dr = ∂/∂r +
q′i∂/∂qi, and η′i is defined as η′i = Drηi − q′iDrξ. The significance of Noether symmetry comes
from the following first integral that if X is the Noether symmetry generator corresponding to the
Lagrangian L(r, qi, q′i), then the Hamiltonian or a conserved quantity associated with the generator
X is

I = −ξEL + ηi ∂L
∂q′i
− K . (27)

Let us start with the Lagrangian (18), where qi = {A, B, M, R, G}, i = 1, . . . , 5. Then the Noether
symmetry condition (25) for this Lagrangian yields an overdetermined system of 60 partial differential
equations. We will now solve these differential equations, which will fix the symmetry generator X
and the form of function f (R, G) as in the following possibilities. There are several cases in which
one of the quantities fRG, fRR or fGG vanishes or not, such a way that (i) fRG = 0; (ii) fRR = 0; (iii)
fGG = 0; and (iv) fRG, fRR, fGG 6= 0 (general case).

There is one Noether’s vector that solves all the 60 differential equations that holds for any
arbitrary function f (R, G), that is given by

X0 = α(r)∂r − 2Bα′(r)∂B , (28)

where α(r) is an arbitrary function. Then, all particular theories will have X0 and also more Noether’s
vectors. Let us now split the study in different branches depending on the form of f .

4.1. f (R, G) = f1(R) + f2(G) ( fRG = 0)

4.1.1. Subcase: Pure f (R) Gravity ( f2,GG(G) = 0)

(A) General relativity case: f (R) = R:

Here, we find four Noether symmetries, X0 and,

X1 = −A∂A + B∂B + M∂M , X2 =
1√
M

∂A −
B

A
√

M
∂B , (29)

X3 = − A
2
√

M
∂A +

B
2
√

M
∂B +

√
M∂M . (30)

The corresponding first integrals of these Noether symmetries give rise to EL = 0 for X0,
which means

B =
M′A′

2A
+

M′2

4M
, (31)

and

I1 =
f0MA′√

AB
, I2 =

f0M′√
ABM

, I3 =
I1√
M

+
I2

2
A , (32)
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for X1, X2 and X3. Then, the above Equations (31) and (32) have the solutions

A(r) =
2
I2

(
I3 −

I1√
M

)
, B(r) =

I3

2I2

M′2

MA
, (33)

with I2 6= 0 and I3 = 2 f 2
0 /I2. If M(r) = r2, the solutions (33) become

A(r) = A0 −
A1

r
, B(r) =

A0

A0 − A1
r

, (34)

where A0 = 2I3/I2 and A1 = 2I1/I2. This is the well-known Schwarzschild solution for A0 = 1 and
A1 = 2m, where m is the mass parameter. Then, we have easily found the Schwarzschild solution in
GR using the first integrals.

(B) Power–law forms:

It is also possible to find solutions to the system (A1, in Appendix A) where the form of f is

f (R) = f0Rn , (35)

where n and f0 are constants. In this case, there are two Noether symmetries, X0 and

X1 = (2n− 3)A∂A + B∂B + M∂M − R ∂R . (36)

Then, the corresponding first integrals are

EL = 0 ⇐⇒ B =
nM

2n + (1− n)MR

[
M′

M

(
A′

A
+

M′

2M

)
+ (n− 1)

R′

R

(
A′

A
+

2M′

M

)]
, (37)

I1 =
n f0MRn−1
√

AB

[
(2− n)A′ + (n− 1)(2n− 1)A

R′

R

]
. (38)

Integration of Equation (38) with respect to A gives

A(r) = R
(1−n)(2n−1)

2−n

[
A0 +

I1

2 f0n(2− n)

∫
R

(n−1)(4n−5)
2(2−n)

√
B

M
dr

]2

, (39)

where A0 is an integration constant, and n 6= 2.
In order to consider a Schwarzschild-like metric, one has to assume the relation B(r) = 1/A(r),

which causes the following form of A(r),

A(r) = R
(n−1)(2n−1)

n−2

A0 +
I1

f0n(2− n)

∫ R
3(n−1)2

(2−n)

M
dr

 . (40)

This solution becomes the Schwarzschild solution if n = 1 and M(r) = r2, in which one notices
that A0 = 1 and I1 = 2 f0m (see (5) and (37)). Now, by taking M(r) = rq and R(r) = R0r−q, we can
find new exact solutions in power–law f (R) gravity for A that comes from the Equations (5), (37) and
(40). For n = 4, one finds from these equations that q = −4/19, i.e., M = r−4/19, R = R0r4/19 and

