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Abstract: The process of machine learning is to find parameters that minimize the cost function
constructed by learning the data. This is called optimization and the parameters at that time are called
the optimal parameters in neural networks. In the process of finding the optimization, there were
attempts to solve the symmetric optimization or initialize the parameters symmetrically. Furthermore,
in order to obtain the optimal parameters, the existing methods have used methods in which
the learning rate is decreased over the iteration time or is changed according to a certain ratio.
These methods are a monotonically decreasing method at a constant rate according to the iteration
time. Our idea is to make the learning rate changeable unlike the monotonically decreasing method.
We introduce a method to find the optimal parameters which adaptively changes the learning
rate according to the value of the cost function. Therefore, when the cost function is optimized,
the learning is complete and the optimal parameters are obtained. This paper proves that the method
ensures convergence to the optimal parameters. This means that our method achieves a minimum of
the cost function (or effective learning). Numerical experiments demonstrate that learning is good
effective when using the proposed learning rate schedule in various situations.

Keywords: machine learning; numerical optimization; learning rate; convergence

1. Introduction

Machine learning is carried out by using a cost function to determine how accurately a model
learns from data and determining the parameters that minimize this cost function. The process of
changing these parameters, in order to find the optimal set, is called learning. We define a cost function
to check that the learning is successful: the lower the value of the cost function, the better the learning.
The cost function is also used in the learning process. Therefore, the cost function is selected and used
for learning, according to the training data [1,2]. In the learning process, a gradient-based method is
usually used to reduce the gradient of the cost function [3-8]. However, with larger sets of training
data and more complex training models, the cost function many have many local minima, and the
simple gradient descent method fails at a local minimum because the gradient vanishes at this point.
To solve this problem, some gradient-based methods where learning occurs even when the gradient is
zero have been introduced, such as momentum-based methods. In these methods, the rate of change
of the cost function is continuously added to the ratio of an appropriate variable. Even if the rate
of change of the cost function becomes zero, the learning is continued by the value of the rate of
change of the previously added cost function [9]. It is not known whether the situation where learning
stopped (parameters change no longer occurs) is the optimal situation for the cost function. One of
the important factors in optimization using gradient-based methods is a hyperparameter called the
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learning rate (or step-size). If the norm of the gradient is large, the learning will not work well. If the
norm of the gradient is small, the learning will be too slow [10]. In order to solve this problem, learning
rate schedules have been introduced. The usual learning rate schedule is a constant that is multiplied
by the gradient in the learning process. However, since the learning rate set initially is a constant,
the gradient may not be scaled during learning. To solve this problem, other methods have been
developed to schedule the learning rate, such as step-based and time-based methods, where it is
not a constant but a function which becomes smaller as learning progresses [11-14]. Furthermore,
adaptive optimization methods with the effect of changing the learning rate have been developed,
such as Adagrad and RMSProp [15-22]. Currently, adaptive optimization methods and adaptive
learning rate schedules are used in combination. However, the learning rate schedules used currently
only decrease as learning progresses, which may be a factor in causing the learning to not proceed
further at a local minimum [23-27]. In this paper, we introduce a method to increase the learning rate,
depending on the situation, rather than just decreasing as the learning progresses. For our numerical
experiments, we chose the most basic Gradient Descent (GD) method, the momentum method, and the
most widely known Adam method as the basic methodologies for comparison. We computed the
change of numerical value according to each methodology and each learning rate schedule.

This paper is organized as follows. Section 2 explains the existing learning methods. This
section discusses the basic GD method, the momentum method, learning rate methods, and the Adam
method, which is a combination of them. Finally, descriptions of some more advanced methods based
on Adam (i.e., Adagrad, RMSProp, and AdaDelta) are given. Section 3 explains our method and
proves its convergence. Section 4 demonstrates that our proposed method is superior to the existing
methods through various numerical experiments. The numerical experiments in this section consist of
Weber’s function experiments, to test for changes in multidimensional space and local minima, binary
classification experiments, and classification experiments with several classes [28].

