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Abstract: Plastic anisotropy is very common to metallic materials. This property may significantly
affect the performance of structures. However, the actual orthotropic yield criterion is often replaced
with a criterion based on the assumption of normal anisotropy. The present paper aims to reveal the
influence of this replacement on the distribution of strains and residual strains in a thin hollow disk
under plane stress conditions. The boundary-value problem is intentionally formulated such that it is
possible to obtain an exact semi-analytical solution without relaxing the boundary conditions. It is
assumed that the disk is loaded by external pressure, followed by elastic unloading. The comparative
analysis of the distributions of residual strains shows a significant deviation of the distribution
resulting from the solutions based on the assumption of normal anisotropy from the distribution
found using the actual orthotropic yield criterion. This finding shows that replacing the actual
orthotropic yield criterion with the assumption of normal anisotropy may result in very inaccurate
predictions. The type of anisotropy accepted is of practical importance because it usually results from
such processes as drawing end extrusion with an axis of symmetry.

Keywords: disk; residual stress; residual strain; normal anisotropy; yield criteria

1. Introduction

Many metallic materials are plastically anisotropic. The orthotropic form of anisotropy is most
common, arising from such metal forming processes as rolling, drawing and extrusion [1]. This material
property affects both subsequent sheet metal forming processes and the performance of structures
and machine parts made of the products of these processes [2]. For example, the residual stresses
and, hence, the elastic springing are very sensitive to plastic anisotropy [3,4]. The effect of plastic
anisotropy on the solution behavior for thin rotating disks has been revealed in [5–7]. However,
for simplifying theoretical calculations, the real orthotropic yield criterion is often replaced with a
transversely isotropic yield criterion (i.e., it is assumed that the material properties are independent
of the direction within the transverse plane). This type of anisotropy is called normal anisotropy.
The effect of the replacement above is usually not evaluated. The primary objective of the present
paper is to evaluate this effect for a particular structure.
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The assumption of normal anisotropy is often used for the analysis of various sheet metal forming
processes. In [8–12], theoretical analyses for the elastic/plastic bending of sheet metal have been carried
out to predict springback, bendability, strain and stress distributions, and the maximum load on the
punch. In [13], a numerical and analytical study on the stretch flanging of V-shaped sheet metal has
been presented. A non-linear correlation between the hole expansion ratio and tensile properties,
including the coefficient of normal anisotropy, has been revealed in [14,15]. Many instability (or failure)
criteria used for predicting the limit strain and formability of sheet metal are applicable only for normal
anisotropy [16–18]. In [19–21], the influence of plastic anisotropy on the plastic behavior and failure of
porous ductile materials has been studied using different modifications of the Gurson yield criterion.
Still, in all these cases, the matrix is supposed to be transversely isotropic. The assumption of normal
anisotropy is also used to study the effect of anisotropy on the hardness of billets after upsetting [22],
and to estimate the no-rivet connection quality [23].

Moreover, the assumption of normal anisotropy is often used not only to analyze technological
processes but also for the estimation of plastic anisotropy of different materials. For example, in [24],
Al/Cu bimetallic sheets have been studied, and the copper layer thickness’s influence on the normal
anisotropy has been reported. The normal anisotropy coefficients have also been used. The authors
of [25] studied the influence of continuous annealing temperature on battery shell steel’s mechanical
properties. In [26], the normal anisotropy of crystallographic orientations has been calculated to
evaluate the effect of crystallographic texture on the stretch-flangeability during the hole expansion
test of hot-rolled multiphase steel.

There are various expressions for calculating the parameters involved in transversely isotropic
yield criteria [2,27–30]. These expressions depend on the number of directions along which the yield
stress is available. Therefore, it is of interest to reveal the effect of different transversely isotropic yield
criteria on the distribution of residual stresses and strains in structures. For this purpose, it is not
necessary to solve a complicated boundary value problem. It is more important to derive an analytic
or semi-analytic solution without relaxing any boundary conditions. In [31], the effect of replacing the
exact yield criterion by transversely isotropic yield criteria on the distribution of residual stresses in
a thin hollow disk subjected to external pressure and subsequent unloading has been investigated.
In the present study, this analysis is extended to the distribution of residual strains. A comprehensive
overview of the boundary value problem solved has been provided in [32]. This overview does not
include solutions for anisotropic materials.

