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Abstract: This study deals with the mass transport phenomena on the particle-fluid motion through
an annulus. The non-Newtonian fluid propagates through a ciliated annulus in the presence of two
phenomenon, namely (i) endoscopy, and (ii) blood clot. The outer tube is ciliated. To examine the flow
behavior we consider the bi-viscosity fluid model. The mathematical modeling has been formulated
for small Reynolds number to examine the inertia free flow. The purpose of this assumption is that
wavelength-to-diameter is maximal, and the pressure could be considerably uniform throughout the
entire cross-section. The resulting equations are analytically solved, and exact solutions are given for
particle- and fluid-phase profiles. Computational software Mathematica has been used to evaluate
both the closed-form and numerical results. The graphical behavior across each parameter has been
discussed in detail and presented with graphs. The trapping mechanism is also shown across each
parameter. It is noticed clearly that particle volume fraction and the blood clot reveal converse
behavior on fluid velocity; however, the velocity of the fluid reduced significantly when the fluid
behaves as a Newtonian fluid. Schmidt and Soret numbers enhance the concentration mechanism.
Furthermore, more pressure is required to pass the fluid when the blood clot appears.

Keywords: cilia motion; blood clot; endoscopy; mass transport; particle-fluid

1. Introduction

Flagella and cilia are two distinct names, but are used interchangeably for similar structure
of eukaryotic cells. In animals, cilia, which are hair-like appendages, are prominent in the
digestive system, respiratory system, reproductive tracts of human beings, and the nervous systems.
The movement of cilia plays an essential part in physiological systems, i.e., circulation, respiration,
locomotion, alimentation, spermatic fluid propagation, reproduction, etc. It is well-known that
ciliary and flagellar movements consist of active sliding, similar to the peristaltic flow of fluid in
smooth muscles, whereas flagellar is more complicated. Cilia can be split into two categories, i.e.,
non-motile and motile. When cilia and flagella are close to each other, they manifest a propagation of
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waves on a large scale known as Metachronal waves. Beating cilia produce metachronal waves over
the surface in large numbers, on the ciliated surface of protozoa, and the adjoining activity of cilia
coordinates via the hydrodynamics interactions. It is worth mentioning here that metachronal waves
are self-organized. Cilia produce bending waves to derive single cells through a medium or to push
the fluid over the surface of a fixed cell. The standard form of the ciliary model, motivated by the
cilium structure or axoneme, is known as sliding filament model. As shown in Figure 1, the axoneme
structure has nine microtubule doublets around the outside, and two are located in the center. Most of
the cilia beat at approximately 10–40 Hz, but the form of beating varies. Their length starts from 2 µm
to several millimeters, and their diameters are approximatley 0.2 µm. As a result, a low Reynolds
number (Re→0) approximation can be applied.

Figure 1. Strutcure and size of cilia [1] (a) typical dimension, (b) cross-section, (c) cilia stroking.

Nadeem et al. [2] considered the Carreau fluid model to examine the cilia motion through
a symmetric channel using the perturbation method. Nadeem and Sadaf [3] discussed the cilia
motion of viscous nanofluid through the curvy compliant channel. They used a homotopy analysis
method to examine the closed-form solution against the temperature and velocity profile. Maiti and
Pandey [4] presented a theoretical study on the nonlinear cilia motion using the Power-law fluid
model. Abo-Elkhair et al. [5] used the Adomian decomposition scheme to simluate the cilia motion of
magneto-fluid through a ciliated channel. Bhatti et al. [6] discussed the impact of the magnetic field on
a ciliated channel using the particle-fluid mechanism. Ashraf et al. [7] examined the peristaltic cilia
motion through a human fallopian tube using a Newtonian fluid model. And finally, Ramesh et al. [8]
used the behavior of magnetized couple stress fluid model moving through a ciliated channel

Particles in fluid appear in multifarious applications, including biology, geology,
chemical engineering, and fluid mechanics [9] to name a few. Several industrial processes
include fluidized catalyst beds, pneumatic propagation, and sedimentation. Further, in the biological
systems, it involves the flow of blood in the cardiovascular system. The collisions among the
particles and the fluids may influence the rheological and the viscosity behavior of the suspension.
Particle-wall and particle-particle interactions produce the migration of particles, which causes the
anisotropic particle micro-structures and clusters [10,11]. At the mesoscopic scale, a well-known
example of the particle-fluid interaction is the movement of the red blood cells (RBC). The flow
behavior of the RBC plays a pivotal role in the different pathological and physiological mechanisms.
For instance, the rotation and random transverse propagation of RBC in a shear flow plays an essential
role in thrombogenesis [12]. These types of movements are firmly associated with the interaction of
RBC to RBC and fluid (i.e., plasma) to RBC since one RBC is obstructed by another coming towards it
from below or above. RBC is the essential determinant of the blood characteristics in micro-circulation
due to their large volume fraction in blood and their aggregability. Mekheimer and Abd Elmaboud
[13] investigated the peristaltic motion of fluid having solid particles through different forms of
annulus and showed the exact solutions. Mekheimer and Mohamed [14] presented an application of
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a clot blood model using particle-fluid flow through an annulus. Further, they considered the pulsatile
flow and obtained analytical solutions. Bhatti et al. [15] discussed the behavior of slip effects using
a non-Newtonian fluid model that contains spherical particles. Bhatti and Zeeshan [16] explained the
blood flow through an annulus filled with particles and fluid in the presence of a variable magnetic
field. Some critical analysis of multiphase simulations are given in the following references [17–21].