2. Machine Learning Method

As explained in the previous section, machine learning is achieved through optimization of the
cost function. Generally, the learning data are divided into input data and output data. Here, we denote
the input data by x and the output data by y. Assuming that there are ! training data, we conform the
following data: (x1,y1), ..., (x;,y;). That is, when the value of x; is entered, the value of y; is expected.
The function y;(x) is created by an artificial neural network (ANN). The most basic is constructed
as follows.

yn(x) = o(wx +b), ey

where o is called an activation function, where a non-linear function is used. We want the y;, obtained
from an artificial neural network to have the same value as y, and we can define the cost function as

1 1
C(w,b) = 72 yh xz _1/1 )
1¢ 2
= 72 o(wx; +b) —y;)". 3)

The process of finding the parameters (w, b) which minimize this cost function C is machine learning.
More detailed information can be found in [20].

2.1. Direction Method

This section introduces ways to minimize the cost function satisfying that

oC
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Machine learning is completed by determining the parameters that satisfy the Equation (4) [12,25,27,28].

2.1.1. Gradient Descent Method

GD is the simplest of the gradient-based methods. This method is based on the fixed iteration
method in mathematics. The update rule of this method is as follows:

aC
Wit = W; — U%(wi)/ 5)
where 77 is a (constant) learning rate [12,25,27,28].

2.1.2. Momentum Method

Gradient-based optimization methods were designed under the assumption that the cost function
is convex [10]. However, in general, the cost function is not a convex function. This causes problems
with poor learning at local minima. The momentum method was introduced to solve this problem.
The update rule of this method is as follows:

Wiy = w; — m, (6)

m; = pmi_q + (1_13)8%(;01-), @)

where £ is a constant [9].

2.2. Learning Rate Schedule

In gradient-based methods, one problem is that the parameters are not optimized when the size
of the gradient is large. To solve this problem, we multiply the gradient by a small constant (called
the learning rate) in the parameter update rule. However, in order to improve learning efficiency,
methods for changing the value at each step, instead of using a constant learning rate, are used. We
will introduce some learning rate schedule methods below.

2.2.1. Time-Based Learning Rate Schedule

The time-based learning rate schedule is the simplest learning rate schedule change rule. It has
the form of a rational function whose denominator is a linear function:

_ M
171’1-"-1 — 1 +d7’l, (8)

where 7 is the iteration step, 77, is the learning rate at the n'" step, and d is the decay rate. This update
rule changes the learning rate as learning progresses, reducing the denominator. As 7 starts at zero,
1 is added to prevent the denominator from being zero [11].

2.2.2. Step-Based Learning Rate Schedule
The update rule in the time-based learning rate schedule is a simple rational function. To increase
its efficiency, update rules have been developed using exponential functions, as follows:

i = nod/10or(51), ©)

where 7 is the iteration step, g is the initial learning rate, d is the decay rate (which is set to a real
number between 0 and 1), and r is the drop rate. Therefore, the step-based learning rate always
decreases [13].
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2.2.3. Exponential-Based Learning Rate Schedule

The step-based learning rate schedule is discrete, as it uses the floor function in its update rule.
The exponential-based schedule is made continuous by using an exponential function without a floor
function, as follows:

I = 1oe ", (10)

where 7 is the iteration step, 7 is the initial learning rate, and d is the decay rate [14]. A pseudocode
version of this schedule is given in Algorithm 1.

Algorithm 1: Pseudocode of exponential-based learning rate schedule.

#o: Initialize learning rate
d: Decay rate
i < 0 (Initialize time step)
while

Tig1 < 1oe” "

i+ i+1
end while
return 7;

2.3. Adaptive Optimization Methods

Gradient-based methods, such as those introduced in Section 2.1, only use a constant learning
rate. To learn well in non-convex situations, methods such as the momentum method have been
introduced, however, in order to increase the efficiency of learning, adaptive optimization methods
have been developed. These methods have the effect of changing the learning rate in the optimization
step. This section introduces some adaptive optimization methods.