2. Statement of the Problem

In many cases, the actual orthotropic yield criterion (i.e., this criterion describes experimental
data with sufficient accuracy) is replaced with the assumption of normal anisotropy [8–23]. The effect
of this replacement on the final result is unknown. It may depend on the actual yield criterion and its
approximations. In the present paper, the quadratic yield criterion proposed by Hill [33] is chosen
as the actual yield criterion. However, any other criterion can play this role. Having Hill’s yield
criterion, one can find parameters that are necessary for formulating any yield criterion based on the
assumption of normal anisotropy. These different yield criteria are used for finding the distributions of
residual stresses and strains under the same system of loading. The difference in these distributions is
considered as the effect of the replacement of the actual yield criterion with approximate yield criteria.

It is seen from the above that the choice of the boundary value problem is not so crucial for the
primary objective of this study. For the reason of transparency of the final result, it is desirable to have
semi-analytic solutions without relaxing the equations and boundary conditions. The boundary value
problem below satisfies this requirement.

Consider the deformation of a thin hollow disk of inner radius a0 and outer radius b0 by a uniform
external pressure p0, followed by unloading (Figure 1). The internal pressure is zero. It is natural to
solve this boundary value problem in a cylindrical coordinate system (r,θ, z) whose z−axis coincides
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with the axis of symmetry of the disk. Let σr, σθ and σz be the normal stresses referred to this coordinate
system. The state of stress is plane, σz = 0. The stress boundary conditions are

σr = 0 (1)

for r = a0 and
σr = −p0 (2)

for r = b0.
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Figure 1. Schematic of the disk subjected to external pressure p0.

The constitutive equations comprise Hooke’s law, the yield criterion, and its associated flow
rule. It is assumed that the material of the disk is orthotropic and obeys the Hill’s quadratic yield
criterion [33]. Moreover, the principal axes of anisotropy coincide with the coordinate curves of the
cylindrical coordinate system. Then, since σz = 0, the yield criterion is represented as

(G + H)σ2
r − 2Hσrσθ + (H + F)σ2

θ = 1, (3)

where
2F =

1
Y2 +

1
Z2 −

1
X2 , 2G =

1
Z2 +

1
X2 −

1
Y2 , 2H =

1
X2 +

1
Y2 −

1
Z2 (4)

and X, Y and Z are the yield stresses in tension in the radial, circumferential, and axial directions,
respectively. One can also express the coefficients F, G, and H in terms of the Lankford’s coefficients R0

and R90 as [2]

F =
1

X2
R0

R90(R0 + 1)
, G =

1
X2

1
(R0 + 1)

, H =
1

X2
R0

(R0 + 1)
. (5)

here, the coefficient R0 corresponds to the radial direction and the coefficient R90 to the circumferential
direction. Actual orthotropic yield criteria are often approximated by the normally anisotropic yield
criterion of the form

σ2
r −

2R(
1 + R

)σrσθ + σ2
θ = σ2

s , (6)
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where σs is the average yield stress in tension in any direction in planes z = constant. The value of R is
expressed through the Lankford’s coefficients in different directions. Several expressions are available
in the literature [2,27–30]. All of them can be represented as [30]

R =


R0+2

n−2∑
i=1

R∆αi+R90

2(n−1) if n > 2,
R0+R90

2 if n = 2.
(7)

Similar expressions are used for the average yield stress in tension:

σs =


X+2

n−2∑
i=1

σs∆αi+Y

2(n−1) if n > 2,
X+Y

2 if n = 2.
(8)

The difference between the expressions in [2,27–30] is in the value of n. In Equations (7) and (8),
n is the number of directions in which the Lankford’s coefficients and yield stresses are measured
(including the radial and circumferential directions), R∆αi is the Lankford’s coefficient in the direction
γ = ∆αi, σs∆αi is the yield stress in tension in the direction γ = ∆αi, γ is the angle measured from the
radial direction anticlockwise, and ∆α = π/[2(n− 1)].

