Supplementary Materials:

Algorithm 1 SMGN-Based Person Re-identification

1. Training

Input: Training images $X_{train} = \{(x_t, l_t) | t = 1, ..., N\}$, *m* : the margin parameter in Equation (5), λ : the balance coefficient in Equation.(9).

Output: The backbone CNN Ω of SMGN.

Parameter settings: batch_size = 16, Epoches = 1000, batch_per_epoch = *N*/16.

For epoch in Epoches:

For batch in batch_per_epoch:

① Using the current batch of person images, 16 image pairs are randomly constructed and recorded as $B_i = (x_i^1, x_i^2, l_i^1, l_i^2, L_i)$ (*i* = 1,...,16);

⁽²⁾Initializing the MCWF loss: $Loss_{fusion} = 0$;

For $i=1 \rightarrow 16$ do

- ⁽³⁾ Extracting global features G_i^1 , G_i^2 and local features L_i^1 , L_i^2 of *i*-th pair B_i , and Concatenating all features to obtain LMMG features F_1 , F_2 via Equation (1);
- (4) Utilizing all the features mentioned above to calculate the *i*-th MCWF loss $Loss_{fusion}^{i}$ via Equation (9);
- (5) Accumulating losses: $Loss_{fusion} = Loss_{fusion} + Loss_{fusion}^{t}$;
- end For

6 MCWF is propagated backward by BP algorithm to further optimize SMGN model parameter.

end For

end For

return Ω

2. Testing

Input: A query image set $X_{query} = \{(x_j^q, l_j^q) | j = 1, ..., Q\}$ and gallery images set $X_{gal} = \{(x_i^g, l_i^g) | i = 1, 2, ..., M\}$, parameter *K*.

Output: The top-*K* precision P_K .

(1) Extracting LMMG features of each image x_i^g in X_{gal} using Ω , which is recorded as $F_{gal} = \{F_i^g | i = 1, 2, ..., M\}$;

② Initializing the correct matching number b=0;

For $j = 1 \rightarrow Q$ do

(3) Extracting LMMG features F_j^q of *j*-th image in X_{query} using Ω ;

(4) Computing the distance between F_j^g and each feature vector in F_{gal} using Equation (10), which is recorded as $D_j = \{d_1^i, d_2^j, ..., d_M^j\}$;

⁽⁵⁾Sorting D_i in ascending order to obtain the rank results S_i ;

ⓒ Comparing the labels l_j^q with the first K l_i^g in S_j , if there exits $l_j^q = l_i^g (i = 1, 2, ..., K)$, then b = b + 1;

end For

⑦Computing the average precision: $P_K = b/Q$.

return P_K