2.3.1. Adaptive Gradient (Adagrad)

The Adagrad method is an adaptive method which changes the learning rate by dividing the
learning rate by the l,-norm of the gradient at each step. In the denominator, the square of the
gradient at each step is added; therefore, as the learning progresses, the denominator becomes larger.
The update rule of this method is as follows:

Si
Wiy = Wi—I—=——, (11)

VEi=o8
where 7 is the learning rate and g; is the gradient at the i step. In this method, the learning rate in the

nth step 1, is 7/ Z§:0 gf [15].

2.3.2. Root Mean Square Propagation (RMSProp)

RMSProp is an adaptive method which changes the learning rate in each step by dividing the
learning rate by the square root of the exponential moving average of the square of the gradient.
The update rule of this method is as follows:

Wiy = wp — 775;— (12)
1

v = yuvi + (1-7)g, (13)

where 7 is the learning rate, g; is the gradient at the i step, and v is the exponential moving average
(EMA) coefficient. In this method, the learning rate in the nth step is 11, is /+/v; + € [16].
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2.3.3. Adaptive Moment Estimation (Adam)

The Adam method was designed by combining Adagrad and RMSProp. It is the most widely
used gradient-based method. The update rule of the Adam method is as follows:

A

Wiyl = Wi— 77\/% (14)

where
m; = pimiq+(1- ﬁl)aca(;(]i)/ (15)
vi = Povii+(1-p2) (%a(;vl))z (16)

t; = m;/(1— ), and ¥; = v;/(1 — B). The Adam method calculates the EMA for each of the
gradients and the squares of the gradient and uses their ratios to adjust the learning rate [18-20].
The pseudocode version of this method is given in Algorithm 2.

Algorithm 2: Pseudocode of Adam method.
7n: Learning rate
B1, B2 € [0, 1): Exponential decay rates for the moment estimates
C(w): Cost function with parameters w
wo: Initial parameter vector
mg < 0
vg + 0
i < 0 (Initialize timestep)

while w not converged do

mi < By -mi—1 +(1—pBq) - gj(;(wi)
v < B2-vi—1 +(1—p2) - g%(wi)Z

Mmi < mi/(l — ‘Bll)
0; Ul'/(l — ﬁlz)
Wiy < wj—1n- Tﬁi/<\/?jl’ + 6)
i+ i+1
end while
return w; (Resulting parameters)

3. The Proposed Method

The various algorithms introduced in Section 2 either do not change (constant) or only decrease
the learning rate. These cannot be avoided when the parameter reaches a local minimum. Therefore,
we introduce a new learning rate schedule using cost functions. The pseudocode version of proposed
method is given in Algorithm 3.
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Algorithm 3: Pseudocode of cost-based learning rate schedule.

7o: Initialize learning rate
C(w): Cost function with parameters w
i < 0 (Initialize time step)
while
Miv1 < 70C(w;)
i< i+1
end while
return 7;

The cost-based learning rate schedule can be used in conjunction with other (adaptive)
optimization methods. This paper proves its convergence when used with the Adam method.
Equation (15) is as follows:

Wiy1 = wW;i—1H \/‘m’ (17)
= w—7 mi/(l_[ﬁ) , (18)

Vj/(]. — ,312) +e€
_ (1 - ;812) m; (19)

GTTaE) ite

As B1 and B, are 0.9 and 0.999, respectively, if i is large enough, then /(1 — B5) /(1 — i) can be
regarded as 1 (see Appendix A.1 for details). Therefore, our proposed method is obtained by the
following equation:

m;
i = i i 20
Wi w; —1; EY (20)
where
i = noC(w;) (1o is a constant), (21)

i

= (1) Y p 2] g m oy Yo ()
k=1

(
k=1 ow

Here, we change the learning rate from the existing 7 to the function ; = #oC(w;), such that the
change of the cost function is reflected in optimization. From Equation (20), we can obtain the sequence
{w;}. See Appendix A.2 for the process of obtaining Equation (22). In this paper, we will show that our
sequence {w;} converges and that the limit value of the sequence {w;} satisfies the minimum value of
the cost function.

