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Abstract: As a more complicated network model, multilayer networks provide a better perspective
for describing the multiple interactions among social networks in real life. Different from conventional
community detection algorithms, the algorithms for multilayer networks can identify the underlying
structures that contain various intralayer and interlayer relationships, which is of significance and
remains a challenge. In this paper, aiming at the instability of the label propagation algorithm
(LPA), an improved label propagation algorithm based on the SH-index (SH-LPA) is proposed. By
analyzing the characteristics and deficiencies of the H-index, the SH-index is presented as an index to
evaluate the importance of nodes, and the stability of the SH-LPA algorithm is verified by a series of
experiments. Afterward, considering the deficiency of the existing multilayer network aggregation
model, we propose an improved multilayer network aggregation model that merges two networks
into a weighted single-layer network. Finally, considering the influence of the SH-index and the
weight of the edge of the weighted network, a community detection algorithm (MSH-LPA) suitable
for multilayer networks is exhibited in terms of the SH-LPA algorithm, and the superiority of the
mentioned algorithm is verified by experimental analysis.
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1. Introduction

Popular research in the field of network science is to mine hidden information under the network
structure. Community detection is an important aspect of complex network research, and we can see
the presence of the community in various fields, such as detecting the intensive group organization in
a social network [1], the different muscle tissue composed by various genes found in the gene protein
networks [2], and so on. However, effectively and accurately detecting the community structure for
large-scale networks tends to be urgently addressed.

The community detection algorithms can be divided into non-overlapping community detection
algorithms and overlapping community detection algorithms according to whether they contain
overlapping communities or not. Non-overlapping community detection algorithm can be divided
into the following categories. (1) The hierarchical clustering method defines the similarity or distance
between network nodes by the topology of the given network, groups network nodes into a tree
hierarchy by single-connection or full-connection hierarchical clustering, and cross-cuts the tree
diagram according to actual needs to obtain the community structure. The most famous algorithm
is the GN algorithm [3], which continuously deletes the edge in the network that has the maximum
edge-betweenness with respect to all source nodes, and then the edge-betweenness number of the
remaining edges relative to all source nodes in the network is recalculated, and the process is repeated
until the network, all edges are deleted. (2) In the spectral clustering method, the objective is to
find a method of dividing the nodes into disjoint sets by cutting the least-cut edges, such as the
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algorithm in [4,5]. (3) In the modularity optimization method, a modularity optimization function Q
is employed to describe the quality of the detected community. A larger Q value indicates a better
community structure, such as the FN algorithm [6] that each node in the initialization network is a
single community, and then select the most value-added community q module to merge, finally the
network is merged into a community, the algorithm stopped. The overlapping community detection
method allows one node to fall into one or more communities simultaneously, it can be mainly divided
into the following categories: (1) the clique percolation method, such as the CPM algorithm, which is a
kind of project plan management method based on mathematical calculation and belongs to positive
network diagram [7], (2) an improved label propagation algorithm, such as the COPRA algorithm [8]
that is an improvement of LPA, which makes the nodes with multiple tags overlap, and then discover
the overlap community, and (3) methods based on local community optimization and extension, such
as the LFM algorithm [9] that is to expand into a number of local associations, the completion of the
community division.

The community detection algorithm has made great progress, but the time complexity of the existed
algorithms is relatively high. In 2007, Raghavan et al. [10] first applied the label propagation algorithm
(LPA) to community detection. Compared with the above-mentioned community detection algorithms,
LPA relies only on the propagation characteristics of the network and has linear time complexity, which
is suitable for the community detection and analysis for large-scale networks. However, LPA also has
some disadvantages: (1) randomness of node updating order and (2) randomness of label selection. In
response to the above problems, in 2014, Yan Xing et al. [11] proposed the NIBLPA algorithm, which
uses k-shell decomposition to calculate the influence of each node; then, it updates and selects labels
according to nodes influence. In 2015, Sun et al. [12] proposed the Cen_LP algorithm, which defines
the central value and the bias value of the node, and the values are used to update and select the
label. In 2017, Tamron et al. proposed the NILPA algorithm [13], where the node importance is judged
according to the degree of the node, and the node similarity matrix is formed according to the random
walk theory; then, these two points are combined to form new measure criteria to update the label.
These algorithms improved the stability and accuracy, but at the cost of increasing the time complexity.