Mass transfer with heat on Particle-fluid through fixed and fluidized beds play an essential role
and provide necessary information for the development and design of numerous mass and heat
transfer operation and chemical reactors including a system of particle and fluid. Gireesha et al. [22]
investigated the particle-fluid suspension mechanism through a non-isothermal stretching plate in
the presence of a magnetic field and radiative heat flux. They applied a numerical method to obtain
the solutions. Bhatti et al. [23] presented a mathematical model of particle-fluid motion induced by
a peristaltic wave with thermal radiation and electromagnetohydrodynamics effects. Kumar et al. [24]
considered a particle-fluid motion with a nonlinear Williamson fluid model towards a stretching
sheet with heat transfer effects. Bhatti et al. [25] explored the particle-fluid motion with heat and
mass transfer using Sisko fluid model through a Darcy–Brinkman–Forchheimer porous medium.
Some relevant studies on particle-fluid with mass and heat transfer are given in the references [26–28].

The main goal of the present study is to examine the mass transport on the particle-fluid
suspension through a ciliated annulus with endoscopy and blood clot effects. Endoscopy plays
an essential role in exploring the problems in human organs. In the mentioned studies, mostly work
has been done with endoscopy and blood clot with simple Newtonian and non-Newtonian fluid
models. In contrast, the present study deals with mass transport on particle-fluid motion through
a ciliated annulus under different effects. Cilia motion plays a critical part, i.e., ciliary imperfections
tend to create several human diseases. A genetic change compromises an appropriate function of the
ciliopathies, cilia, which results in chronic disorders, i.e., primary ciliary dyskinesia and Senior–Loken
syndrome or nephronophthisis. Furthermore, a flaw in primary cilium in renal tubule cells causes
polycystic kidney disease. Ectopic pregnancy can occur due to a lack of functional cilia in a fallopian
tube. If the cilia fail to move, then a fertilized ovum is unable to reach the uterus, which results in the
ovum implant in a fallopian tube and tubal pregnancy will occur, which is the most usual type of ectopic
pregnancy [29]. Therefore, the present study is essential to fill this gap and also beneficial to overcome
the difficulties. Bi-viscosity fluid model is considered to examine the flow behavior. The governing
mathematical modeling is performed under low Reynolds number approximation. Exact solutions
are given for the fluid- and particulate-phase. The physical action of all the leading parameters is
discussed against velocity, concentration, temperature profile, and the trapping mechanism is also
presented through streamlines.

2. Problem Formulation

Consider two-dimensional co-axial infinite tubes. The outer tube is ciliated. The cylindrical
coordinate system is selected, i.e., r̃ lies toward the radial direction, and z̃ lies toward the middle of
an inner and the outer tube as given in Figure 2. The inner area between both the tubes is filled with
bi-viscosity fluid. The flow is irrotational and the fluid is incompressible having constant viscosity.
The fluid contains small spherical particles. The stress tensor for bi-viscosity fluid model [30] is
defined as:

χ =

 2
[
ys/
√

2π + µ̃B

]
ξij, π ≥ πΥ,

2
[
ys/
√

2π + µ̃B

]
ξij, π ≤ πΥ,

(1)

where µ̃B the plastic viscosity, Υ the volume fraction density, ξij the deformation rate of component,
and ys the yield stress, π denotes the second invariant tensor of ξij, πΥ represents the critical value
comprises on the non-Newtonian fluid model.
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Figure 2. Blood flow structure through an ciliated annulus.

The Mathematical expression for the envelope of the cilia tips reads as [31,32]:

r̃ = h̄1 = f1(t̃, z̃) = b0 + b0φ cos [k(z̃− ct̃)] , (2)

z̃ = h̄2 = g1(t̃, z̃) = z̃0 + b0αφ sin [k(z̃− ct̃)] , (3)

where k = 2π/λ, z0 describes the reference location of the cilia, the non-dimensional parameter φ,
which combines with b0 (mean radius of the outer tube) in the form of b0φ and represents the amplitude
of metachronal wave, λ is the metachronal wavelength, c the velocity, and α describes the measure of
the eccentricity of the elliptical motion.