Lemma 1. The relationship between m; and v; is
0;. (23)

Proof. More details can be found in [20]. O
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The Equation (20) is changed as

= Wit — wi| <1 (24)

by Lemma 1 (the relationship between m; and v;). In this equation, € is intended to avoid the
denominator going to zero and can be regarded as not present in the calculation. In order for the value
of the right part of the Equation (24) to converge to zero, the value of B3 /B, should be smaller than 1
and the sequence {#;} converges to zero. Therefore, we must show that the cost function goes to zero
under the condition of the sequence which we have defined [20].

Theorem 1. Judgement on whether or not machine learning is well constructed depends on how small the value
of the cost function is. Therefore, it is important to find the parameter whose cost function approaches zero.
Evaluated at the parameter defined by our proposed method, the cost function is going to zero.

Proof. For sufficiently large 7, sufficiently small 7;, and using Taylor’s theorem, we have the following
calculation:

C(wiy1) = C(w;) + g%(wi) (Wit —w;) +0 ((wi+1 - wi>2) , (25)

where O ( (w; 11 — w; 2) represents the second order and is ignored. By Equations (20) and (25),
+ P & y Bq

we have
aC
C(wit1) = C(w;)+ %(wi) (i1 — w;) (26)
ac i
= Clwi) —niz - (wi) <(U'f€)1/z> 27)
aC i
= C(w) (1 — o5 (wi) ((v—i]—ﬂe)l/2>> (28)
e 2 3
Tu(wl) + ﬁlfw(wz)mzfl
= C(w;) [1-10 ( 20‘ n e)?/z (29)

As B1 < 1, € # 0 and adjusting 779, we have that

(2 (wn))” + B 25 (i)

0 <o o 6)1/2 <1 (30)
Therefore, we can obtain
C(w;) < 6 "C(we), (31)
where § = supremum;~. {1 — 1o <(§§(wi)221ﬁ5€1)§;2(wi)m11) } and lim; ,o, C(w;) =0. O

In Theorem 1, it is possible that J is less than 1. Therefore, in the following Lemma, we explain in
more detail why J is less than 1.
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Lemma 2. The ¢ defined in Theorem 1 is less than 1.

Proof. First of all, i is assumed to be a number such that 7 is sufficiently large. Under the condition of
sufficiently small #;, the equation

(2 @) + P13 @imi

0 ’
U (01 4+ )2

can be divided into two parts, and can be computed as

(2 (wp)”
0< P <1 (32)
and
B 3E (w;)m;
(1(5; To? 1) . (33)

The Equation (32) is obtained by an easy calculation. We must show that Equation (33) is less than 1.
Under the assumption of this Lemma 2 and by the definition of m;, we get sign(m;) = sign(0C(w;)/ow)
as B1 < 1 and the sign does not change dramatically as dC(w) /9w is a continuous function. Therefore,
we have sign(0C(w;) /0w m;_1) > 0. By Equation (33), we get

oC m;_q oC mi_q (vi1+ 6)1/2
So(w) s = Bis(w, (34)
Mo g T PG 1+e>”2< (01 +€)'"2
1/2

> i—1
ac, ' (§> (01 + )
< w; ( il ) (35)

< B aw( i) L (/3%) (0;+ €)1/
1/2
aC 1
T\ B

If sign(oC(w;)/ow m; 1) < 0, then there is { € [w;,w; 1] or [w;_1,w;] such that
d0C(¢)/ow =~ 0. Therefore, oC(w;)/dw =~ 0. Equation (33) is a small value, less than
1. By this process, we can set 7p as a small constant and obtain the following result: § =

C (Y2 4B 2C (10 Vi
SUpTemumnjs {1 — 1o ((aw () +ﬁl)in/02(w’>mll>} <1 0O

(vite

4. Numerical Tests

In this section, we detail the results of various numerical experiments. In each experiment, we
compare the results of our proposed method with the numerical results of GD, momentum, and Adam
with various learning rates. For the types of learning rates, we apply the constant, time-based,
step-based, exponetial-based, and cost-based schedules described above.
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4.1. Two-Variable Function Test Using Weber’s Function

In this section, we look at how the parameters change (according to how we compare them) using
a two-variable function, Weber’s function. Weber’s function is

C(wy,wp) = ) Vz‘\/(wl — ;1) + (w2 — vi2)?, (37)
i=

where « is integer, jt = (y1,- -+, pix) inR* such that }F ; y; > 0, v = (vq,-- - ,vx), and v; is a vector in
R2 [28].