A(r) = r42/19

(
A0 +

k
R3

0 r31/19

)
, (41)
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with A0 = 361
992 (8− 3R0), k = 19I1

248 f0
and R0 = 72

23 . Furthermore, it follows from Equations (5), (37) and
(40) that we can find other solutions. For example, for q = 2, R0 = 1 and n = 1/2, we find from
(40) that

A(r) =
1
2
− k

r2 with k =
2I1

3 f0
, (42)

is a solution of the field equations. Similarly, for q = 4/3, R0 = −5 and n = 5/4, one finds the
following solution

A(r) = −k +
9
2

r2/3 with k =
8I1

55/4 f0
, (43)

whereas for q = 2/3, R0 = 4 and n = −1 one finds

A(r) =
k
r
− 9

7
r4/3 with k =

16I1

7 f0
. (44)

Finally, if q = −2/11, R0 = 40/13 and n = 5, we find the solution

A(r) = r24/11

(
A0 +

k
R4

0 r19/11

)
with A0 =

121
285

(5− 2R0), k =
11I1

285 f0
. (45)

We should point out that these solutions are obtained by taking A(r) = 1/B(r), which is the
well-known Schwarzschild-like form. In our previous study [42], we obtained some new spherically
symmetric solutions in power–law f (R) gravity, but these are not in the Schwarzschild-type form, that
is, A(r) 6= 1/B(r). To the best of our knowledge, the solutions (40)–(45) are new spherically symmetric
solutions in power–law f (R) gravity that have the Schwarzschild form.

4.1.2. Subcase: f2,GG(G) 6= 0, f1,RR(R) 6= 0 and f1,R(R) 6= 0

(A) Power–law forms:

For this case, one finds that there are two Noether symmetries satisfying the Equation (A1),
X0, and

X1 = (4p− 3)A∂A + B∂B + M∂M − R ∂R − 2G∂G , (46)

while the form of f becomes
f1(R) = f0 R2p , f2(G) = f1 Gp , (47)

with f0, f1 and p being constants. Here the corresponding Noether integrals are EL = 0 for X0,
which gives

M′A′

MA
+

M′2

2M2 + (2p− 1)
R′

R

(
A′

A
+

2M′

M

)
+

f1

2 f0
(p− 1)R1−2pGp−2 A′G′

MA

(
4− 3M′2

MB

)
−B

[
2
M

+

{
1− 2p +

f1

f0
(1− p)

(
G
R2

)p} R
2p

]
= 0 , (48)

and

I1 = p

√
A
B

{
2 f0MR2p−1

[
2(1− p)

A′

A
+ (2p− 1)(4p− 1)

R′

R

]
+ f1(p− 1)Gp−1

[(
4− M′2

MB

)(
(4p− 3)

G′

G
− 2A′

A

)
− 2M′A′G′

BAG

] }
, (49)
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for X1. The case p = 1/2 and f1 = 0 was studied before since it is the general relativity case. By setting
I1 = 0 one finds that the B(r) metric coefficient becomes

B(r) =
[
2M
(

f0G2 MR2p
(

2(p− 1)RA′ +
(
−8p2 + 6p− 1

)
AR′

)
+ 4 f1(p− 1)R2 A′Gp+1

−2 f1

(
4p2 − 7p + 3

)
AR2GpG′

)]−1
× f1(p− 1)R2Gp M′

(
M′
(
(4p− 3)AG′ − 2GA′

)
+ 2MA′G′

)
. (50)

Now, if one assumes that R = R0r−l , G = G0r−n, M = rq and A = A0rm and replaces these
equations into the remaining field equation, one can directly obtain an exact solution, which reads

A(r) = A0 rm , B(r) = B0 r
n−4

2 , M(r) = rn/2 , R(r) = R0 r−n/2 , G(r) = G0 r−n , (51)

where n is any parameter and the other constants are

B0 =
[
n2(n− 2m)

(
n2 + 2nm + 4m2

) (
n2
(

64p3 − 80p2 + 20p + 3
)
+ 8nm(1− 2p) + 4m2(1− 4p)

) ]
×[

16
(

n5
(

32p3 − 40p2 + 8p + 3
)
+ 2n4m

(
32p3 − 40p2 + 6p + 3

)
+ 2n3m2

(
64p3 − 80p2 + 12p + 5

)
−16n2m3 p− 2

(
K1 − 8m5

) )]−1
, (52)

f1 = −
f0R2p−1

0 G1−p
0

(
n2 + 2nm + 4m2) [n (8p2 − 6p + 1

)
+ 4m(p− 1)

]
2(p− 1)