The research on the complex network community structure has achieved good results. However,
the above-mentioned community detection algorithms mainly aim at the traditional single-layer
network, but there are still no mature research achievements on multilayer networks. There are
currently two methods for multilayer network community detection: merge analysis and multilayer
combination analysis. Merge analysis. There exist two cases of merging analysis. (1) The first involves
merging the multilayer network into a single-layer network, and then carrying out community detection
using the existed community detection algorithm [14–16], but this method may ignore the topological
information in each layer of a multilayer network [17]. (2) The second case involves detecting the
community in each layer, and then merging the communities in different layers [18]. This method does
not consider that the meaning of the nodes in each layer may be different [19]. Multilayer combination
analysis directly detects the community in a multilayer network [20]. The cross-layer edge clustering
coefficient (CLECC) used for multilayer network community detection is proposed based on the edge
cluster coefficient, such as tensor decomposition [21,22], the method [23–25] based on modularity Qm.
However, the number of communities must be an a priori condition for the tensor decomposition
method, and the method based on modularity holds inherent higher time complexity.

In this paper, there are some contributions to the existing knowledge. First, by analyzing the
instability of the label propagation algorithm (LPA), this paper concludes that the centrality of the node
can be used to change the randomness of LPA update nodes and node labels, thereby improving the
stability of the LPA algorithm. The shortcomings of the H index directly applied to the LPA algorithm
are explained in detail, and the SH index is proposed. Based on this, the SH-LPA algorithm is proposed.
The stability of the algorithm is verified by an example. The time complexity of the algorithm is
(NlogN), which is close to the linear time complexity. Secondly, in order to solve the problems such
as the loss of a lot of network information when the previous multilayer network is merged into a
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single-layer network, a new network fusion method is proposed in this paper. The edge weights of the
fused network are determined by calculating the similarity of the nodes, and the multilayer network
is fused into a weighted single-layer network. Considering the weight of the network as one of the
methods to evaluate the centrality of the nodes, the MSH-LPA algorithm is proposed.

2. SH-Index-Based LPA Algorithm

2.1. The Idea of the Algorithm

The label propagation algorithm (LPA) is favored by researchers for its linear time complexity.
However, the instability is a significant deficiency of the algorithm, which comes from the randomness
of the order of node updating as well as the randomness of node label updating. To reduce the
randomness of the LPA and simultaneously ensure that the algorithm retains linear time complexity,
the influence of each node is calculated in this paper, which determines the order of node updating
and node labels updating for the LPA algorithm. The basic idea of the LPA algorithm is to use the
tag information of marked nodes to predict the tag information of unmarked nodes. The relationship
between samples is used to build a complete relationship graph model. In a complete graph, nodes
include labeled and unlabeled data, the edges represent the similarity of the two nodes, and the labels
of the nodes are passed to other nodes according to the similarity. Label data are similar to a source,
which can be labeled as unlabeled data. The more similar the nodes are, the easier it is for the label
to spread.

By incorporating the node itself, the SH-index is proposed based on the H-index to calculate the
influence of the node, which improves the robustness of the algorithm and ensures that the algorithm
keeps the same efficiency with the LPA algorithm.

2.2. Related Issues and Definitions

To illustrate the process of the SH-LPA algorithm more clearly, the variables and functions
employed in the algorithm are defined as follows.

2.2.1. LPA Algorithm

The idea of the LPA algorithm is that a unique label is first assigned to each node in the network,
and each label just represents a community; then, the labels are updated by

l(i) = argmax
l

∑
j∈N(i)

l( j), (1)

where N(i) represents the set of neighboring nodes of node i.
If there are multiple labels, randomly select a label until the maximum number of iterations or

each label of the nodes is no longer changed; that is, the algorithm process is completed.

2.2.2. H-Index

A typical and representative indicator for describing a node’s importance is degree, but this is
often poorly performed when measuring the nodes that are taken as a bridge between communities;
betweenness and coreness are shortest-path based indicators and are capable of evaluating the node’s
influence in most cases. However, this kind of computing requires the global topological information
of the network, which is not applicable to large-scale networks. To find a compromised method to
evaluate the influence of the node, in 2016, Zhou Tao et al. [26] expanded the H-index.

The H-index is an indicator for quantitatively evaluating the academic achievements of researchers,
which was originally proposed by physicist Jorge E. Hirsh of the University of California, San Diego in
2005 [27]. The most primitive definition of a researcher’s H-index is as follows: among N published
papers, there are H papers that have been cited at least H times, and the remaining N-H papers were



Symmetry 2020, 12, 223 4 of 18

all cited less than H times. The higher the H-index is, the stronger the influence of his paper will be.
The H-index of a node means that a node has at least H neighboring nodes, and the degree of these
neighboring nodes is not less than H.