4.1.1. Case 1: Weber’s Function with Three Terms Added

In this case, we used Weber’s function with the following variables as the cost function: x = 3,
= (24-5),v = (2,42), v, = (2,42), and v3 = (43,88). This Weber’s function has a global
minimum at (90, 11).

In this experiment, the initial values were wy = (50,170) and 779 = 5 x 102. Figure 1 shows the
given Weber’s function under these initial conditions. In Figure 1, the red point is its global minimum
in R3. Figure 2 visualizes the change of parameters, according to the optimization methods and the
learning rates introduced in this paper. In Figure 2a, the GD method was used and the results of the
changes in the learning rate are visualized. In Figure 2b, the momentum method was used and the
results of the changes in the learning rate are visualized. In Figure 2c, the Adam method was used
and the results of the changes in the learning rate are visualized. In particular, we stopped learning
before reaching the global minimum, in order to compare the convergence rates of each method. In this
experiment, there were no local minima and all the methods converged well to the global minimum.
In this experiment, our cost-based learning rate schedule combined with the optimization methods
showed the fastest convergence speed.

200

15
101

50+

w3

=100+

-150

~150 99

7209200 -150 =100 =50 0 50 100 150 200

T 50 4
100, - ~~~150 w1

(a) 3D graph of the given function; global minimum (b) Level set of given function; global minimum
presented as a red point. presented as a red star.

Figure 1. Weber’s function for given y and v.
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200

200

150

100
100

w2
g

= 50

0

-50

-100,
=1

00 =50 0 50 100 150 200
00 =50 0 50 100 150 200 00 =50 0 50 100 150 200 wi

wa wy

(a) Comparison of the proposed (b) Comparison of the proposed (©) Compa.rison of the p.rop osed
method with other learning rate method with other learning rate method with other learning rate

schedules using GD. schedules using Momentum. schedules using Adam.

Figure 2. Comparing methods with initial point (50,170) and initial learning rate 5 x 10%. The blue
line, the red line, the green line, the yellow line, and the black line represent the constant
learning rate schedule, the time-based learning rate schedule, the step-based learning rate schedule,
the exponential-based learning rate schedule, and the cost-based learning rate schedule, respectively.

4.1.2. Case 2: Weber’s Function with Four Terms Added

In this case, we used the Weber’s function with the following variables as the cost function: ¥ = 4,
u=1(2,-421),v =(-10,-10), v, = (0,0), v3 = (5,8), and v4 = (25,30). This Weber’s function had
a local minimum at (—10, —10) and a global minimum at (25, 30). In Figure 3, the global minimum
is represented by a red dot and the local minimum is represented by a blue dot. In this experiment,

we wanted to see that each parameter produced by the learning rate constantly changed beyond the
local minimum.

-40 =20 0 20 40 60 80
w1

(a) 3D graph of given function; global minimum (b) Level set of given function; global minimum
presented as a red point, local minimum presented asa  presented as a red star, local minimum presented as
blue point. a blue star.

Figure 3. Weber’s function for given y and v.

The initial values were wy = (—10,—40) and 770 = 5 x 10~!. Figure 4 visualizes the change of
parameters according to the optimization methods and the learning rates introduced in this paper.
In Figure 4a, the GD method was used and the results of the changes in the learning rate are visualized.
In Figure 4b, the momentum method was used and the results of the changes in the learning rate are
visualized. In Figure 4c, the Adam method was used and the results of the changes in the learning rate
are visualized. In all optimization methods, we can see that only the cost-based learning rate schedule
caused convergence beyond the local minimum to the value of the global minimum.
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wi

(a) Comparison of the proposed (b) Comparison of the proposed (c) Comparison of the proposed
method with other learning rate method with other learning rate method with other learning rate
schedule using GD. schedule using Momentum. schedule using Adam.