[
n3(4p− 3)R0 + 2n2m(8p + 3R0 − 10) + 16nm2(2p− 1) + 16m3

] , (53)

R0 =
[
4
(

2n5 p
(

8p2 − 10p + 3
)
− 2n4m

(
48p3 − 60p2 + 17p + 1

)
− n3m2

(
64p3 − 80p2 + 4p + 11

)
+4n2m3(6p− 1)− 8m5 + K1

)]
×
[
n2(2m− n)[(3− 4p)n + 2m][(16p2 − 8p− 1)n + 2(4p− 1)m]

]−1
, (54)

G0 =
4m(R0 − 2)(2m− n)

(
n2R0 + 4nm + 8m2)

(n2 + 2nm + 4m2)
2 , (55)

K2
1 =

(
n2 + 2nm + 4m2

)2 [
4n6 p2

(
8p2 − 10p + 3

)2
− 8n5mp

(
24p3 − 46p2 + 29p− 6

)
+n4m2

(
−96p3 + 140p2 − 60p + 7

)
+ 2n3m3

(
32p3 − 24p2 − 2p + 3

)
+ n2m4(8p− 3)− 4nm5 + 4m6

]
. (56)

For n = 4, B(r) = B0 becomes a constant and M = r2. It is also possible to get A(r) = 1/B(r) if
n = −2(m− 2) and A0 = B−1

0 which gives M = r2−m and B = B0r−m.

(B) Logarithmic form:

Additionally to the case described above, there is another similar solution of the Noether’s
symmetry Equation (A1) which has the Noether’s vectors X0 and

X1 = A∂A + B∂B + M∂M − R ∂R − 2G∂G , (57)

and the form of f is
f1(R) = f0 R2 , f2(G) = f1 G log(G) , (58)

where f0 and f1 are constants. The conserved quantity associated to (57) becomes

I1 =

√
A
B

[
6 f0MR′ + 2 f1

A′

A

(
M′2

BM
− 4
)
+ f1

G′

G

(
4− M′2

BM
− 2A′M′

AB

)]
. (59)
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For the specific case where I1 = 0, one gets the following exact solution:

A(r) = A0rm , B(r) = B0rq−2 , M(r) = rq , (60)

B0 = −m3 −m2q− 4mq2 + 6q3 ± K2

8(m + q)
, (61)

f1 = −
f0
(
m5 + m4q−m3q2 + m2q3 + 26mq4 + 40q5 ∓ K2

(
m2 + 2mq− q2))

8q2 (−m3 + 5mq2 + 4q3)
, (62)

K2
2 = m6 − 2m5q + 5m4q2 + 36m3q3 − 36m2q4 − 64mq5 + 64q6 . (63)

4.1.3. Subcase: Pure f (G) Gravity ( f2,GG(G) 6= 0, f1,R(R) = 0)

(A) Power–law form of f

The pure f (G) gravity case admits the following power–law solution for f in the Noether’s
Equation (A1),

f (R, G) = f0 Gp , (64)

in which the Noether symmetries admitted are X0 and

X1 = (4p− 3)A∂A + B∂B + M∂M + η4(r, R, G, A, B, M) ∂R − 2G∂G . (65)

Here the corresponding first integral for X1 is

I1 = f0 p(p− 1)Gp−1

√
A
B

{
(4p− 3)

(
4− M′2

BM

)
G′

G
− 2

A′

A

[
4 +

M′

B

(
G′

G
− M′

M

)]}
. (66)

When I1 = 0, the first integral (66) yields

B =
M′
[
(4p− 3)M′G′

MG + 2A′
A

(
G′
G −

M′
M

)]
4
[
(4p− 3)G′

G −
2A′
A

] . (67)

Then, we can find the following exact solution:

A(r) = A0rm, B(r) = B0rq−2, M(r) = rq, R(r) = R0r−q, G(r) = G0r−2q, (68)

where the constant parameters are given by

q =
m
(
−1±

√
64p2 − 48p + 1

)
8p(4p− 3)

, (69)

B0 =
q2(4pq + 3m− 3q)
4(4pq + m− 3q)

, (70)

R0 =
2m
(
5q2 + 2mq− 4pmq− 4pq2 −m2)

q2(4pq + 3m− 3q)
, (71)

G0 = −64pm(4p− 3)(4pq + m− 3q)
(4pq + 3m− 3q)2 , (72)

with p 6= 3/4.
There exists another solution for the Noether’s equations that do not constrain the form of f (G),

and has the Noether’s vectors X0 and

X1 = ηR(r, R, G, A, B, M) ∂R , (73)
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but this solution does not help for finding solutions since the first integrals are identically zero.
Furthermore, there is another subcase for the branch fRG = 0 which is when f2,GG(G) 6= 0 and
f1,RR(R) = 0. For this subcase, there is only one solution which is the same as (73) and the form of
f (R, G) = f0R + f2(G), therefore, this subcase is a generalisation of the above solution. That branch
also gives a trivial first integral.