The vertical and axial velocities are evaluated as [31,32]:

ũ =
∂r̃
∂t̃

=
∂ f1

∂t̃
+

∂ f1

∂z̃
∂z̃
∂t̃

=
∂ f1

∂t̃
+

∂ f1

∂z̃
ũ, z̃ = z̃0, (4)

ṽ =
∂z̃
∂t̃

=
∂g1

∂t̃
+

∂g1

∂z̃
∂z̃
∂t̃

=
∂g1

∂t̃
+

∂g1

∂z̃
ũ, z̃ = z̃0, (5)

After some mathematical manipulation, Equations (4) and (5) read as:

ũ = − b0αckφ cos [k(z̃− ct̃)]
1− b0αkφ cos [k(z̃− ct̃)]

, (6)

ṽ =
b0ckφ sin [k(z̃− ct̃)]

1− b0αkφ cos [k(z̃− ct̃)]
. (7)

The above boundary conditions help us to discriminate between the effective stroke and less
effective recovery stroke of the cilia by considering the shortening of the cilia.

In view of above frame work, the mathematical modeling for the fluid- and particulate-phase is
as follows [33]:
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(i) Fluid phase

The continuity and momentum equations are proposed as:

ϕ
∂ṽ f

∂r̃
+ ϕ

ṽ f

r̃
+ ϕ

∂ũ f

∂z̃
= 0, (8)

ϕ
∂ p̃
∂r̃
− CS(ṽp − ṽ f ) = ϕ

[
1
r̃

∂

∂r̃
rχr̃r̃ +

∂

∂z̃
χr̃z̃ −

χθ̃θ̃

r̃

]
, (9)

ϕ
∂ p̃
∂z̃
− CS(ũp − ũ f ) = ϕ

[
∂

∂z̃
χz̃z̃ +

1
r̃

∂

∂r̃
r̃χr̃z̃

]
, (10)

The energy equation for the current flow is described as

ϕρ f c̃
[

∂

∂t̃
+ V f · ∇

]
Tf = κϕ∇2Tf + ϕχr̃z̃

[
∂u f

∂r̃

]
+

ρpcpC
ωT

(Tp − Tf ), (11)

The concentration equation for the current flow is described as

ϕ

[
∂

∂t̃
+ V f · ∇

]
K f = Dm ϕ∇2K f +

ρpC
ρ f ωc

(ϕp − ϕ f ) +
Dm

Tm
ϕKT∇2Tf . (12)

where ϕ = 1− C.

(ii) Particulate phase

The continuity and momentum equation for this case read as

C
∂ṽp

∂r̃
+ C

ṽp

r̃
+ C

∂ũp

∂z̃
= 0, (13)

C
∂ p̃
∂r̃
− SC(ṽ f − ṽp) = 0, (14)

C
∂ p̃
∂z̃
− SC(ũ f − ũp) = 0, (15)

In this case, the energy equation is described as

ρpCcp

[
∂

∂t̃
+ Vp · ∇

]
Tp =

ρpcpC
ωT

(Tf − Tp), (16)

The concentration equation is described as[
∂

∂t̃
+ Vp · ∇

]
Kp =

1
ωc

(K f − Kp), (17)

where S the drag coefficient, ρ the density of the fluid, C the particle volume fraction density, T the
temperature, ωT the thermal equilibrium time, ωc is the required time period by a particle to regulate
its concentration associated to the fluid, Dm the mass diffusivity coefficient, KT is the thermal diffusion
ratio, Tm the mean temperature, κ the thermal conductivity, cp particle-phase specific heat, and c̃ the
specific heat at constant volume.
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The mathematical form of drag coefficient is expressed as [23]

S =
9
2

µ0

B2
0

Φ(C), Φ(C) =
3C + 4 + [C(8− 3C)]1/2

(2− 3C)2 , (18)

where B0 is the radius of each particle, and µo the fluid viscosity. The empirical relation for the viscosity
suspension is expressed as [23]

m̃ = 0.70e[
1107

T e(−1.69C)+2.49C], µs =
µ0

1− m̃C
, (19)

where µs denotes the viscosity of particle fluid mixture.
It is noted here that the results reduced for dusty-gas flows for small particle volume fraction as

presented by Marble [34].
Defining the following non-dimensional variables

r =
r̃
b0

, u f ,p =
ũ f ,p

c
, z =

z̃
λ

, v f ,p =
λṽ f ,p

b0c
, t =

t̃c
λ

, p =
b2

0
λµ0c

p̃, µ̄ =
µs

µ0
,

v0 =
ṽ0

c
, r1 =

r̃1

b0
, r2 =

r̃2

b0
, θ f ,p =

Tf ,p − T0

T1 − T0
, ϑ f ,p =

K f ,p − K0

K1 − K0
. (20)

Applying Equation (20) in Equations (8)–(18), and applying the approximation of low Reynolds
number and ignoring the inertial forces. The resulting equations are found as

0 =
∂p
∂r

, (21)

∂p
∂z

=
CSb2

0
ϕµ0

(
up − u f

)
+

µ̄

r
η

∂

∂r

(
r

∂u f

∂r

)
. (22)