Supposing a relational expression is represented as y = F(x1, x2, . . . , xn), where F returns an
integer number greater than 0, and the function is to find a maximum value y satisfying the condition
that there exist at least y elements whose values are not less than y. Hence, the H-index of any node i is
defined as

H(i) = F
(
k j1, k j2, . . . , k jki

)
, (2)

where k j1, k j2, . . . , k jki represent the set of degrees of neighboring nodes of node i. The pseudo-code of
calculating a node’s H-index is presented in Algorithm 1.

Take the toy network in Figure 1 as an example; the calculated H-indexes of nodes are shown in
Table 1.

Algorithm 1: H-Index

Input: network G, node n
Output: node’s H-index h

1. nd = {};
2. h = 0;
3. for v in G.neighbors(n) do
4. nd[v] = G.neighbors(v).length();
5. snd = sorted(nd.values(), descending);
6. for (i = 0; i < snd.length(); i++) do
7. h = i;
8. if snd[i] < i then
9. break;
10. return h;
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Table 1. The H-index of each node in Figure 1.

Node 1 2 3 4 5 6 7 8 9

H-index 2 2 2 2 2 2 1 1 1

2.2.3. SH-Index

Although the H-index can be applied to quickly calculate the influence of a node, the distinction
of the node influence is very low, because the H-index only considers the neighboring nodes of a node
but does not regard the node itself. In this paper, considering the node itself as well as its neighboring
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nodes, the SH-index of node i (marked as SH(i)) is proposed, which is relevant to node’s H-index and
its neighboring nodes, and it is defined as

SH(i) =
H(i) ∗

(∏
j∈N(i) H( j)

)∣∣∣N(i)
∣∣∣ , (3)

where N(i) is the set of node i’s neighboring nodes, and
∣∣∣N(i)

∣∣∣ represents the degree of node i. The
pseudo-code of calculating a node’s SH-index is shown as Algorithm 2.

Algorithm 2: SH-Index

Input: network G, node n
Output: node’s SH-index sh

1. sh = n.H-index();
2. N = G.neighbors(n).length();
3. for v in G.neighbors(n) do
4. sh *= v.H-index();
5. sh /= G.neighbors(n).length();
6. return sh;

Likewise, take the toy network in Figure 1 for instance; the H-index of node 1 is 2, the list of its
neighboring nodes is [2,3], and the H-index list of neighboring nodes is [2,2]. According to Equation
(3), node 1 has an SH-index of 4. Similarly, the SH-index of all nodes is shown in the following Table 2.

Table 2. The SH-index of each node in Figure 1.

Node 1 2 3 4 5 6 7 8 9

SH-index 4 5.3 5.3 5.3 4 1.3 1 2 1

In the toy network in Figure 1, we can calculate the degree, H-index, and SH-index of each node,
as shown in Figure 2.Symmetry 2019, 11, x FOR PEER REVIEW 6 of 18 
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Figure 2 shows that the SH-index can effectively solve the problem that the discrimination of
nodes’ H-index is not obvious for nodes with similar degrees.

By employing the SH-index for calculation, the influence of the nodes can be apparently
distinguished. Therefore, according to the value of the SH-index, the order of node updating in the
LPA algorithm can be improved, and ultimately the stability of the LPA algorithm can be enhanced.

2.2.4. Update Rules of the SH-LPA Algorithm

The randomness of the LPA algorithm updating comes from the randomness of the order of node
updating and the randomness of node labels updating, so in order to reduce its randomness, the
SH-LPA algorithm changes its updating rules from the following two aspects:

First, the order of node updating. By calculating the SH-index of each node in a graph G, sort
them in ascending order, and then update the node labels following the sorted order. Updating the
labels in ascending order can make the algorithm converge as soon as possible, because a node with a
small SH-index is first updated to a node label with a large SH-index in the neighbor, so that when
a node with a large SH-index is updated, the label of the neighboring node is exactly its label and
resulted without being updated; therefore, the algorithm can converge more quickly.

Second, the order of node labels updating. The node label is first updated according to Equation (1).
When there are multiple choices, we update the current node’s label by selecting the node label with
the maximal SH-index among the neighboring nodes of the current node rather than just randomly
select one, as indicated by

l(i) = argmax
l

∑
j∈N(i)

SH( j). (4)

If there is still more than one result, then any one of them is randomly selected as the node label
for updating.