4.2. Case: f (R, G) = g1(G) + Rg2(G) ( fRR = 0)

In this case, the condition fRR = 0 gives f (R, G) = g1(G) + Rg2(G), and the functions g1(G) and
g2(G) could have different forms that will be study separetely.

(A) Power law form of f :

The first solution of the Noether’s Equation (A1) has the following form of f

f (R, G) = Rg1(G) + g2(G) , g2(G) = f1Gβ , g1(G) = f2Gβ− 1
2 , (74)

where β is a constant, while the Noether’s vectors are X0 and

X1 = (4β− 3)A∂A + B∂B + M∂M − R∂R − 2G∂G . (75)

Thus, we have the following first integrals for this case

M′A′

MA
+

M′2

2M2 +
A′

MAG

(
4− 3M′2

MB

) [
(β− 1

2
)R′ +

{
f1

f2
β(β− 1)

√
G + (β− 1

2
)(β− 3

2
)R
}

G′

G

]
+(β− 1

2
)

G′

G

(
A′

A
+

2M′

M

)
− B

[
f1

f2
(1− β)

√
G− (β− 1

2
)R +

2
M

]
= 0 , (76)

I1 = f2 MGβ− 3
2

√
A
B

{
(β− 1

2
)(4β− 1)G′ + 2(1− β)G

A′

A

− 2M′A′

MAB

[
(β− 1)R′ +

(
f1

f2
β(β− 1)

√
G + (β− 1

2
)(β− 3

2
)R
)

Gβ−1G′
]

+
1
M

(
4− M′2

MB

) [
(β− 1

2
)

(
(4β− 3)R′ − R

A′

A

)
+Gβ

(
f1

f2
β(β− 1)

√
G + (β− 1

2
)(β− 3

2
)R
)(

(4β− 3)
G′

G
− 2A′

A

) ]}
. (77)

One can find the following exact solution for I1 = 0 and M = r2,

A(r) = A0rm , B(r) = B0 =
−16

(
32β3 − 40β2 + 8β + 3

)
−m3 + 2m2 + 16βm± K4

8(8β + m− 6)
, (78)

K2
4 = 4096β2

(
8β2 − 10β + 3

)2
+ m6 − 4m5 + 4(8β− 3)m4 + 32

(
32β3 − 24β2 − 2β + 3

)
m3

−64
(

96β3 − 140β2 + 60β− 7
)

m2 − 2048β
(

24β3 − 46β2 + 29β− 6
)

m , (79)

f1 = −
[

f2

(
64
(

8β3 − 18β2 + 13β− 3
)
+ 4B0

(
−16

(
8β3 − 18β2 + 13β− 3

)
+ (2β− 3)m2 + (6− 4β)m

)
+(1− 2β)m4 + 8

(
16β3 − 20β2 + 6β + 1

)
m2 + 8

(
32β3 − 104β2 + 94β− 27

)
m
)]
×[

4(β− 1)
√

2(1− B0)(m− 2)m
(

16β(3− 4β) + m2 − 2m
)]−1

. (80)

(B) Logarithmic forms:

The second solution to (A1) corresponding to this branch has the following logarithmic form for
the function,

f (R, G) = Rg2(G) + g1(G) , g1(G) = f0G log(G) , g2(G) = f1
√

G , (81)
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while the Noether’s vectors are X0 and

X1 = A∂A + B∂B + M∂M − R∂R − 2G∂G . (82)

For this case, the first integral becomes

I1 =

√
A

BG

{
3
2

f1 MG′ − 2 f0
√

G
A′

A

(
4− M′2

BM

)
+

(
4− M′2

BM
− 2A′M′

AB

) [
f1

R′

2
+

(
f0
√

G− f1
R
4

)
G′

G

]}
, (83)

and for this case, when I1 = 0, the following exact solution appears:

A = A0rm , M = r2 , B = B0 = −m3 − 2m2 − 16m + 48± K5

8(m + 2)
, (84)

f1 = −
4
√

2 f0m
[

B0(m + 6)−m− 22
]

√
m(m− 2)(1− B0 [4B0 + m2 + 2m + 28]

, (85)