It is noted here that the results for Newtonian fluid model can be recovered by taking ζ → ∞.
The temperature and concentration equations read as

1
r

∂

∂r

(
r

∂θ f

∂r

)
+ Bnµ̄η

(
∂u f

∂r

)2

= 0, (23)

1
r

∂

∂r

(
r

∂ϑ f

∂r

)
+ ScSr

1
r

∂

∂r

(
r

∂θ f

∂r

)
= 0, (24)

where η = (1 + 1/ζ), Bn the Brinkman number, δ defines the wave number, Sc the Schmidt number,
Pr the Prandtl number, Sr the Soret number, Ec the Eckert number, and ζ the fluid parameter. These
parameters are defined as

Bn = EcPr, Pr =
c̃νρ f

κ
, ζ =

µ̃B
√

2πΥ

ys
, Ec =

c2

c̃(T1 − T0)
, Sc =

ν

Dm
, δ =

b0

λ
,

Sr =
DmKT
νTm

(
θ1 − θ0

ϑ1 − ϑ0

)
. (25)

The particulate-phase equations are found as

∂p
∂z

+
Sb2

0
µ0

(
up − u f

)
= 0, (26)
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θ f = θp, (27)

ϑ f = ϑp. (28)

From Equation (21), it is found that p cannot be the function of r. The relevant boundary conditions
read as

u f (r1) = v0, θ f (r1) = 1, r1 = a(z) = a0 + hce−π2(z−zd−0.5)2
, (29)

u f (r2) = −
2παφδ cos 2πΞ

1− 2παφδ cos 2πΞ
, θ f (r2) = 0, r2 = 1 +

λΓz
b0

+ φ sin 2πΞ, (30)

where Ξ = (z− t), Γ is a constant which represents the magnitude that relies on the annulus length
and its exit inlet dimensions, maximum height of the clot denoted by hc, v0 typify the velocity of the
inner tube, the axial displacement of the clot is denoted by zd, and the radius of the inner tube which
makes the clot in the appropriate place is denoted by a0. The results for endoscopy can be reduced by
considering hc = 0 in Equation (31) as a particular case of the present study.

3. Solutions of the Proposed Problem

Equations (22)–(24) are solved analytically using a computational software “Mathematica 10.3v”,
and the exact solutions are presented below:

u f = C1 + rC2 + C3r log r, (31)

up = C1 + rC2 + C3r log r− µ0

Sb2
0

dp
dz

, (32)

The solutions for the temperature profile for particulate- and fluid-phase are found as

θ f ,p = θ0 + r2θ1 + r4θ2 + θ3 log r + θ4 log2 r, (33)

The solutions for the concentration profile for particulate- and fluid-phase are found as

ϑ f ,p = ϑ0 + r2ϑ1 + r4ϑ2 + ϑ3 log r + ϑ4 log2 r + ϑ5 log3 r, (34)

and the constants appearing in above Equations (31)–(34) i.e. Cn, θn, ϑn (n = 1, 2 . . . ) are given
Appendix A.

The instantaneous volume flow rate for the present flow read as

Q(t, z) = 2πϕ
∫ r2

r1

ru f dr + 2πC
∫ r2

r1

rupdr. (35)

The pressure gradient can be obtained after solving the above equation.
The pressure rise along the whole ciliated annulus can be determined as

∆p =
∫ L/λ

0
℘dz, (36)

where ℘ represents the pressure gradient.
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4. Graphical Analysis

In thissection, using the obtained numerical results we analyze the behavior of all the physical
parameter. Particularly, we determine the behavior of velocity profile, concentration, and the
temperature profile, against the height of the clot hc, particle volume fraction C, wave number δ,
Soret number Sr, Brinkmann number Bn, Schmidt number Sc, and eccentricity of the elliptic path
of cilia α. Following parametric values [1] are chosen to analyze the graphical performance of all
the leading parameters, i.e., b0 = 1.25 cm, φ = 0.1 − 0.5, C = 0 − 0.6, α = 0.3 − 1, Γ = 3b0/λ,
L = λ = 8.01 cm , δ = 0.05− 0.2. Furthermore, the results for single-phase model can be recovered by
considering C = 0 in the governing equations (see Equations (21)–(28)). Assume that the instantaneous
volume flow rate is periodic in Ξ, i.e.,

Q
π

= −φ2

2
+

Q̄
π

+ 2φ sin 2πΞ +
2φλz

b0
Γ sin 2πΞ + φ2 sin2 2πΞ, (37)

where Q̄ denotes the average time flow rate over one period of wavelength.
Figure 3 depicts the behavior of blood clots and particle volume fraction on the velocity profile.

