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Abstract: Image interpolation is important in image zooming. To improve the quality of image
zooming, in this work, we proposed a class of rational quadratic trigonometric Hermite functions
with two shape parameters and two classes of C1-continuous Coons patches constructions over a
triangular domain by improved side–side method and side–vertex method. Altering the values of
shape parameters can adjust the interior shape of the triangular Coons patch without influencing
the function values and partial derivatives of the boundaries. In order to deal with the problem of
well-posedness in image zooming, we discussed symmetrical sufficient conditions for region control
of shape parameters in the improved side–side method and side–vertex method. Some examples
demonstrate the proposed methods are effective in surface design and digital image zooming.
C1-continuous Coons patches constructed by the proposed methods can interpolate to scattered
3D data. By up-sampling to the constructed interpolation surface, high-resolution images can be
obtained. Image zooming experiment and analysis show that compared to bilinear, bicubic, iterative
curvature-based interpolation (ICBI), novel edge orientation adaptive interpolation scheme for
resolution enhancement of still images (NEDI), super-resolution using iterative Wiener filter based on
nonlocal means (SR-NLM) and rational ball cubic B-spline (RBC), the proposed method can improve
peak signal to noise ratio (PSNR) and structural similarity index (SSIM). Edge detection using Prewitt
operator shows that the proposed method can better preserve sharp edges and textures in image
zooming. The proposed methods can also improve the visual effect of the image, therefore it is
efficient in computation for image zooming.

Keywords: image zooming; coons patch; shape parameters; interpolation

1. Introduction

Image zooming refers to constructing a high resolution (HR) image from a low resolution (LR)
image, which is to estimate unknown pixels from known pixels in essence. Image interpolation
technology can preserve rich texture information and sharp edges under certain conditions.
Image interpolation technology plays an important role in the field of image processing and is widely
used in various fields, such as aerospace, military, communications, remote sensing satellites, television
and film production.

The earliest interpolation methods consist of nearest-neighbor interpolation, bilinear interpolation [1],
bicubic interpolation [2,3] and so on. These methods work well in smooth areas, with obvious alias
and ringing in edge texture areas. Lehmann et al. [4] discussed the image magnification method
based on B-spline interpolation. Muresan et al. [5] proposed a novel interpolation method based
on optimal recovery and adaptively determining the quadratic signal class from the local image
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behavior. Han et al. [6] first constructed piecewise bicubic polynomial Coons surface on the digital
image with shape control parameters and then resampled the interpolation surface to match the edge
characteristics of the image. The above methods can reflect the gradual change of the data, but cannot
reflect the abrupt change of the data. Therefore the above methods have difficulty in dealing with
edge areas of the images, especially when processing the area with more texture details, for it will
generate noise and cause the texture to be distorted or deformed. Li et al. [7] used piecewise bicubic
rational Coons interpolation patches with shape parameters to achieve image zooming, preserving
clear borders of original images. However, Coons patches of this method is constructed over the
rectangular domain, therefore it has difficulty in scattered data interpolation.

In computer-aided design (CAD), surfaces are often constructed over the rectangular domain,
for CAD is originally applied to the design of objects with rectangular structures such as cars and
aircraft fuselages. However, with the development of surface geometric modeling technology, and the
increase of the complexity of the shape, non-rectangular surface constructions appear to have huge
needs. Many scholars have begun to study surface patches of non-rectangular topologies, such as
triangular surface patches. One of the important surface construction methods is the construction of
Coons surface patch over the triangular domain, called transfinite interpolation. Over the triangle
domain, the method of constructing triangular surface patches by interpolating to boundary curves
was first proposed by Barnhill, Birkhoff and Gordon [8]. This method uses Boolean sum to construct
triangular surface patches, and it requires the given interpolation conditions that satisfy compatibility.
If the given interpolation conditions do not satisfy compatibility, a correction term needs to be added
to the constructed triangular surface patch to remove the incompatibility [9,10]. Gregory [11–13]
used the method of convex combination to construct a triangular surface patch. The constructed
triangular surface patch is composed of convex combinations of three interpolation operators, and each
interpolation operator satisfies the interpolation conditions on two sides of the triangle. The side–vertex
method proposed by Nielson [14] also uses a convex combination of three interpolation operators to
construct a triangular surface patch, each of which satisfies a vertex and the interpolation condition on
its corresponding side. Hagen [15] further developed the side–vertex method and used it to construct
geometric triangular surface patches. The results of these studies have been generalized as methods
for constructing triangular patches with C1 or C2 continuity [16,17]. Further, Tang et al. [18] proposed
C1-continuous H-type Coons patches over the triangle domain while Wu et al. [19–21] proposed
C1-continuous λ-type, C-type, and T-type Coons patches over triangle domain. These four types of
Coons patches are promotions of the side–side method and side–vertex method, which can adjust the
interior shape by shape parameters without influencing the boundary shape.