It is evident from Equations (1)–(3) and (6) that the solution for any yield criterion is independent
of θ. Moreover, the stresses σr, σθ and σz are the principal stresses. Therefore, the only non-trivial
equilibrium equation is

∂σr

∂r
+
σr − σθ

r
= 0. (9)

Let εr, εθ and εz be the normal strains referred to the cylindrical coordinate system. These strains
are the principal strains. Therefore, the Hooke’s law reduces to

Eεe
r = σr − νσθ, Eεe

θ = σθ − νσr, Eεe
z = −ν(σr + σθ). (10)

here, the superscript e denotes the elastic portion of the strain components, E is the Young’s modulus,
and ν is the Poisson’s ratio. The plastic flow rule associated with Yield Criterion (3) is

.
ε

p
r = λ[(G + H)σr −Hσθ],

.
ε

p
θ
= λ[(F + H)σθ −Hσr],

.
ε

p
z = −λ(Gσr + Fσθ) (11)

and with Yield Criterion (6) is

.
ε

p
r = λ1

σr −
Rσθ(

1 + R
) , .

ε
p
θ
= λ1

σθ − Rσr(
1 + R

) , .
ε

p
z = −

λ1(
1 + R

) (σr + σθ). (12)

here, λ and λ1 are non-negative multipliers, and the superscript p denotes the plastic portion of the
strain components, and the superimposed dot denotes the time derivative. The total strain components
are determined as

εr = εe
r + ε

p
r , εθ = εe

θ + ε
p
θ

, εz = εe
z + ε

p
z . (13)

In what follows, it is convenient to use the dimensionless quantities:

ρ =
r

b0
, a =

a0

b0
, k =

X
E

, s =
σs

X
, p =

p0

X
. (14)

The present paper aims to show the effect of replacing Yield Criterion (3) with (6) on the distribution
of stresses and strain at the end of loading and residual stresses and strains.
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3. Stress Solution

A stress solution has been found in [31]. For the reason of readability, the main results of this
solution are presented in this section.

In the case of Yield Criterion (3), the distribution of the radial and circumferential stresses in the
plastic region a0 ≤ r ≤ rc (or a ≤ ρ ≤ ρc) is given in parametric form as

σr
X = −

2 sinψ
√

4−η2
, σθ

X = −η1

(
η sinψ
√

4−η2
+ cosψ

)
,

ln
(ρ

a

)
=

η1
√

4−η2

2[1+η1(η1−η)]
ψ+

+
(2−ηη1)

2[1+η1(η1−η)]
ln

[
η1
√

4−η2

η1
√

4−η2 cosψ−(2−ηη1) sinψ

]
,

(15)

where η = 2HXY, η1 = Y/X, ψ is an auxiliary variable, rc is the radius of the elastic/plastic boundary
and ρc is its dimensionless representation, ρc = rc/b0. The distribution of the radial and circumferential
stresses in the elastic region rc ≤ r ≤ b0 (or ρc ≤ ρ ≤ 1) is given as

σr
X =

A(1−ρ2)
ρ2 − p, σθ

X = −
A(1+ρ2)

ρ2 − p,

A = ρ2
c

[
η1
2

(
η sinψc
√

4−η2
+ cosψc

)
−

sinψc
√

4−η2

]
.

(16)

Let ψc be the value of ψ at ρ = ρc. One can find ψc and ρc as functions of p from the following
equations:

ln
(ρc

a

)
=

η1
√

4−η2

2[1+η1(η1−η)]
ψc+

+
(2−ηη1)

2[1+η1(η1−η)]
ln

[
η1
√

4−η2

η1
√

4−η2 cosψc−(2−ηη1) sinψc

]
,

sinψc
√

4−η2

(
1− ρ2

c

)
+

η1
2

(
η sinψc
√

4−η2
+ cosψc

)(
1 + ρ2

c

)
= −p.

(17)

Then, the radial distribution of the stresses σr and σθ at a given value of p immediately follows
from Equations (15) and (16).