K2
5 = m6 − 4m5 + 20m4 + 288m3 − 576m2 − 2048m + 4096 . (86)

4.3. Case (iii): f (R, G) = F1(R) + GF2(R) ( fGG = 0 )

The condition of this case is fGG = 0 which yields f (R, G) = F1(R) + GF2(R). For this case we
find the following solution of the Noether’s Equation (A1),

X1 = (2q + 1)A∂A + B∂B + M∂M − R∂R − 2G∂G , (87)

where the function f is given by

f (R, G) = f0R2+q + f1GRq , (88)

where f1, f0 and q are constants. Then, the corresponding first integrals are

[
(q + 2) f0R + q f1

G
R

] (
M′A′

MA
+

M′2

2M2

)
+ q f1

(
4− 3M′2

MB

)
A′R′

MAR
− f0BR

M
[2(q + 2)− (q + 1)MR]

+

(
A′

A
+

2M′

M

) [(
f0(q + 1)(q + 2) + q f1(q− 1)

G
R2

)
R′ + q f1

G′

R

]
= 0 , (89)

I1 = q f1 MRq

√
A
B

{ 2M′

MR

(
G− A′R′

AB

)
+ (2q + 3)

G′

R
−
[

f0

f1
(q + 2)R + (q− 1)

G
R

]
A′

A

+(2q + 3)
[

f0

q f1
(q + 1)(q + 2)R + (q− 1)

G
R

]
R′

R
+

(
4− M′2

MB

) [
(2q + 1)

R′

R
+

A′

A

] }
. (90)

When I1 = 0, one finds the following solution:

A(r) = A0rm , M(r) = r2, B(r) = B0 =
−m3 + 2m2 + 8m(q + 2)− 16

(
4q3 + 14q2 + 12q + 3

)
± K6

8(m + 4q + 2)
, (91)

f1 =
f0
(
m2 + 2m− 4B0 + 4

)2
[
4B0 + m2(q + 1) + 2m

(
2q2 + 5q + 1

)
+ 4

(
4q2 + 12q + 7

) ]
8mq

[
− 16B2

0 + B0 [m3 + 4m2(q + 1) + 4m(2q + 5)− 32(q− 1)]− (m + 4) [m2 + 4m(q + 2)− 8q + 4]
] . (92)

K2
6 = 16(m− 2)(m + 4q + 2)

[
m2(2q + 3) + 8m(q + 1)− 4

(
8q3 + 28q2 + 26q + 7

)]
+
[
m3 − 2m2 − 8m(q + 2) + 16

(
4q3 + 14q2 + 12q + 3

) ]2
. (93)

4.4. fRG 6= 0, fRR 6= 0 and fGG 6= 0

The last branch is when fRG 6= 0, fRR 6= 0, and fGG 6= 0, which has two subcases that will be
studied separately.



Symmetry 2020, 12, 68 13 of 18

4.4.1. fGG fRR 6= f 2
RG

If fGG fRR 6= f 2
RG, one finds that there are two possible forms of f satisying the Noether’s

Equation (A1). The first one is given by

f (R, G) = Rβh
(

G
R2

)
, (94)

where h is any arbitrary function of the quantity G/R2. This model has the Noether’s vector X0 and

X1 = A(3− 2β)∂A − B∂B −M∂M + R∂R + 2G∂G . (95)

There is another possible solution for f (R, G) in this case which has the following form

f (R, G) = R2h
(

G
R2

)
+ f1G log(R) , (96)

where again h is any arbitrary function of G/R2. This solution has the same form of the Noether’s
vector given in (95) with β = 2.

For the case (96), it is possible to obtain a general form of solution given by

A(r) = A0rm , B(r) = B0 =
±K7 −m3 + 2m2 + 16m− 48

8(m + 2)
, M = r2 , (97)

G
R2 =

4(m− 2)m(m + 2)
(
∓K7 + m3 − 2m2 − 8m + 64

)
(∓K7 + 3m3 + 6m2 + 64)2 , (98)

K2
7 = m6 − 4m5 + 20m4 + 288m3 − 576m2 − 2048m + 4096 , (99)

and the remaining field equation depends only on the form of the function h(G/R2), namely

8 f1m(m + 2)
(

2K2
6 ∓ K6

(
m4 + 10m3 + 20m2 + 8m + 256

)
+ m7 + 6m6 + 40m4 + 784m3

+1856m2 + 1024m + 8192
)
− 4(m− 2)m(m + 2)