2.3. Procedures of SH-LPA Algorithm

Given a network G = (V, E), the process of the SH-LPA algorithm is as follows:
First step: calculate the SH-index of each node in G
(1) Traverse each node in G, calculate the H-index of each node in terms of Equation (2), then store

each node and its H-index value as a dictionary node_h_index;
(2) Traverse each node in G again, calculate the SH-index of each node according to Equation (3)

and the node H-index of node_index, and store each node and the corresponding SH-index into a
dictionary node_sh_index;

(3) Sort node_sh_index in ascending order.
Second step: updating the process of the SH-LPA algorithm
(1) Initialize each node in G as a unique label;
(2) Obtain the SH-index list visit sequence of each node;
(3) Traverse each node in the visit sequence in turn and update the label of the node in terms of

the update rules in Section 2.2.4;
(4) Repeat Step (3) until the label of each node reaches the maximum value of the neighboring

node label or the algorithm iterates to the maximum number of times, and the algorithm terminates.
Third step: re-traverse each node in graph G, and then store them in the dictionary communities

with the node label as the key and the node as the value, so that the nodes with the same label share
the same key; that is, the community division is completed.

The pseudocode of the SH-LPA algorithm and method of calculating the SH-index are as shown
in Algorithm 3.
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Algorithm 3: SH-LPA

Input: a network G
Output: community C

1. initialize node’s label in G and calculate node’s SH-index;//according to Equation (3);
2. visitSequence;//sorting node’s SH-index by ascending order;
3. i = 0;
4. while i < K or node’s label != neighbor’s maximum label do
5. i += 1;
6. for v in visitSequence do
7. label = G.node(v).label;
8. m = getMaxNeighborLabel(v);//according to Equation (1);
9. if m.length() > 1 then
10. L = getMaxNeighborSHIndex(v);//according to Equation (4);
11. if L.length() > 1 then
12. label = random.choice(L);
13. label = L;
14. for n in G.nodes do
15. l = n.label;
16. C[l].append(n);
17. return C;

2.4. Complexity Analysis

Given a network G, the number of nodes is N, and the average number of neighboring nodes of
each node is K.

2.4.1. Space Complexity

For this network G, the space required to store each node in the network is O(N); during the
execution of the algorithm, initializing a unique label for each node requires space O(N); the space
required to store the result of calculating H-index is O(N). According to the H-index of the node, the
space required to store the SH-index is O(N); when sorting the SH-index result sequence, the required
space complexity is O(logN) by the fast sorting algorithm. Therefore, the total space complexity of the
algorithm is O(4N + logN), which is simplified as O(N + logN).

2.4.2. Time Complexity

First, initialize a unique label for the node and traverse each node in the graph; the time complexity
is O(N). Then, calculate the H-index of each node and find the neighboring nodes of each node; the
time complexity is O(k), so the time complexity for finding the neighboring nodes of all nodes is
O(kN). The result of the calculated H-index is also stored as the data structure of the dictionary, and
the SH-index of the node is calculated according to the H-index of the node. The time complexity of
the H-index of the neighbor node of each node is O(k), the time complexity of finding the H-index
is O(1), the total time complexity is O(kN), and the data structure of the dictionary is stored. The
SH-index sequence of the node is sorted in ascending order, and the time complexity is O(NlogN).
Then, the time complexity of the SH-LPA algorithm used in this part is O(N + 2kN + NlogN), which is
approximate to O(kN + NlogN).

Then, according to the ascending sequence of the SH-index, the process of the LPA algorithm
is executed, and the time complexity is O(N). Assuming that the algorithm converges after m
iterations, the time complexity is O(mN). Then, the total time complexity of the SH-LPA algorithm is



Symmetry 2020, 12, 223 8 of 18

O(kN + mN + NlogN), which is simplified to O(kN + NlogN). That is, the SH-LPA algorithm is still
close to linear time complexity.

3. Community Detection Algorithm for Multilayer Networks (MSH-LPA)

3.1. Constructing the Model for Multilayer Networks

A multilayer network can be regarded as a combination of multiple single-layer networks, but
with the same number of nodes in each layer, various edges between nodes in the different layers, and
the possibility of isolated nodes. The nodes between any two layers are a one-to-one correspondence.
Therefore, a multilayer network consisting of L layers can be represented as G =

〈
G(1), G(2), . . . , G(l)