In the case of Yield Criterion (6), the distribution of the radial and circumferential stresses in the
plastic region a ≤ ρ ≤ ρc is given in parametric form as

σr
σs

= −q1 sinϕ, σθ
σs

= −q2 sinϕ− cosϕ,

ln
(ρ

a

)
= −

√
1+2R
2

{
ϕ+ (q1 − q2) ln[cosϕ+ (q1 − q2) sinϕ]

}
,

q1 = 1+R√
1+2R

, q2 = R√
1+2R

,

(18)

where ϕ is an auxiliary variable. The distribution of the radial and circumferential stresses in the elastic
region ρc ≤ ρ ≤ 1 is given as

σr
σs

= A1
ρ2 − B1, σθ

σs
= −A1

ρ2 − B1,

B1 = 1
2 [(q1 + q2) sinϕc − cosϕc], A1 =

ρ2
c

2 [(q1 − q2) sinϕc + cosϕc],
(19)

where ϕc is the value of ϕ at ρ = ρc. It is seen from Equation (18) that

ln
(ρc

a

)
= −

√
1 + 2R

2
{
ϕc + (q1 − q2) ln[cosϕc + (q1 − q2) sinϕc]

}
. (20)
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Moreover, it follows from Equations (2), (14) and (19) that

B1 = A1 +
p
s

. (21)

Substituting Equation (19) into Equation (21) leads to

(q1 + q2) sinϕc − cosϕc = ρ2
c [(q1 − q2) sinϕc + cosϕc] +

2p
s

. (22)

The solution of Equations (20) and (22) supplies the dependencies of ϕc and ρc on p. Then, the
radial distribution of the stresses σr and σθ at a given value of p immediately follows from Equations (18)
and (19).

The radial stress increment at the end of unloading should satisfy the boundary conditions:

∆σr = 0 (23)

for ρ = a and
∆σr = p0 (24)

for ρ = 1. Assuming that the process of unloading is purely elastic, one can find from the equilibrium
equations and Hooke’s law that the solution for the radial and circumferential stress increments
satisfying the boundary conditions (23) and (24) is

∆σr =
p0

(1− a2)

(
1−

a2

ρ2

)
, ∆σθ =

p0

(1− a2)

(
1 +

a2

ρ2

)
. (25)

This solution is independent of the yield criterion accepted for the stage of loading.
Let σ f

r and σ
f
θ

be the radial and circumferential stresses at the end of loading, respectively.

The residual stresses are determined from the equations σres
r = σ

f
r + ∆σr and σres

θ
= σ

f
θ
+ ∆σθ. Then,

using Equations (14) and (25) one can find the radial distribution of residual stresses as

σres
r
X

=
σ

f
r

X
+

p
(1− a2)

(
1−

a2

ρ2

)
,
σres
θ

X
=
σ

f
θ

X
+

p
(1− a2)

(
1 +

a2

ρ2

)
(26)

in the case of Yield Criterion (3) and

σres
r
σs

=
σ

f
r
σs

+
p

s(1− a2)

(
1−

a2

ρ2

)
,
σres
θ

σs
=
σ

f
θ

σs
+

p
s(1− a2)

(
1 +

a2

ρ2

)
(27)

in the case of Yield Criterion (6). The radial and circumferential stresses on the right-hand side of
Equation (26) should be eliminated using Equations (15) and (16), on the right-hand side of Equation (27)
using Equations (18) and (19).

The solutions (26) and (27) are valid if the respective yield criterion is not violated in the range
a ≤ ρ ≤ 1. This condition is represented as

(G + H)(σres
r )2
− 2Hσres

r σres
θ + (H + F)

(
σres
θ

)2
≤ 1 (28)

in the case of Yield Criterion (3) and(
σres

r
σs

)2

−
2R(

1 + R
) (σr

σs

)(
σθ
σs

)
+

(
σres
θ

σs

)2

≤ 1 (29)

in the case of Yield Criterion (6).
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4. Strain Solution

The solution in the elastic region immediately follows from the stress solution and Hooke’s law.
In particular, substituting Equation (16) into Equation (10) and using Equation (14) leads to

εe
r

k =
εr
k =

A[(1−ρ2)+ν(1+ρ2)]
ρ2 − p(1− ν),

εe
θ
k =

ε
θ
k = −

A[(1+ρ2)+ν(1−ρ2)]
ρ2 − p(1− ν),

εe
z

k =
εz
k = 2ν(A + p)