We can observe from this figure that an increment in particle volume fraction C significantly suppresses
the velocity profile. The velocity profile shows a decreasing behavior for endoscopic case, i.e., hc = 0,
whereas it increases due to the blood clot hc = 0.15. It can be observed from Figure 4 that both
parameters α and δ cause a positive impact on the velocity profile while its trend becomes reverse
when r > 1.35. Figure 5 shows a plot of velocity profile against numerous values of φ. It can be seen
from this figure that the velocity profile is remarkably suppressed with increments in φ. Furthermore,
we also noticed that as compared with non-Newtonian case ζ = 0.1, the fluid velocity lessen more
when the fluid behaves as a Newtonian model ζ → ∞.
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(Endoscopy)

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

r

u
f

Figure 3. Velocity curves for different values of hc and C.

0.65 0.66 0.67 0.68 0.69 0.70

-0.10
-0.05
0.00
0.05
0.10
0.15
0.20

α = 0.3, 0.6, 0.9

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

-0.2

0.0

0.2

0.4

0.6

0.8

1.0

r

u
f

Figure 4. Velocity curves for different values of α and δ. Solid line: δ = 0.05, dashed line: δ = 0.2.
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ϕ  0.1, 0.3, 0.5

ζ  0.1
ζ  ∞

0.5 1.0 1.5
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0.4
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0.8

1.0

r

u
f

Figure 5. Velocity curves for different values of φ and ζ.

In Figures 6–8 we see the mechanism of temperature profile plotted against the multiple leading
parameters. From Figure 6, we can see that the temperature profile rises due to the increment in
particle volume fraction C. Further, we noticed that for the blood clot case hc = 0.15, the temperature
profile is increasing and has a higher magnitude as compared with the endoscopic case hc = 0. It is
analyzed from Figure 7 that the parameters α and δ restrain the temperature profile. Unfortunately,
both parameters have small effects, especially when the wavenumber is very small at δ = 0.05. Figure 8
shows plots with multiple values of Brinkman number Bn. Brinkman number represents the product
of Eckert and Prandtl number Ec× Pr. Generally, it is the ratio between heat generated due to viscous
dissipation and transport of heat due to molecular conduction. It can noticed that the temperature
profile remarkably increases for higher values of Brinkman number. However, a similar behavior is
observed against the higher values of φ.
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hc = 0.15

(Blood clot)
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(Endoscopy)
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Figure 6. Temperature distribution for different values of hc and C.
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Figure 7. Temperature distribution for different values of α and δ. Solid line: δ = 0.05, dashed line:
δ = 0.2.
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ϕ = 0.1, 0.3, 0.5

Bn = 6

Bn = 7

0.5 1.0 1.5

0

1

2

3

4

5

r

θ
f,
p

Figure 8. Temperature distribution for different values of φ and Bn.

Figure 9 is illustrated to analyze the mechanisms of Schmidt number Sc and Soret number Sr on
the concentration profile. We can see from this figure that the concentration profile shows a decreasing
mechanism against both parameters and remains uniform throughout the entire region. An increment
in Schmidt number indicates that the viscous diffusion rate is more dominant as compared with the
molecular diffusion rate, whose results tend to decline the concentration profile. Similarly, when the
Soret number increases, the Thermophoresis forces generated, which oppose the concentration profile.

Sc = 0.2, 0.3, 0.4

Sr = 0.1

Sr = 0.25

0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

0.0

0.2

0.4

0.6

0.8

1.0

r

ϑ
f,
p

Figure 9. Concentration distribution for different values of Sc and Sr.

Figures 10–12 depict the variation of pressure rise versus time against different values of emerging
parameters. It can be observed from Figure 10 that by enhancing the particle volume fraction C,
the pressure rise is significantly decreasing, while due to the presence of blood clot, more pressure is
required to pass the fluid. Further, we can see that the pressure rise is maximum in the region when
t ∈ (0.3, 0.7). It is clear from the Figure 11 that both parameters α and δ reveal versatile behavior
on the pressure rise. We can also see that there are two critical points, for instance, at t = 0.4 and
t = 0.9. In the region t ∈ (0.4, 0.9) the pressure rise acts as an increasing function whereas in the other
area it decreases. Similarly, we can observe that the pressure rise increases due to the increment in φ,
as shown in Figure 12.

Trapping mechanism is presented in Figures 13–15 for different values of α, δ and hc. It can be
noticed from Figure 13 that by increasing the values of α, the trapping bolus reduces, and a number
of boluses disappear. Similarly, in Figure 14, we can see that the higher values of δ tend to diminish
the immensity of the trapping bolus, whereas the number of trapping bolus increase and streamlines
increases. It is seen in Figure 15 that when the height of the blood clot increases, then streamlines
shrink , and trapping bolus increase significantly.
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Figure 10. Pressure rise for different values of hc and C.

α  0.3, 0.6, 0.9

δ  0.2

δ  0.05

0.0 0.2 0.4 0.6 0.8 1.0

0.4

0.6

0.8

1.0

1.2

1.4

t

Δ
p

Figure 11. Pressure rise for different values of α and δ.
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Figure 13. Trapping mechanism for different values of α.
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Figure 14. Trapping mechanism for different values of δ.
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Figure 15. Trapping mechanism for different values of hc.