(
− K2

6 ∓ 4K6(3m + 22)m + m6 + 8m5 + 52m4 − 112m3

−128m2 + 4608m + 4096
)

h′
(

G
R2

)
+
(
±K6 + m3 + 10m2 + 80m + 64

) (
∓K6 + 3m3 + 6m2 + 64

)2
h
(

G
R2

)
= 0 . (100)

Thus, if one assumes a specific form of h, one can easily solve the above algebraic equation. For
example, if h(G/R2) = h0 log(G/R2), one easily gets that

h0 = −
[
81m(m + 2)

(
K6 + m3 − 2m2 − 8m + 64

) (
2K2

6 − K6

(
m4 + 10m3 + 20m2 + 8m + 256

)
+ m7 + 6m6 + 40m4

+784m3 + 1856m2 + 1024m + 8192
)]
×
[ (

K6 + m3 + 10m2 + 80m + 64
) (
−
(
±K6 + m3 − 2m2 − 8m + 64

)
×(

±K6 + 3m3 + 6m2 + 64
)2

+
(

K6 + m3 − 2m2 − 8m + 64
) (
−K6 + 3m3 + 6m2 + 64

)2
log
(

G/R2
) )]−1

, (101)

where G/R2 becomes a constant. One can find many more solutions like (97) by assuming a form of
h = h(G/R2), replacing it in (100) and solving for the constants.

4.4.2. fGG fRR = f 2
RG

There is an additional branch having different Noether’s symmetries, which is the one where
fGG fRR = f 2

RG. For simplicity, for this branch, we will assume that the function is separable as

f (R, G) = f1(R) f2(G) , (102)
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which gives us the following differential equation:

f2(G) f ′′2 (G)

f ′2(G)2 −
f ′1(R)2

f1(R) f ′′1 (R)
= 0 . (103)

Since the first term depends only on G and the second only on R, one finds that

−
f ′1(R)2

f1(R) f ′′1 (R)
= p ,

f2(G) f ′′2 (G)

f ′2(G)2 = −p . (104)

The above equations can be easily solved, yielding (p 6= −1):

f1(R) = f0(− f1 p + pR + R)
p

p+1 , f2(G) = f2(− f3 + Gp + G)
1

p+1 , p 6= −1 , (105)

and for p = −1,

f1(R) = f0e f3R , f2(G) = e f1G , p = −1 , (106)

where fi (i = 1, ..3) are constants. By replacing these forms into the Noether’s Equation (A1), and after
doing some computations one finds that the form (105) has three Noether’s vector, X0,

X1 = ηR(r, R, G, A, B, M)∂R +
( f3 − G(p + 1)

f1 p− (p + 1)R

)
ηR(r, R, G, A, B, M)∂G , (107)

X2 = A∂A −
B(p + 1)

p− 1
∂B −

M(p + 1)
p− 1

∂M + ηR(r, R, G, A, B, M)∂R

+
[ηR(r, R, G, A, B, M)

R
+

(p + 1)
p− 1

]
G∂G , f1 = f3 = 0 . (108)

The exponential form of f given in (106) (case p = −1) has two Noether’s vectors, X0 and X1

given by (107) with p = −1. The Noether’s vector X1 gives a zero Noether’s charge for both p = −1
and p 6= −1 cases. The first integral for X1 becomes I1 = 0, and for X2 it has the form

I2 = f0 M
√

AB
(

G
R

) 1
p+1 { p(p + 2)

(p− 1)
A′

A
+

2p(p + 1)
(p− 1)

M′

M
+

p(p + 3)
p2 − 1

(
R′

R
− G′

G

)
− pRA′

(p− 1)MA

(
4− M′2

BM

)
+

R
MG

[
p

p + 1

(
4− M′2

BM

)
+

2A′M′

(p− 1)AB

] (
R′

R
− G′

G

)}
, (109)

where f1 = f3 = 0 which yields f (R, G) = f0(p + 1)R
p

p+1 G
1

p+1 .

5. Conclusions

In this work, we classified f (R, G) gravity, a generalization of f (R) containing a Gauss–Bonnet
scalar in the action, that are invariant under point transformations and thus possess Noether
symmetries. We found more than ten different forms of f (R, G) which present some Noether
symmetries that vary from power–law to logarithmic, involving different couplings. Some of
these models in Friedmann–Lemaitre–Robertson–Walker universe were already known to reproduce
the late-time acceleration of the universe, without knowing that they have such symmetries [38].
This means that the conserved quantities of these models could be immediately related to observables.