〉
,

where l ∈ L and G(l) = (V, E). At present, the main merging methods are as follows: Reference [28]
defines a merged adjacency matrix based on a multilayer network. If in a layer or layers of a multilayer
network, two nodes are connected by at least one edge, an edge exists between these two nodes in the
matrix. This method is easy to understand but ignores the fact that the edges between the same nodes
in different layers of a multilayer network represent different meanings. In addition, if community
detection is performed using the merged adjacency matrix, the result may be inaccurate, because it
does not well reflect the tightness between the multilayer network nodes. The authors in [29] proposed
a method called Network Integration to integrate information by calculating the average interaction
of nodes in a multilayer network. This method considers the fact that the interaction between the
different layers of the network is different, but it treats each layer of the network as equivalent, which
makes the network different from the actual situation. Strehl et al. [30] proposed Partition Integration,
which first performs community detection at each layer and then constructs a structural similarity
matrix for each layer. Within a multilayer network, if two nodes in each layer belong to the same
community, then the similarity of these two nodes is 1; otherwise, it is 0. However, only 0 and 1 are
insufficient to describe the similarity of each single-layer network because the similarity of the two
nodes is different in each layer, but here, they are all set to 1. Some researchers consider the number of
edges between two nodes in the process of merging, so that the number of edges is accumulated, and
it is regarded as the weight of the edge after merging.

As we have known, in each layer, the meaning of the connected edges between two corresponding
nodes in a multilayer network is different, such as the edge between two nodes in a layer representing
a relative relationship, but in another level, the connection between the two corresponding nodes may
represent a friend relationship, or it may also represent a business relationship, and so on. According to
common sense, we know that the edges with a relationship of relatives and friends are more important
than that of business, so the weight of the edges should be distinguished, and it is obviously not
appropriate to simply accumulate the weights or the number of edges. The following describes the
multilayer network merging method proposed in this paper.

In a complex network, the greater the similarity between two nodes, the more similar the two
nodes tend to be, and naturally the closer the relationship of the two nodes will be. Therefore, the
weight of the edge is obtained by calculating the similarity between two nodes of an edge. The larger
the value of the similarity, the larger the weight of the edge will be. In this paper, the similarity is
calculated using Jaccard similarity, which is formulated as

Sa,b =
|A∩ B|
|A∪ B|

, (5)

where A represents the set of neighboring nodes of node a, and B represents the set of neighboring
nodes of node b.

In the process of calculating similarity, two nodes in a multilayer network have no connected
edges at each layer, so the similarity is not calculated even if the similarity is high, because in the
process of merging the network, if there is no edge in each layer, then there must be no connected
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edges after merging. Considering an edge that exists in one layer between two nodes but no edge in
another layer between the two corresponding nodes, we define two different types of edges:

same_layer_edge: the edge that exists between the nodes in layer l of the multilayer network;
latent_edge: the edge that exists in layer l but does not exist in the other one or more layers.
Depending on the type of the edge, we define the weights of the edges of the merged network

as follows:
w(a, b) = Ss(a, b) + Sl(a, b), (6)

where Ss(a, b) denotes the result by employing same_layer_edge, and Sl(a, b) is the result by using
latent_edge.

According to Equation (6), by looping through each layer of the multilayer network, the weights
of all edges of the merged network can be calculated until a weighted network is ultimately obtained.

3.2. MSH-LPA Algorithm

After building the multilayer network model, we obtained a weighted network. The larger the
sum of the weights of all the edges of a node, the greater the influence of the node will be. Therefore,
based on the SH-LPA algorithm, the MSH-LPA algorithm considers the weight of the edge of the node.
The influence of the node is calculated by the sum of the SH-index of the node and the weight of the
node (indicated as the MSH-index), and the updating order of the nodes and labels of nodes in the
network are determined in terms of the size of the MSH-index of the node.

3.2.1. SH-Index Processing

From the calculation of the weight of the merged network, the similarity between two nodes’
ranges can be concluded [0, 1]. Assuming that each layer of the L-layer network is kept the same, and
the maximal similarity of the two corresponding nodes is employed, the weight of the merged network
is in the range of α× [0, L], α ∈ [−1, 1], and therefore the weight ranges [−L, L].

In this paper, the log function is employed to reduce the SH-index by a certain proportion, and a
new SH-index (denoted as ( ´SH)) is obtained, which is formulated as

´SH(i) = log(SH(i)). (7)

3.2.2. MSH-Index

After the normalization of the SH-index, the numerical ranges of the SH-index and the weight are
approximately the same, so the weight and the ´SH index can be jointly used to evaluate the influence
of the node, which is denoted as follows:

MSH(i) = ´SH(i) +
∑

j∈N(i)

w(i, j)∣∣∣N(i)
∣∣∣ , (8)

where N(i) is the set of neighboring nodes of i, and
∣∣∣N(i)