Figure 4. Comparing methods with initial point (—10, —40) and initial learning rate 5 x 10~1.
The blue line, the red line, the green line, the yellow line, and the black line represent the Constant
learning rate schedule, the time-based learning rate schedule, the step-based learning rate schedule,
the exponential-based learning rate schedule, and the cost-based learning rate schedule, respectively.

4.2. Binary Classification with Multilayer Perceptron (MLP)

In this section, a Binary Classification Problem (BCP) was implemented for each method using a
MLP model. The BCP was based on a 20 x 20 size image data set with o and x draw. Figure 5 shows
some images from the data set used in this experiment.

B M ©

Figure 5. Examples of data set used in this experiment.

The experiment was based on the Adam method in a six-layer MLP model, with different learning
rate methods. The initial learning rate was set as 0.001 and the number of iterations was 300.

Figure 6a shows the change in cost for each learning rate schedule during learning. Figure 6b
shows the change in accuracy with each learning rate schedule during learning. As shown in Figure 6a,
all methods quickly reduced cost (except for the constant learning rate). Unfortunately, the cost-based
learning rate schedule had a high cost when learning; however, it was superior to other methods in
terms of accuracy, as shown in Figure 6b.

0'8 = (Constant Ir 1.0
= Time based
Step based
0.6 —— Exp based
= (Cost based
g 0.8
04 :r
'2 _— I
0.2 0.6 — Time bazed
Step based
—— Exp based
0'0 = Cost based
0 100 200 300 0 100 200 300
Ieration Iteration
(a) Training cost of each learning rate schedule. (b) Test accuracy of each learning rate schedule.

Figure 6. Result of binary classification with multilayer perceptron (MLP).
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4.3. MNIST with MLP

In the next experiment, the MLP was used to solve a multi-classification problem using the MNIST
data set, in order to verify the performance of each learning rate schedule. The images in the MNIST
data set are grayscale numbered images (from 0 to 9) of size 32 x 32. The experiment was based on the
Adam method in a five-layer MLP model with each learning rate schedule. The initial learning rate
was set as 0.001 and the number of iterations was 1000.

Figure 7a shows the change in cost for each learning rate schedule during learning. Figure 7b
shows the change in accuracy with each learning rate schedule during learning. The cost and accuracy
were not much different from the results in the previous section; the cost-based learning rate schedule
was the fastest and had the highest accuracy.

5 —— Constant Ir
—— Time based =

Step based
4 —— Exp based
—— Cost based

=]
o

e o
~ o

=Y

Test Acci%)
s o ©
n

=

o o
R

— Constant Ir

— Time based
Step based

— Exp based

— Cost based

=
=
=

o 200 400 600 800 1000 V] 200 400 600 800 1000
Iteration Iteration

(a) Training cost of each learning rate schedule. (b) Test accuracy of each learning rate schedule.

Figure 7. Result of multi-classification with MLP.
4.4. MNIST with Convolutional Neural Network (CNN)

In this experiment, we sought to confirm that the proposed method has good performance
when used in a deep learning framework. The performance of each method was measured using a
Convolutional Neural Network (CNN) model for multi-class classification problems using the MNIST
data set (the same as in Section 4.3). In this experiment, a CNN model with a first convolution filter of
size 5 X 5 x 32, a second convolution filter of size 5 X 5 X 32 X 64, and a hidden layer of size 512 were
used. In addition, the batch size was 64 and 50% dropout was used. The results are shown in Figure 8.

1.0 — Time based 5 lI —— Time based
. Step based | 5 Step based
0.8 —— Exp based 4 —— Exp based
| —— Cost based g —— Cost based
2 0.6 E 3
0.4 5!
2
0.2
T W\
0.0 1 : . . .
2000 4000 6000 8000 2000 4000 6000 8000
lteration Iteration

(a) Training cost of each learning rate schedule. (b) Validation error of each learning rate schedule.