Apart from that, we used these symmetries to solve the field equations of f (R, G) for these models,
and found exact spherically symmetric solutions. The obtained first integrals related with the Noether
symmetries include mostly two independent equations for five unknown quantities A, B, M, R and
G. It has to be noted here that R and G are dependent on A, B and M due to the definitions of R by
(5) and G by (6). Therefore, once we set one of the metric coefficients A, B and M, the number of
unknowns reduces to two. In order to reduce the number of these quantities, one can also use some



Symmetry 2020, 12, 68 15 of 18

suitable assumptions. For studying the spherical symmetry, there are two common settings which
are the gauges M(r) = r2 and B(r) = 1/A(r). Choosing one of these gauges, we have obtained some
exact spherically symmetric solutions for several forms of the function f (R, G) which are represented
in Table 1.

In the context of galactic dynamics, it is shown that some of the modified gravity models, such
as f (R) gravity, can describe the flat rotation curves of the galaxies [11,12]. The static and spherically
symmetric metric given by (4) could be relevant to obtain important quantities for the galactic dynamics.
For instance, the gtt component of the metric tensor, which is the function A(r) in this study, determines
the tangential velocity of a test particle by using the constants of motion that is defined via geodesic
motions. Furthermore, it is interesting to note that the tangential velocity is independent of the form
of the metric function grr = B(r). For the constant tangential velocity regions of galaxies, the metric
tensor component gtt = A(r) can be written as A(r) = A0rm, where the power m is a constant related
with the tangential velocity ( see ref. [12] for details). In this study, we obtained that type of metric
functions for some f (R, G) gravity models summarized in Table 1. This issue will be considered in
future works.

Table 1. Exact solutions in f (R, G) where the metric is ds2 = −A(r)dt2 + B(r)dr2 +

M(r)dΩ2. For simplicity, we have added the labels (i) with i = 1, .., 7 in some constants

appearing in the solutions. For B(1)
0 , f (1)1 , B(2)

0 , f (2)1 , B(3)
0 , B(4)

0 , B(5)
0 , f (5)1 , B(6)

0 , f (6)1 and B(7)
0 , see

Equations (52), (53), (61), (62), (70), (78), (84), (85), (91), (92) and (97), respectively. The form of h
(

G
R2

)
is any function satisfying Equation (100).

f(R, G) A(r) B(r) M(r)

f0R4 r42/19
[
− 361

713 + k
(72/23)3 r31/19

]

1/A(r)

r−4/19

f0R1/2 1
2
− k

r2 r2

f0R5/4 −k + 9
2 r2/3 r4/3

f0R−1 k
r −

9
7 r4/3 r2/3

f0R5 r24/11
[
− 121

247 + k
(40/13)4 r19/11

]
r−2/11

f0R2p + f (1)1 Gp A0rm B(1)
0 r(n−4)/2 rn/2

f0R2 + f (2)1 G log(G) A0rm B(2)
0 rq−2 rq

f0Gp A0rm B(3)
0 r

m(−1±
√

64p2−48p+1)
8p(4p−3) −2 r

m(−1±
√

64p2−48p+1)
8p(4p−3)

f1Gβ + f2R Gβ− 1
2 A0rm B(4)

0 r2

f0G log G + f (5)1 R
√

G A0rm B(5)
0 r2

f0R2+q + f (6)1 G Rq A0rm B(6)
0 r2

R2h
(

G
R2

)
+ f1G log(R) A0rm B(7)

0 r2
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Appendix A. Noether’s Symmetry Equations

The Noether symmetry condition (25) applied to the Lagrangian (18) for the metric (4) gives 60
partial differential equations, that read

fRξ,A = 0, fRξ,B = 0, fRRξ,A = 0, fGRξ,A = 0, fGGξ,A = 0, fRRξ,B = 0, fGRξ,B = 0, fGGξ,B = 0,