(30)

in the range ρc ≤ ρ ≤ 1. One can eliminate A in Equation (30) using the third equation in (16).
Equation (30) is valid for Yield Criterion (3). Substituting Equation (19) into Equation (10) and using
Equation (14) leads to

εe
r

k =
εr
k = s

[
A1(1+ν)

ρ2 − B1(1− ν)
]
,
εe
θ
k =

ε
θ
k = −s

[
A1(1+ν)

ρ2 + B1(1− ν)
]
,

εe
z

k =
εz
k = 2sνB1

(31)

in the range ρc ≤ ρ ≤ 1. One can eliminate A1 and B1 in Equation (31) using the third and fourth
equations in (19). Equation (31) is valid for Yield Criterion (6).

One can eliminate λ in Equation (11) to arrive at

.
ε

p
r =

[(G + H)σr −Hσθ]
[(F + H)σθ −Hσr]

.
ε

p
θ

,
.
ε

p
z =

−(Gσr + Fσθ)
[(F + H)σθ −Hσr]

.
ε

p
θ

.

Using the parameters η and η1 introduced after Equation (15), these equations transform to

.
ε

p
r =

η1(2η1σr − ησθ)

(2σθ − ηη1σr)

.
ε

p
θ

,
.
ε

p
z = −

[(2− ηη1)σθ + η1(2η1 − η)σr]

(2σθ − ηη1σr)

.
ε

p
θ

. (32)

Equations (15) and (32) combine to give

.
ε

p
r =

η1

2

(√
4− η2 tanψ− η

)
.
ε

p
θ

,
.
ε

p
z = −

1
2

(
2− ηη1 + η1

√
4− η2 tanψ

)
.
ε

p
θ

. (33)

The third equation in (15) shows that ψ is independent of the time. Therefore, Equation (33) can
be immediately integrated to give

ε
p
r =

η1

2

(√
4− η2 tanψ− η

)
ε

p
θ

, εp
z = −

1
2

(
2− ηη1 + η1

√
4− η2 tanψ

)
ε

p
θ

. (34)

The elastic strains in the plastic region are determined from Equations (10), (14) and (15) as

εe
r

k = νη1 cosψ+
(νηη1−2)
√

4−η2
sinψ,

εe
θ
k =

(2ν−ηη1)√
4−η2

sinψ− η1 cosψ,

εe
z

k = ν

[
(2+ηη1)√

4−η2
sinψ+ η1 cosψ

]
.

(35)

In the case under consideration, the equation of strain compatibility reduces to

ρ
∂εθ
∂ρ

+ εθ − εr = 0. (36)
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Using Equation (15), one can replace differentiation with respect to ρ with differentiation with
respect to ψ. As a result, Equation (36) becomes[

η1

√
4− η2 − (2− ηη1) tanψ

]
∂εθ
∂ψ

+ 2(εθ − εr) = 0. (37)

Substituting Equations (34) and (35) into Equation (13) yields

εr
k = νη1 cosψ+

(νηη1−2)
√

4−η2
sinψ+

η1
2

(√
4− η2 tanψ− η

) εp
θ
k ,

ε
θ
k =

(2ν−ηη1)√
4−η2

sinψ− η1 cosψ+
ε

p
θ
k ,

εz
k = ν

[
(2+ηη1)√

4−η2
sinψ+ η1 cosψ

]
−

1
2

(
2− ηη1 + η1

√
4− η2 tanψ

) εp
θ
k .