Figure 8. Result of multi-classification with Convolutional Neural Network (CNN).

Figure 8a shows the change in cost for each learning rate schedule during learning. Figure 8b
shows the change in validation error with each learning rate schedule during learning. It can be seen
that all methods had no underfitting, due to the low training cost, and no overfitting, due to low
validation error. Figure 8a shows that, at a given setting, the cost did not become relatively small,
even though learning was progressing well. However, as the cost-based learning rate schedule is
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proportional to the cost, the learning rate is determined by the scale of the cost function when learning.
Therefore, in this experiment, the cost-based learning rate schedule was slow; however, this can be
solved (to some extent) by multiplying the cost function by a small constant. In this case, it was seen
that the cost-based learning rate schedule was sensitive to the initial values of the cost function and
the parameters.

5. Conclusions

This paper explains how the degree of learning varies with the learning rate in ANN-based
machine learning. In particular, in general machine learning, local minima can cause problems in
learning. In order to solve this problems, the existing methods used a monotonically decreasing
learning rate at a constant rate according to the iteration time. However, these methods often lead to
unexpected results that the cost function constructed by learning data is not approaching zero. In this
paper, the machine learning methods worked well by use of our proposed learning rate schedule,
which changes the learning rate appropriately.

By utilizing the value of the cost function in determining the change in the learning rate, we have
the effect of stopping learning only at the global minimum of the cost function. The global minimum
means that the cost we define is zero. Through our proposed method, the cost function converges to
zero and in particular, it shows outstanding results in terms of learning accuracy. Our method has a
characteristic that the learning rate is adaptive, and in particular, it has the advantage that it can be
applied to existing learning methods by simply change the formula. The shortcoming of our method is
if the cost of the initial parameters is high then the parameters do not learn well. However, this can be
solved by multiplying the cost function by a constant smaller than 1.
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Appendix A

Appendix A.1

From Equation (17), we obtain following equation
w —w (1 - :BZZ) m;
MR a—E) e

where $1 and B, are constant values between 0 and 1. In general, 81 and B, use 0.9 and 0.999
respectively. This implies that lim;_,. Bt = 0, for all t = 0,1. Thus,

(A1)

a8 (1 lm gL)
lim 2 oo A2
Ty a—Jm ) (42
/a0
- a-0 (A9

= 1 (Ad)
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Appendix A.2

In order to obtain Equation (22), m; and v; were defined as follows:

m;
Vi
where m and vy are 0.
m; = pfim; 1+ (1-p1)

= B (ﬁlmiz +(1=p)—5
= pimi 2 +pi(1—p1)
= B (ﬁlmi—a +(1=p)—5
= pimi_;+pi(1 - p1)

i—

= fumi (1 ) 2
= Bavii+(1—B) (aca(;ui))f
aC(w)
awacwn) 1o
R
) 1y
W)y pa(a -y 2

1

= Bimo+(1-p1) Y BE 1M,

Jw

k=1
= (1-p1) Zﬁk 18C“517wk+1)
N2
vi = Baviii+(1—-B2) (8(28(;01)>

= B2 </32vi—2 +(1- ﬁz)ac(gg_l)) +(1-B2) <a(;(;ui)>2,
ac(g:;_o +(1—p2) <a%<;01>>2

= Pivio+pa(1-P2)

= B3 <,52Vi—3 +(1— [32)81'_2)) + B2(1—Bo) ——= ( ) +(1-B2) <

= Bvis+p5(1—p)

) i-1
= Bhog+ (1—B2) kZ B
=1

oC(w

( ~2)

1 <3Ca(;vi))2/

a5 et (2C(w))?
- -t (5eY)

+<1—/32>(

14 of 16

(A5)

(A6)

(A7)
(A8)

(A9)

9Ci) " (a10)
w 7

(A11)

(A12)

(A13)

(A14)
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By Equation (A14) and Equation (A22), we obtain Equation (A23) and Equation (A24):

i—1
mo= (B LA 10CWk), (a23)
= w
i—
v, = 2 <8C ;) > . (A24)
k=1
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