fRξ,M = 0, fGRξ,M = 0, fGGξ,M = 0, fRRξ,R = 0, fGRξ,R = 0, fGGξ,R = 0,

fRRξ,G = 0, fGRξ,G = 0, fGGξ,G = 0, fGRη1
,B = 0, fGGη1

,B = 0, fGRη3
,B = 0, fGGη3

,B = 0,

fGRη1
,M = 0 , fGGη1

,M = 0 , fGRη3
,A = 0 , fGGη3

,A = 0 , fGRη1
,G + fGGη1

,R = 0 . ,

fGRη1
,R = 0, fGGη1

,G = 0, fGRη3
,R = 0, fGGη3

,G = 0, fGGη3
,R + fGRη3

,G = 0, fGRη4
,A + fGGη5

,A = 0,

fGRη4
,B + fGGη5

,B = 0, fGRη4
,M + fGGη5

,M = 0, M fRRη1
,B + 2A fRRη3

,B = 0, AB fRξ,G + 2 fGGη1
,r = 0,

AB ( fRξ,R + 4M fRRξ,M ) + 2 fGRη1
,r = 0, MB fRξ,G + 2 fGGη3

,r = 0, MB ( fRξ,R + M fRRξ,M ) + 2 fGRη3
,r = 0,

(M fRR + 4 fGR) η1
,R + 2A fRRη3

,R = 0, (M fGR + 4 fGG) η1
,G + 2A fGRη3

,G = 0, fGRη4
,r + fGGη5

,r = 0,

(M fRR + 4 fGR) η1
,G + (M fGR + 4 fGG) η1

,R + 2A
(

fGRη3
,R + fRRη3

,G

)
= 0, Vξ,B + K,B = 0,

fRη3
,r + (M fRR + 4 fGR) η4

,r + (M fGR + 4 fGG) η5
,r −
√

AB (Vξ,A + K,A ) = 0,

fR

(
1
A

η1
,r +

1
M

η3
,r

)
+ 2

(
fRRη4

,r + fGRη5
,r

)
−
√

B
A

(Vξ,M + K,M ) = 0,

2A fRRη3
,r + (M fRR + 4 fGR) η1

,r −
√

AB (Vξ,R + K,R ) = 0,

2A fGRη3
,r + (M fRG + 4 fGG) η1

,r −
√

AB (Vξ,G + K,G ) = 0,

fRη3
,A + (M fRR + 4 fGR) η4

,A + (M fGR + 4 fGG) η5
,A = 0,

fRη3
,B + (M fRR + 4 fGR) η4

,B + (M fGR + 4 fGG) η5
,B = 0, (A1)

2A
(

fRRη4
,B + fGRη5

,B

)
+ fRη1

,B +
A
M

fRη3
,B = 0,

− fR
2

(
η1

A
+

η2

B

)
+ fRRη4 + fGRη5 + fR

(
η1

,A +
A
M

η3
,A + η3

,M − ξ,r

)
+ (M fRR + 4 fGR) η4

,M

+ (M fGR + 4 fGG) η5
,M + 2A

(
fRRη4

,A + fGRη5
,A

)
= 0,

(M fRR + 4 fGR)

[
− 1

2

(
η1

A
+

η2

B

)
+ η1

,A + η4
,R − ξ,r

]
+ fRRη3 + (M fRRR + 4 fGRR) η4 + (M fRRG + 4 fGRG) η5

+ fRη3
,R + 2A fRRη3

,A + (M fGR + 4 fGG) η5
,R = 0,

(M fGR + 4 fGG)

[
− 1

2

(
η1

A
+

η2

B

)
+ η1

,A + η5
,G − ξ,r

]
+ fGRη3 + (M fRGR + 4 fGGR) η4 + (M fRGG + 4 fGGG) η5

+ fRη3
,G + 2A fGRη3

,A + (M fRR + 4 fGR) η4
,G = 0,

fR

[
1

2M

(
η1 − A

B
η2
)
− A

M2 η3 + 2η1
,M +

A
M

(
2η3

,M − ξ,r

)]
+

A
M

(
fRRη4 + fGRη5

)
+ 4A

(
fRRη4

,M + fGRη5
,M

)
= 0,

fRR

(
η1

2A
− η2

2B
+ η3

,M + η4
,R − ξ,r

)
+ fRRRη4 + fRRGη5 +

fR
2

(
1
A

η1,R +
1
M

η3
,R

)
+ fGRη5

,R +
1

2A
(M fRR + 4 fGR) η1

,M = 0,

fGR

(
η1

2A
− η2

2B
+ η3

,M + η5
,G − ξ,r

)
+ fRGRη4 + fRGGη5 +

fR
2

(
1
A

η1,G +
1
M

η3
,G

)
+ fRRη4

,G +
1

2A
(M fGR + 4 fGG) η1

,M = 0,

fGR

[
−
(

η1

2A
+

3η2

2B
+

η3

M

)
+ η1

,A + 2η3
,M + η4

,R − 3ξ,r

]
+ fGRRη4 + fGRGη5 + fGGη5

,R = 0,

fGG

[
−
(

η1

2A
+

3η2

2B
+

η3

M

)
+ η1

,A + 2η3
,M + η5

,G − 3ξ,r

]
+ fGGRη4 + fGGGη5 + fGRη4

,G = 0,

V,A η1 + V,B η2 + V,M η3 + V,R η4 + V,G η5 + Vξ,r + K,r = 0,

where V ≡
√

AB [M(G fG − f ) + (MR− 2) fR].
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