∣∣∣ represents the number of neighbors. The
metric for evaluating i is better because it considers the influence that comes from the neighbors of
different layers more. ´SH(i) depicts the basic influence of node i in a conventional graph model, which
dominates the updating order in the improved label propagation algorithm (i.e., MSH-LPA). The
influence of neighboring nodes from different layers are represented by w(i, j) in the transformed

weighted network, and it is divided by the degree of node i, so the influence is described as
∑

j∈N(i)

w(i, j)
|N(i)|

,

which is mainly used to distinguish the nodes with the same SH-index. The experiments conducting
on SH-LPA have proved that the algorithm is more stable than LPA, and we have fully utilized the
layers information and made the nodes easier to distinguish, so the metric is better than the previous
one, as the comparison in experiment illustrated.
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3.2.3. Updating Rules of MSH-LPA

The MSH-index is proposed based on the SH-LPA algorithm, so the MSH-index determines the
order of node updating and node label updating in the MSH-LPA algorithm.

First, update the order of nodes. Here, we follow the same process as the order of node updating
for the SH-index in Section 2.2.4, except that we replace the SH-index with the MSH-index.

Second, update the order of labels. Here, we still follow the same process as the order of node labels
updating for the SH-index in Section 2.2.4, except that we replace the SH-index with the MSH-index,
which is formulated as

l(i) = argmax
l

∑
j∈N(i)

MSH( j), (9)

where N(i) is the set of neighboring nodes of node i.
If there is still more than one maximal neighboring labels at this time, then one of them is randomly

selected as the node label for updating.
The detailed implementation process is essentially in agreement with the SH-LPA algorithm,

except that SH is replaced by MSH.

3.3. Complexity Analysis

For a merged network MG, the number of nodes is defined as N, the average degree of nodes is k,
and the number of edges is E.

3.3.1. Space Complexity

For this merged network MG, the space required to save each node in the network is O(N)); the
space required to store the weight of the edge is O(E).

Algorithm initialization phase: Initialize a unique label for each node, in which the required space
is O(N). after calculating the node’s H-index, the result needs to be stored, and the required space is
O(N). According to the node’s H-index, the space required to store the result of the SH-index is O(N);
the space complexity required to calculate the ´SH index is O(1); and the space complexity required
to store the MSH-index is O(N). When sorting the MSH-index result sequence, the required space
complexity is O(logN) by the fast sorting algorithm. Therefore, the subtotal space complexity of the
algorithm is (E + 5N + logN), and it is approximated as O(E + logN).

3.3.2. Time Complexity

Initializing the label of the node in the graph MG requires traversing each node in the graph with
a time complexity of O(N).

Calculating the MSH-index of each node: (1) For the H-index of each node, the time complexity
required to traverse the neighboring nodes of the node is O(k), and the H-index calculation result
of the node is stored as the data structure of the dictionary. So, the time complexity of N nodes is
O(kN). (2) Then, we calculate the SH-index of the node according to the H-index of the node, and
we also need to find the H-index of the neighboring node; here, the time complexity is O(1), the
time complexity of traversing the neighboring nodes is O(k), and the time complexity for storing the
SH-index as a dictionary data structure is O(kN). (3) The data of the node’s SH-index is normalized
to obtain the ´SH-index, and the time complexity is O(N). (4) When calculating the MSH-index of a
node, it is necessary to know the weights of all the edges of the node, and still traverse the neighboring
nodes of the node; here, the time complexity is O(k), and the time complexity is O(kN) for N nodes. (5)
The time complexity of sorting the MSH-index sequence in ascending order is O(NlogN). Then, the
partial time complexity of the MSH-LPA algorithm is O(N + 3kN + NlogN), and it is approximated as
O(kN + NlogN).
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The process of the LPA algorithm: Execute the LPA algorithm following the SH-index in ascending
order, in which the time complexity is O(N). Assuming that the algorithm converges after the algorithm
iterates for m times, the time complexity is O(mN).

After analyzing the time complexity in the three main stages of the MSH-LPA algorithm, the
total time complexity of the algorithm is O(N + kN + NlogN + mN), which can be approximated as
O(N + NlogN).

4. Experimental Results and Analysis

In this chapter, the SH-LPA algorithm and the MSH-LPA algorithm are compared and analyzed
with the LPA algorithm and CDMN algorithm that divides communities by calculating the influence
of nodes [31], respectively. We set up the following experimental environment: processor Intel (R)
Core (TM) i7-2600CPU@3.40GHz, Memory 8GB, Hard disk 930G, Operating System Windows10,
Programming Language Python 3.7.

4.1. SH-LPA Algorithm

The following five network datasets were employed for this experiment. The evaluation index is
modularity, and the higher the modularity, the better the experimental results.