(38)

Equations (37) and (38) combine to give

∂
(
ε

p
θ

/k
)

∂ψ
+

(
2 + ηη1 − η1

√
4− η2 tanψ

)[
η1

√
4− η2 − (2− ηη1) tanψ

] εp
θ

k
−

cosψ
(
2 + ηη1 − η1

√
4− η2 tanψ

)
√

4− η2
= 0. (39)

This is a linear differential equation for εp
θ

. The plastic strains vanish at the elastic/plastic boundary.
Therefore, the boundary condition to Equation (39) is

ε
p
θ
= 0 (40)

for ψ = ψc. The solution of Equation (39) satisfying this boundary condition is

ε
p
θ
k = 1√

4−η2
exp

− ψ∫
ψc

(
2+ηη1−η1

√
4−η2 tanω

)
[
η1
√

4−η2−(2−ηη1) tanω
]dω

×
ψ∫
ψc

cosµ
(
2 + ηη1 − η1

√
4− η2 tanµ

)
exp

 µ∫
ψc

(
2+ηη1−η1

√
4−η2 tanω

)
[
η1
√

4−η2−(2−ηη1) tanω
]dω

dµ.

(41)

Having found the dependence of εp
θ

on ψ, one can determine the other plastic strains from
Equation (34) and the total strains from Equation (38) as functions of ψ. These functions and the third
equation in (15) combine to supply the dependence of all these strains on ρ in parametric form.

Turning to Yield Criterion (6), one can eliminate λ1 in Equation (12) to arrive at

.
ε

p
r =

[
σr + R(σr − σθ)

][
σθ + R(σθ − σr)

] .
ε

p
θ

,
.
ε

p
z = −

(σr + σθ)[
σθ + R(σθ − σr)

] .
ε

p
θ

. (42)

Equations (18) and (42) combine to give

.
ε

p
r = −

(
R cosϕ−

√
1 + 2R sinϕ

)
(
1 + R

)
cosϕ

.
ε

p
θ

,
.
ε

p
z = −

(
cosϕ+

√
1 + 2R sinϕ

)
(
1 + R

)
cosϕ

.
ε

p
θ

. (43)

The third equation in (18) shows that ϕ is independent of the time. Therefore, Equation (43) can
be immediately integrated to give

ε
p
r = −

(
R cosϕ−

√
1 + 2R sinϕ

)
(
1 + R

)
cosϕ

ε
p
θ

, εp
z = −

(
cosϕ+

√
1 + 2R sinϕ

)
(
1 + R

)
cosϕ

ε
p
θ

. (44)
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The elastic strains in the plastic region are determined from Equations (10), (14) and (18) as

εe
r

ks = (νq2 − q1) sinϕ+ ν cosϕ,
εe
θ

ks = (νq1 − q2) sinϕ− cosϕ,
εe

z
ks = ν

(√
1 + 2R sinϕ+ cosϕ

)
.

(45)

Equation (36) is valid. Using Equation (18), one can replace differentiation with respect to ρ with
differentiation with respect to ϕ. As a result, Equation (36) becomes(√

1 + 2R− tanϕ
)

(
1 + R

) ∂εθ
∂ϕ

+ εθ − εr = 0. (46)

Substituting Equations (44) and (45) into Equation (13) yields

εr
ks = (νq2 − q1) sinϕ+ ν cosϕ−

(
R cosϕ−

√
1+2R sinϕ

)
(1+R) cosϕ

ε
p
θ

ks ,

ε
θ

ks = (νq1 − q2) sinϕ− cosϕ+
ε

p
θ

ks ,

εz
ks = ν

(√
1 + 2R sinϕ+ cosϕ

)
−

(
cosϕ+

√
1+2R sinϕ

)
(1+R) cosϕ

ε
p
θ

ks .

(47)

Equations (46) and (47) combine to give

∂ε
p
θ

k∂ϕ
+

√
1 + 2R

ε
p
θ

k
+ s

(
sinϕ−

√
1 + 2R cosϕ

)
= 0. (48)

This is a linear differential equation for εp
θ

. The plastic strains vanish at the elastic/plastic boundary.
Therefore, the boundary condition to Equation (48) is

ε
p
θ
= 0 (49)

for ϕ = ϕc. The solution of Equation (48) satisfying this boundary condition is

ε
p
θ

ks
= cosϕ− exp

[√
1 + 2R(ϕc −ϕ)

]
cosϕc. (50)

Having found the dependence of εp
θ

on ϕ, one can determine the other plastic strains from
Equation (44) and the total strains from Equation (47) as functions of ϕ. These functions and the third
equation in (18) combine to supply the dependence of all these strains on ρ in parametric form.