5. Conclusions

In this study, we explained the behavior of particle-fluid with mass and heat transfer through
a ciliated annulus. The effects of endoscopy and blood clot are also taken into account. To analyze
the behavior of fluid in an annulus, we considered the bi-viscosity fluid model. The mathematical
formulation is undertaken for low Reynolds number approximation. The formulated differential
equations are analytically solved, and closed-form solutions are presented. The main observations of
the present study are followed as:

(i) It is noticed that particle volume strongly opposes the flow, whereas the fluid velocity also
decreases for the endoscopic case as compared with the blot clot case.

(ii) Velocity of the fluid also rises due to the enhancement in α and δ.
(iii) Temperature profile shows a higher magnitude in the presence of solid particles, while similar

behavior is noticed during blood clot.
(iv) Brinkman number shows the dominant behavior on the temperature profile and enhances the

temperature profile remarkably.
(v) Concentration profile reveals a decreasing behavior with the increase in the values of Soret and

Schmidt numbers.
(vi) α and δ depict versatile behavior on the pressure rise profile.
(vii) Particle volume fraction opposes the pressure rise, whereas the blood clot enhances the

pressure rise.
(viii) Trapping mechanism shows that the number of bolus gets bigger, and the streamlines gather as

the height of the blood clot increases.

Furthermore, in this study, several effects have been ignored, i.e., magnetic field, porosity, chemical
reaction and activation energy, respectively, which can be considered in future research.
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Appendix A

C1 =
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, , (A2)

C3 =
θ5

4ϕηζ log
r1

r2

, , (A3)
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θ7 = 4ϕηζ log
r2

r1
. (A12)

ϑ0 =
1

192θ2
7 log

r1

r2

[
3(−64θ2

7 + Bnθ6r2
1(16θ5 + 3θ6r2

1)ScSrη) log r2

+ 96Bnθ2
5ScSrη log2 r1 log r2 + 16Bnθ2

5ScSrη log r3
1 log r2

+ ScSr log r1{−3Bnθ5r2
2(16θ5 + 3θ6r2

2)η + 2 log r2(48θ2
7 + 3Bn

×θ6(r2
1 − r2

2)(8θ5 + θ6(r2
1 + r2

2))η − 8Bnθ2
5η log r2(6 + log r2))}

]
, (A13)

ϑ1 =
BnScSrθ5θ6η

θ2
7

, (A14)

ϑ2 =
3BnScSrθ2

6η

64θ2
7

, (A15)

ϑ3 =
1

192θ2
7 log

r1

r2

[
192θ2

7 − 3Bnθ5(r2
1 − r2

2)(16θ5 + 3θ6(r2
1 + r2

2))ScSrη

+ 2ScSr{log r1(−48θ2
7ζ − 3Bnθ6(r2

1 − r2
2)(8θ5 + θ6(r2

1 + r2
2))η − 8Bn

θ2
5η log r1(6 + log r1))3ζ(16θ2

7 + Bnθ6(r2
1 − r2

2)(8θ5 + θ6(r2
1 + r2

2))η

+ 8Bnθ2
5η log r2

1) log r2 + 24Bnθ2
5η(2 + log r1) log r2

2 + 8Bnθ2
5 η log r3

2}
]

, (A16)

ϑ4 =
1

32θ2
7 log

r1

r2

[
ScSr{16θ2

7 + Bnθ6(r2
1 − r2

2)(8θ5 + θ6(r2
1 + r2

2))η

+8Bnθ2
5η log

r1

r2
(2 + log r1 + log r2)}

]
, (A17)

ϑ5 = −
Bnθ2

5ScSr

6θ2
7

η. (A18)

References

1. Lardner, T.; Shack, W. Cilia transport. Bull. Math. Biophys. 1972, 34, 325–335. [CrossRef] [PubMed]
2. Nadeem, S.; Munim, A.; Shaheen, A.; Hussain, S. Physiological flow of Carreau fluid due to ciliary motion.

AIP Adv. 2016, 6, 035125. [CrossRef]
3. Nadeem, S.; Sadaf, H. Ciliary motion phenomenon of viscous nanofluid in a curved channel with wall

properties. Eur. Phys. J. Plus 2016, 131, 65. [CrossRef]
4. Maiti, S.; Pandey, S. Rheological fluid motion in tube by metachronal waves of cilia. Appl. Math. Mech. 2017,

38, 393–410. [CrossRef]
5. Abo-Elkhair, R.; Mekheimer, K.S.; Moawad, A. Cilia walls influence on peristaltically induced motion

of magneto-fluid through a porous medium at moderate Reynolds number: Numerical study. J. Egypt.
Math. Soc. 2017, 25, 238–251. [CrossRef]