4.1.1. Dolphin Network

The dolphin network is a network of dolphins that Lusseau et al. used for seven years to observe
the exchanges between 62 dolphins in the Doubtful Sound Channel; the network comprised 62 nodes
and 159 edges, in which the average node degree was 5.1290.

Experimenting on the dolphin network, the modularity changing trends of LPA, SH-LPA, GN,
and SCAN that nodes are clustered according to the way they share neighbors are shown in Figure 3.Symmetry 2019, 11, x FOR PEER REVIEW 12 of 18 
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Figure 3. Modularity Q change chart of the dolphin network.

It can be seen from Figure 3 that the modularity of the LPA algorithm fluctuates when the number
of iterations follows between 100 and 1000 because of the randomness of the LPA algorithm. The
modularity of the improved SH_LPA is marked as an orange line and is relatively stable and even
higher than LPA.
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4.1.2. Email Network

The Enron email communication network (http://snap.stanford.edu/data/email-Enron.html) covers
all the email communication within a dataset of around half a million emails. This data were originally
made public, and posted to the web, by the Federal Energy Regulatory Commission during its
investigation. This dataset is the largest connected subgraph, comprising 291 nodes and 3099 edges, in
which the average node degree equals 21.2990.

Experimenting on the email network, the modularity changing trends of LPA, SH-LPA, GN, and
SCAN are shown in Figure 4.
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Figure 4. Modularity Q change chart of the email network.

It can be concluded from Figure 4 that the modularity of the LPA algorithm fluctuates from 100 to
400 on account of the randomness of the LPA algorithm. The modularity of the improved SH_LPA,
which is marked as a gray line, is comparatively stable and even higher than that of the LPA.

4.1.3. Chengdu Bus Route Network

The network of the Chengdu bus route (https://www.neusncp.com/api/view_dataset?dataset_id=

163) comprises 1895 nodes and 3051 edges, in which the average node degree is 3.2760. The dataset of
the transportation system in Chengdu, China was collected by our team members manually.

Experimenting on the Chengdu bus route network, the modularity changing trends of LPA,
SH-LPA, GN, and SCAN are shown in Figure 5.
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It can be seen from Figure 5 that the modularity of SH_LPA is reasonably stable and even higher
than that of the LPA algorithm.

4.1.4. DBLP Collaboration Network

The network of the DBLP (Digital Bibliography & Library Project) collaboration (http://snap.
stanford.edu/data/com-DBLP.html) comprises 3911 nodes and 6244 edges, in which the average node
degree is 3.1930. Since the GN algorithm does not run out of results in the same time, we use the
largest connection subgraph of the author’s network.

Experimenting on the authors’ network, the modularity changing trends of LPA, SH-LPA, GN,
and SCAN are shown in Figure 6.Symmetry 2019, 11, x FOR PEER REVIEW 14 of 18 
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It can be seen from Figure 6 that the modularity of the SH_LPA is relatively stable and even higher
than that of the LPA algorithm.

4.1.5. Network of Scientists Cooperation

The original dataset (http://www.umich.edu/~{}mejn/centrality) contains 1589 nodes and 2742
edges. This dataset is the largest connected subgraph, which contains 379 nodes and 914 edges, and
the average node degree is 4.8232, mainly representing co-authorships between 379 scientists whose
research centers on the properties of networks of one kind or another.

Experimenting on the scientists’ cooperation network, the modularity changing trends of LPA,
SH-LPA, GN, and SCAN are shown in Figure 7.

It can be seen from Figure 7 that the modularity of the LPA algorithm fluctuates from 100 to 300.
This is because of the randomness of the LPA algorithm. The improved SH_LPA is relatively more
stable than that of the LPA and simultaneously holds a higher modularity.

It can be seen from the above five figures that line charts of the SH-LPA algorithm close to a
straight line and the line charts of the LPA algorithm are more complicated in the dolphin network,
email network, Chengdu bus route network, authors’ network of DBLP, and the scientists’ cooperation
network. In short, the variation range of modularity Q in the SH-LPA algorithm is smaller than that in
the LPA algorithm, and the SH-LPA algorithm is smoother than the LPA algorithm. Therefore, the
experimental results and analysis from the above five experimental datasets can sufficiently prove that
the SH-LPA algorithm proposed in this paper improves the stability of the LPA algorithm.

http://snap.stanford.edu/data/com-DBLP.html
http://snap.stanford.edu/data/com-DBLP.html
http://www.umich.edu/~{}mejn/centrality
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Figure 7. Modularity Q change chart of the scientists’ cooperation network.