In the course of unloading, the increments of the strain components follow Hooke’s law:

∆εr =
∆σr − ν∆σθ

E
, ∆εθ =

∆σθ − ν∆σr

E
, ∆εz = −

ν(∆σr + ∆σθ)
E

. (51)

Using Equations (14) and (25), one can transform this equation to

∆εr
k =

p
(1−a2)

[
1− ν− (1 + ν) a2

ρ2

]
,

∆ε
θ

k =
p

(1−a2)

[
1− ν+ (1 + ν) a2

ρ2

]
,

∆εz
k = −

2νp
(1−a2)

.
(52)
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Using the strain solutions above and Equation (52), one can find the distribution of the residual
strains as

εres
r
k =

ε
f
r
k + ∆εr

k =
ε

f
r
k +

p
(1−a2)

[
1− ν− (1 + ν) a2

ρ2

]
,

εres
θ
k =

ε
f
θ
k +

∆εθ
k =

ε
f
θ
k +

p
(1−a2)

[
1− ν+ (1 + ν) a2

ρ2

]
,

εres
z
k =

ε
f
z
k + ∆εz

k =
ε

f
z
k −

2νp
(1−a2)

.

(53)

Here, the superscript f denotes the radial distribution of the strains at the end of loading.

5. Numerical Example and Discussion

The numerical example provided in this section evaluates the effect of replacing Hill’s quadratic
yield criterion with several transversely isotropic yield criteria for a disk of inner radius a = 0.35
made of aluminum alloy 5352. This alloy’s mechanical properties involved in Yield Criterion (3) are
available in the literature [34]. One of the principal axes of anisotropy coincides with the axial direction
independently of the orientation of the two other axes. The left-hand side of Yield Criterion (3) is
known from [34]. Then, Z = 220 MPa and the yield stresses in the directions of the other two principal
axes of anisotropy are 198 and 279 MPa. The corresponding Lankford’s coefficients are 0.53 and 2.27.

Using these data and the formulation of the boundary value problem in Section 2, one can arrive at
two different Hill’s yield criteria depending on the orientation of the principal axes of anisotropy relative
to the radial direction. In particular, X = 198 MPa, R0 = 0.53, and R90 = 2.27 in Case (i) and X = 279 MPa,
R0 = 2.27, and R90 = 0.53 in Case (ii). Using these parameters and Equation (5), one can find Hill’s locus
from Yield Criterion (3) for each case. Then, the Lankford’s coefficient and the yield stresses in any
direction can be found by means of any of these loci. Case (i) has been used. As a result, if ∆α = 15◦

in Equations (7)-(8), R15 = 0.46, R30 = 0.65, R45 = 1.10, R60 = 1.41, and R75 = 1.59; σS15 = 199 MPa,
σS30 = 203 MPa, σS45 = 215 MPa, σS60 = 236 MPa, and σS75 = 264 MPa. The elastic properties are
E = 68.5 GPa and ν = 0.33. The mechanical properties responsible for plastic anisotropy are summarized
in Table 1.

Table 1. Input data for all the cases considered.

Hill’s Yield Criterion (Equation (3)) Normal Anisotropy (Equation (6))
Case (i) Case (ii) n = 2 n = 3 n = 7

X, MPa (R0) 198 (0.53) 279 (2.27) 238 (1.40) 226 (1.25) 225 (1.11)
Y, MPa (R90) 279 (2.27) 198 (0.53)

It is worthy of note that it is assumed in Equation (13) that X = 198 MPa independently of the
yield criterion adopted. This choice allows one to compare the solutions at the same value of p0 rather
than p.

