Algorithm 1 SMGN-Based Person Re-identification

1. Training

Input: Training images $X_{\text {train }}=\left\{\left(x_{t}, l_{t}\right) \mid t=1, \ldots, N\right\}, m$: the margin parameter in Equation (5), λ : the balance coefficient in Equation.(9).
Output: The backbone CNN Ω of SMGN.
Parameter settings: batch_size $=16$, Epoches $=1000$, batch_per_epoch $=$ N/16.
For epoch in Epoches:
For batch in batch_per_epoch:
(1) Using the current batch of person images, 16 image pairs are randomly constructed and recorded as $B_{i}=\left(x_{i}^{1}, x_{i}^{2}, l_{i}^{1}, l_{i}^{2}, L_{i}\right) \quad(i=1, \ldots, 16)$;
(2)Initializing the MCWF loss: Loss $_{\text {fusion }}=0$;

For $i=1 \rightarrow 16$ do
(3) Extracting global features G_{i}^{1}, G_{i}^{2} and local features L_{i}^{1}, L_{i}^{2} of i-th pair B_{i}, and Concatenating all features to obtain LMMG features F_{1}, F_{2} via Equation (1);
(4) Utilizing all the features mentioned above to calculate the i-th MCWF loss Loss ${ }_{\text {fusion }}^{i}$ via Equation (9);
(5) Accumulating losses: $\operatorname{Loss}_{\text {fusion }}=\operatorname{Loss}_{\text {fusion }}+\operatorname{Loss}_{\text {fusion }}^{i}$;

end For

(6)MCWF is propagated backward by BP algorithm to further optimize SMGN model parameter.
end For
end For
return Ω

2. Testing

Input: A query image set $X_{\text {query }}=\left\{\left(x_{j}^{q}, l_{j}^{q}\right) \mid j=1, \ldots, Q\right\}$ and gallery images set $X_{g a l}=\left\{\left(x_{i}^{g}, l_{i}^{q}\right) \mid i=1,2, \ldots, M\right\}$, parameter K.
Output: The top- K precision P_{K}.
(1) Extracting LMMG features of each image x_{i}^{g} in $X_{g a l}$ using Ω, which is recorded as $F_{g a l}=\left\{F_{i}^{g} \mid i=1,2, \ldots, M\right\}$;
(2) Initializing the correct matching number $b=0$;

For $j=1 \rightarrow Q$ do
(3) Extracting LMMG features F_{j}^{q} of j-th image in $X_{\text {query }}$ using Ω;
(4) Computing the distance between F_{j}^{g} and each feature vector in $F_{g a l}$ using Equation (10), which is recorded as $D_{j}=\left\{d_{1}^{j}, d_{2}^{j}, \ldots, d_{M}^{j}\right\}$;
(5)Sorting D_{j} in ascending order to obtain the rank results S_{j};
(6) Comparing the labels l_{j}^{q} with the first $K l_{i}^{g}$ in S_{j}, if there exits $l_{j}^{q}=l_{i}^{g}(i=1,2, \ldots, K)$, then $b=b+1$;
end For
(7)Computing the average precision: $P_{K}=b / Q$.
return P_{K}