6. Bhatti, M.; Zeeshan, A.; Rashidi, M. Influence of magnetohydrodynamics on metachronal wave of
particle-fluid suspension due to cilia motion. Eng. Sci. Technol. Int. J. 2017, 20, 265–271. [CrossRef]

http://dx.doi.org/10.1007/BF02476445
http://www.ncbi.nlm.nih.gov/pubmed/4657074
http://dx.doi.org/10.1063/1.4945270
http://dx.doi.org/10.1140/epjp/i2016-16065-y
http://dx.doi.org/10.1007/s10483-017-2179-8
http://dx.doi.org/10.1016/j.joems.2017.01.001
http://dx.doi.org/10.1016/j.jestch.2016.03.001


Symmetry 2020, 12, 532 15 of 16

7. Ashraf, H.; Siddiqui, A.M.; Rana, M.A. Fallopian tube assessment of the peristaltic-ciliary flow of a linearly
viscous fluid in a finite narrow tube. Appl. Math. Mech. 2018, 39, 437–454. doi:10.1007/s10483-018-2305-9.
[CrossRef]

8. Ramesh, K.; Tripathi, D.; Bég, O.A. Cilia-assisted hydromagnetic pumping of biorheological couple stress
fluids. Propuls. Power Res. 2019, 8, 221–233. [CrossRef]

9. Soo, S.L. Particulates And Continuum-Multiphase Fluid Dynamics: Multiphase Fluid Dynamics; Routledge:
Abingdon, UK, 2018.

10. Hu, H.H.; Joseph, D.D.; Crochet, M.J. Direct simulation of fluid particle motions. Theor. Comput. Fluid Dyn.
1992, 3, 285–306. [CrossRef]

11. Feng, J.; Huang, P.; Joseph, D. Dynamic simulation of sedimentation of solid particles in an Oldroyd-B fluid.
J. Non-Newton. Fluid Mech. 1996, 63, 63–88. [CrossRef]

12. Lima, R.; Ishikawa, T.; Imai, Y.; Takeda, M.; Wada, S.; Yamaguchi, T. Radial dispersion of red blood cells in
blood flowing through glass capillaries: the role of hematocrit and geometry. J. Biomech. 2008, 41, 2188–2196.
[CrossRef] [PubMed]

13. Mekheimer, K.S.; Abd Elmaboud, Y. Peristaltic transport of a particle–fluid suspension through a uniform
and non-uniform annulus. Appl. Bion. Biomech. 2008, 5, 47–57. [CrossRef]

14. Mekheimer, K.S.; Mohamed, M.S. Peristaltic transport of a pulsatile flow for a particle-fluid suspension
through a annular region: Application of a clot blood model. Int. J. Sci. Eng. Res. 2014, 5, 849–859.

15. Bhatti, M.; Zeeshan, A.; Ijaz, N. Slip effects and endoscopy analysis on blood flow of particle-fluid suspension
induced by peristaltic wave. J. Mol. Liquids 2016, 218, 240–245. [CrossRef]

16. Bhatti, M.M.; Zeeshan, A. Study of variable magnetic field and endoscope on peristaltic blood flow of
particle-fluid suspension through an annulus. Biomed. Eng. Lett. 2016, 6, 242–249. [CrossRef]

17. Maskeen, M.M.; Mehmood, O.U.; Zeeshan, A. Hydromagnetic solid–liquid pulsatile flow through concentric
cylinders in a porous medium. J. Visual. 2018, 21, 407–419. [CrossRef]

18. Ellahi, R.; Zeeshan, A.; Hussain, F.; Abbas, T. Two-phase couette flow of couple stress fluid with temperature
dependent viscosity thermally affected by magnetized moving surface. Symmetry 2019, 11, 647. [CrossRef]

19. Zeeshan, A.; Hussain, F.; Ellahi, R.; Vafai, K. A study of gravitational and magnetic effects on coupled stress
bi-phase liquid suspended with crystal and Hafnium particles down in steep channel. J. Mol. Liquids 2019,
286, 110898. [CrossRef]

20. Prakash, J.; Tripathi, D.; Tiwari, A.K.; Sait, S.M.; Ellahi, R. Peristaltic pumping of nanofluids through
a tapered channel in a porous environment: Applications in blood flow. Symmetry 2019, 11, 868. [CrossRef]

21. Riaz, A.; Bhatti, M.M.; Ellahi, R.; Zeeshan, A.; M Sait, S. Mathematical Analysis on an Asymmetrical Wavy
Motion of Blood under the Influence Entropy Generation with Convective Boundary Conditions. Symmetry
2020, 12, 102. [CrossRef]

22. Gireesha, B.; Mahanthesh, B.; Gorla, R.S.R.; Manjunatha, P. Thermal radiation and Hall effects on boundary
layer flow past a non-isothermal stretching surface embedded in porous medium with non-uniform heat
source/sink and fluid-particle suspension. Heat Mass Transf. 2016, 52, 897–911. [CrossRef]