The solution for Yield Criterion (3) is valid for Cases (i) and (ii). The input data for the solution
for Yield Criterion (6) have been derived from Equations (7) and (8) for three n-values (Table 1).
In particular,

R = RI =
R0+R90

2 , R = RII =
R0+2R45+R90

4 ,

R = RIII =
R0+2(R15+R30+R45+R60+R75)+R90

12 ,
(54)

σs = σsI =
X+Y

2 , σs = σsII =
X+2σs45+Y

4 ,

σs = σsIII =
X+2(σs15+σs30+σs45+σs60+σs75)+Y

12 .
(55)

The radius of the elastic/plastic boundary at the end of loading is an essential parameter for
autofrettage [35]. Even though the system of loading in the case of hydraulic autofrettage is different
from that considered in the present paper, it is of interest to understand the dependence of this radius
on the yield criterion adopted. The variation of ρc with p found with the use of Equations (16) and (19)
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is depicted in Figure 2. It is seen from this figure that the effect of the yield criterion on ρc is significant
and increases as p increases. Thus, the difference between the plastic region’s predicted sizes found
using the actual orthotropic yield criterion and the assumption of normal anisotropy becomes larger as
the pressure increases.
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In what follows, it is assumed that the disk is loaded with the pressure p0 = 140 MPa. The effect of
the yield criterion on the distribution of stresses has been discussed in [31]. Therefore, the present
paper is restricted to evaluating this effect on the distribution of strains.

Figure 3 shows the variation of the principal strains with the dimensionless radius at the end of
loading found using the solutions given in Section 4. The distribution of the radial strain is the least
sensitive to the choice of the yield criterion (Figure 3c). The distribution of the circumferential strain is
more sensitive because of the solution for case (ii) (Figure 3b). The choice of the yield criterion has the
most significant effect on the distribution of the axial strain (Figure 3a). The effect is pronounced in the
vicinity of the inner radius of the disk.

The effect of the yield criterion on the distribution of the residual strains found from Equation (52)
is shown in Figure 4. It is seen from Figures 3 and 4 that the residual strains are more strongly affected
than the strains at the end of loading. In particular, there is a significant deviation of all residual strains
for Case (ii) from four other cases. However, the difference in the residual axial strain for the different
yield criteria is negligible in the common elastic region (Figure 4a).
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6. Conclusions

Many metallic materials have different yield stresses in the directions of three principal axes of
anisotropy. In the case of a sheet, the different yield stresses in its plane are often replaced with average
yield stress independent of the direction. It has been shown in the present paper that this simplification
in the theoretical description of material behavior can result in a very significant difference in the
distribution of strains and residual strains even in the case of infinitesimal strains. It is expected that
this difference will be even more considerable in the case of using the assumption of transversely
isotropic yield criteria in the modeling of metal forming processes at large strains.
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Nomenclature

a0, b0 inner and outer radius of hollow disk
p0 external pressure
(r,θ, z) cylindrical coordinate system
σr, σθ, σz normal stresses
X, Y, Z yield stresses in tension in the radial, circumferential and axial directions
F, G, H Hill’s coefficients
R0, R90 Lankford’s coefficients in the radial and circumferential directions
σs, R average yield stress in tension and Lankford’s coefficient
R∆αi, σs∆αi Lankford’s coefficient and yield stress in tension in the direction γ = ∆αi
n number of directions in which the Lankford’s coefficients and yield stresses are measured
εr, εθ, εz

εe
r, ε

e
θ

, εe
z

ε
p
r , εp

θ
, εp

z

normal strains (the superscript e denotes the elastic portion of the strain components,
the superscript p denotes the plastic portion of the strain components)

.
ε

p
r ,

.
ε

p
θ

,
.
ε

p
z normal plastic strain rates

E Young’s modulus
ν Poisson’s ratio
λ, λ1 non-negative multipliers in Equations (10) and (11)
ρ, a, k, s, p dimensionless quantities introduced in Equation (13)
η, η1 parameters introduced in Equation (14)
ψ, ϕ auxiliary variables
rc, ρc radius of the elastic/plastic boundary and its dimensionless representation
ψc, ϕc values of ψ and ϕ at ρ = ρc

A parameter introduced in Equation (15)
q1, q2 parameters introduced in Equation (17)
A1, B1 parameters introduced in Equation (18)
∆σr, ∆σθ stress increments at the end of unloading

σ
f
r , σ f

θ
stresses at the end of loading

σres
r , σres

θ residual stresses
µ, ω integration variables
∆εr, ∆εθ, ∆εθ strain increments at the end of unloading

ε
f
r , ε f

θ
, ε f

z strains at the end of loading
εres

r , εres
θ

, εres
z residual strains
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