According to the modularity results of the above five experimental SH-LPA, LPA, GN, and SCAN
algorithms, the average modularity is shown in Figure 8.
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Figure 8. The average modularity Q of the dolphin, email, bus, DBLP, and scientists’ networks.

It can be seen from Figure 8 that the average modularity of the SH-LPA algorithm in this paper is
comparatively higher than the LPA and the SCAN algorithm, and it is even slightly higher than the
GN algorithm accounting to the average modularity. It can be concluded that the SH-LPA algorithm
outperforms the LPA algorithm in modularity comparison. It proves that the proposed SH-LPA
algorithm improves the stability as well as the accuracy.

4.2. MSH-LPA Algorithm

The experimental results and analysis are based on modularity. The following four datasets are
employed as the experimental multilayer networks.

4.2.1. Students’ Cooperation Social Network (SCSN)

The dataset [31] is a social network built on the homework of 185 students in two different majors
at Ben-Gurion University to complete the compulsory course of computer network security. The
network has a total of 360 edges with three types—‘time’, ‘computer’ and ‘partner’; here, ‘time’ denotes
that two students link with each other if they submit assignments within the same period, ‘computer’
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means students submit the assignment on the same computer, and ‘partner’ indicates that students
complete the assignment together.

4.2.2. Enron’s Mail Network

The network [32] consists of 151 nodes and 266 edges, and there are two types of edges: mail
exchanges between supervisors and subordinates and mail exchanges between colleagues.

4.2.3. Indonesian Terrorist Network

The Noordin top terrorism network [33] was drawn primarily from the "Terrorism in Indonesia:
Noordin’s Network", which is a publication of the International Crisis Group (2006) and includes
relational data on the 79 individuals listed in Appendix C of that publication. The data were initially
coded by Naval Postgraduate School students as part of the course “Tracking and Disrupting Dark
Networks” under the direction of Professor Sean Everton, Co-Director of the Core Lab, and Professor
Nancy Roberts. CORE Lab Research Assistant Daniel Cunningham reviewed and cleaned all the
coding made by students. This paper extracts four types of edges from the relationship of the 79 people
in the network dataset, namely, ‘classmates’ (175 edges of classmate relationship), ‘training’ (186 edges
of training relationship), ‘communication’ (200 edges of communication), and ‘business’ (30 edges of
business dealings).

4.2.4. 9/11 Terrorist Dataset

The 9/11 terrorist dataset [34] contains 62 nodes and 153 edges. In the real world, most terrorists
of the dataset started as friends, colleagues, or relatives; they were drawn closer by bonds of friendship,
loyalty, solidarity, and trust, and rewarded by a powerful sense of belonging and collective identity.
The data are supplied in an edge-list file, in which two numbers signify the strength of tie (5 = strong
tie, 1 = weak tie) and the level to which the tie has been verified (1 = confirmed close contact, 2 =

various recorded interactions, 3 = potential or planned or unconfirmed interactions).
The modularity obtained by the MSH-LPA algorithm and CDMN algorithm on the above four

network datasets is shown in Figure 9.
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(MSH-LPA) algorithm and CDMN algorithm.
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As shown in Figure 9, the MSH-LPA algorithm obtains higher modularity conducting on the four
real-world datasets than the CDMN algorithm.

5. Conclusions

By analyzing the instability of the label propagation algorithm (LPA), it is concluded that the
randomness of node and node labels updating in the LPA algorithm can be changed by calculating the
centrality of the node, and then improving the stability of the LPA algorithm. The deficiency of the
H-index directly applied to the LPA algorithm is described in detail, and the SH-index is proposed.
Based on the SH-index, the SH-LPA algorithm is presented. The stability of the algorithm is verified
by experiments, as is the time complexity of the algorithm is O(kN + NlogN), which is close to linear
time complexity.

In order to solve the problem that much network information may be lost when merging a
multilayer network into a single-layer network, the similarity of the nodes is employed to determine
the weight of the edge of the merged network, and the multilayer network is merged into a weighted
single-layer network, in which the SH-index and the weight of the node jointly determine the order of
node and node labels updating. Here, we propose a more accurate MSH-LPA algorithm.

In order to verify the superiority of the SH-LPA algorithm and the MSH-LPA algorithm, the
experimental results on five datasets show that the SH-LPA algorithm improves the stability of the
LPA algorithm. Compared with the CDMN algorithm on the four multilayer network datasets, it
is proved that the MSH-LPA algorithm proposed in this paper achieves larger modularity than the
CDMN algorithm, which indicates its higher accuracy.
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