23. Bhatti, M.; Zeeshan, A.; Ijaz, N.; Bég, O.A.; Kadir, A. Mathematical modelling of nonlinear thermal radiation
effects on EMHD peristaltic pumping of viscoelastic dusty fluid through a porous medium duct. Eng. Sci.
Technol. Int. J. 2017, 20, 1129–1139. [CrossRef]

24. Kumar, K.G.; Rudraswamy, N.; Gireesha, B.; Manjunatha, S. Non linear thermal radiation effect on
Williamson fluid with particle-liquid suspension past a stretching surface. Results Phys. 2017, 7, 3196–3202.
[CrossRef]

25. Bhatti, M.; Zeeshan, A.; Ellahi, R.; Shit, G. Mathematical modeling of heat and mass transfer effects on
MHD peristaltic propulsion of two-phase flow through a Darcy-Brinkman-Forchheimer porous medium.
Adv. Powder Technol. 2018, 29, 1189–1197. [CrossRef]

26. Mahanthesh, B.; Gireesha, B. Scrutinization of thermal radiation, viscous dissipation and Joule heating
effects on Marangoni convective two-phase flow of Casson fluid with fluid-particle suspension. Results Phys.
2018, 8, 869–878. [CrossRef]

27. Zhu, L.T.; Liu, Y.X.; Luo, Z.H. An enhanced correlation for gas-particle heat and mass transfer in packed and
fluidized bed reactors. Chem. Eng. J. 2019, 374, 531–544. [CrossRef]

https://doi.org/10.1007/s10483-018-2305-9
http://dx.doi.org/10.1007/s10483-018-2305-9
http://dx.doi.org/10.1016/j.jppr.2018.06.002
http://dx.doi.org/10.1007/BF00717645
http://dx.doi.org/10.1016/0377-0257(95)01412-8
http://dx.doi.org/10.1016/j.jbiomech.2008.04.033
http://www.ncbi.nlm.nih.gov/pubmed/18589429
http://dx.doi.org/10.1155/2008/391687
http://dx.doi.org/10.1016/j.molliq.2016.02.066
http://dx.doi.org/10.1007/s13534-016-0226-2
http://dx.doi.org/10.1007/s12650-017-0468-9
http://dx.doi.org/10.3390/sym11050647
http://dx.doi.org/10.1016/j.molliq.2019.110898
http://dx.doi.org/10.3390/sym11070868
http://dx.doi.org/10.3390/sym12010102
http://dx.doi.org/10.1007/s00231-015-1606-3
http://dx.doi.org/10.1016/j.jestch.2016.11.003
http://dx.doi.org/10.1016/j.rinp.2017.08.027
http://dx.doi.org/10.1016/j.apt.2018.02.010
http://dx.doi.org/10.1016/j.rinp.2018.01.023
http://dx.doi.org/10.1016/j.cej.2019.05.194


Symmetry 2020, 12, 532 16 of 16

28. Bhatti, M.; Ellahi, R.; Zeeshan, A.; Marin, M.; Ijaz, N. Numerical study of heat transfer and Hall current
impact on peristaltic propulsion of particle-fluid suspension with compliant wall properties. Mod. Phys.
Lett. B 2019, 33, 1950439. [CrossRef]

29. Horne, A.W.; Critchley, H.O. Mechanisms of disease: The endocrinology of ectopic pregnancy. Exp. Rev.
Mol. Med. 2012, 14. [CrossRef]

30. Srivastava, L.; Srivastava, V. Peristaltic transport of blood: Casson model—II. J. Biomech. 1984, 17, 821–829.
[CrossRef]

31. Akbar, N.S.; Butt, A.W. Heat transfer analysis of Rabinowitsch fluid flow due to metachronal wave of cilia.
Results Phys. 2015, 5, 92–98. [CrossRef]

32. Manzoor, N.; Bég, O.A.; Maqbool, K.; Shaheen, S. Mathematical modelling of ciliary propulsion of an
electrically-conducting Johnson-Segalman physiological fluid in a channel with slip. Comput. Methods
Biomech. Biomed. Eng. 2019, 685-695. [CrossRef] [PubMed]

33. Chamkha, A.J.; Al-Subaie, M.A. Hydromagnetic buoyancy-induced flow of a particulate suspension through
a vertical pipe with heat generation or absorption effects. Turk. J. Eng. Environ. Sci. 2010, 33, 127–134.

34. Marble, F.E. Dynamics of dusty gases. Ann. Rev. Fluid Mech. 1970, 2, 397–446. [CrossRef]

c© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1142/S0217984919504396
http://dx.doi.org/10.1017/erm.2011.2
http://dx.doi.org/10.1016/0021-9290(84)90140-4
http://dx.doi.org/10.1016/j.rinp.2015.03.005
http://dx.doi.org/10.1080/10255842.2019.1582033
http://www.ncbi.nlm.nih.gov/pubmed/30829056
http://dx.doi.org/10.1146/annurev.fl.02.010170.002145
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	 Problem Formulation
	 Solutions of the Proposed Problem
	Graphical Analysis
	Conclusions
	
	References