At present, some effective methods of image zooming have been proposed. Giachetti et al. [22]
proposed a new image zooming method called iterative curvature-based interpolation (ICBI)
based on a two-step grid filling and an iterative correction of the interpolated pixels obtained by
minimizing an objective function depending on the second-order directional derivatives of the
image intensity. Li et al. [23] proposed a novel edge orientation adaptive interpolation scheme
for resolution enhancement of still images (NEDI). NEDI can generate images with dramatically
higher visual quality than linear interpolation techniques while keeping the computational complexity
still modest. The purpose of this paper is to improve the quality of image zooming and improve
side–side method and side–vertex method for interpolation. This paper proposed a new class of
rational quadratic trigonometric Hermite functions with two shape parameters. Based on the proposed
functions, two classes of C1-continuous Coons patches construction over the triangular domain are
proposed by improved side–side method and side–vertex method. Interior shape of constructed
patches can be adjusted by altering the shape parameter values without influencing the boundary
shape. Region control of shape parameters in the proposed methods is discussed. Besides, for the
complex surfaces and scattered data, C1-continuous splice of the proposed Coons patches with shape
parameters are discussed, and the effectiveness of the proposed methods is demonstrated by some
examples. Finally, some experiments on image zooming show that compared to bilinear, bicubic,



Symmetry 2020, 12, 661 3 of 21

iterative curvature-based interpolation (ICBI) [22], novel edge orientation adaptive interpolation
scheme for resolution enhancement of still images (NEDI) [23], super-resolution using iterative Wiener
filter based on nonlocal means (SR-NLM) [24] and rational ball cubic B-spline (RBC) [25] , the proposed
methods can improve the peak signal to noise ratio (PSNR) and structural similarity index (SSIM).
Edge detection using the Prewitt operator shows that compared to these six methods, the proposed
methods can better keep the image edges sharp and preserve textures, thus improving the visual effect
of the image.

The rest of this paper is organized as follows. In Section 2.1, a class of rational quadratic
trigonometric Hermite functions with shape parameters is proposed and its properties is discussed.
In Section 2.2, we proposed two classes of Coons patches constructions based on the improved
side–side method and side–vertex for interpolation. In Section 2.3, we discussed the region control of
the shape parameters in the proposed methods. In Section 2.4, we applied Coons patches construction
into image zooming. Section 3 shows Coons patches constructions, image zooming experiments
and sensitivity analysis. Section 4 discussed the results of the experiments and gave a summary of
this work.

2. Materials and Methods

2.1. Rational Quadratic Trigonometric Hermite Functions with Shape Parameters

Firstly, we give the definition of rational quadratic trigonometric Hermite functions as follows.

Definition 1. For t ∈ [0, 1], the following four functions are defined as rational quadratic trigonometric
Hermite functions with shape parameters,

T0 (t) = αC2

αC2+βS2 ,

T1 (t) =
βS2

αC2+βS2 ,

T2 (t) = 2
π

αS(1−S)
αC2+βS2 ,

T3 (t) = 2
π
−βC(1−C)
αC2+βS2 ,

(1)

where S = S (t) = sin
(

π
2 t
)

, C = C (t) = cos
(

π
2 t
)
, α, β are shape parameters and α, β > 0.

Remark 1. For α = β = 1, the rational quadratic trigonometric Hermite functions given in (1) will return to
quadratic trigonometric Hermite functions, which have been used for constructing Coons surface over rectangular
domain by the famous pioneer Coons in [26].

Remark 2. For α = β, we have

T0 (t) =
C2 (t)

C2 (t) + S2 (t)
=

S2 (1− t)
S2 (1− t) + C2 (1− t)

= T1 (1− t) , (2)

T2 (t) =
2
π

S (t) (1− S (t))
C2 (t) + S2 (t)

=
2
π

C (1− t) (1− C (1− t))
S2 (1− t) + C2 (1− t)

= −T3 (1− t) . (3)

It is easy to check that T0 (t) + T1 (t) ≡ 1. The rational quadratic trigonometric Hermite functions
have the following properties:

• Ti (t) ≥ 0, (i = 0, 1, 2) and T3 (t) ≤ 0,
• Monotonicity: For fixed t ∈ [0, 1], T0 (t), T2 (t), and T3 (t), are monotonically increasing for α

β ;
T1 (t) is monotonically decreasing for α

β ,
• End-point properties:

T0(0) = 1, T1(0) = 0, T2(0) = 0, T3(0) = 0,

T0(1) = 0, T1(1) = 1, T2(1) = 0, T3(1) = 0,
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T0
′(0) = 0, T1

′(0) = 0, T2
′(0) = 1, T3

′(0) = 0,

T0
′(1) = 0, T1

′(1) = 0, T2
′(1) = 0, T3

′(1) = 1.

2.2. Two Classes of C1 Coons Patches Constructions over Triangular Domain

There have been two classic methods for transfinite interpolation over triangular domain:
side–side method proposed by BBG [8], also called parallel projection, and the side–vertex method
proposed by Nielson [14], also called radial projection. For convenience, let i, j, k = 1, 2, 3, i 6= j 6= k 6= i
in the rest of this paper.

2.2.1. Relationship between Barycentric Coordinates and Cartesian Coordinates

Let ∆T be a non-degenerate triangle with vertexes Vi (xi, yi) (i = 1, 2, 3). The vectors of three
boundaries are marked as e1 = V3 − V2, e2 = V1 − V3, e3 = V2 − V1. The side corresponding to the
vertex Vi is marked as Si. The boundary of ∆T is marked as ∂T. The closure of ∆T is marked as T.
For any point P inside ∆T, mark the barycentric coordinates of P as (b1, b2, b3), where bi =

Ai
A , A is area

of ∆T, and Ai is area of ∆PVjVk. Mark cartesian coordinates of P as (x, y). The relationships between
the barycentric coordinates (b1, b2, b3) and the cartesian coordinates (x, y) of P are as follows

x = b1x1 + b2x2 + b3x3 ,

y = b1y1 + b2y2 + b3y3 ,

1 = b1 + b2 + b3,

(4)

and

bi = bi (x, y) =

∣∣∣∣∣ x− xj x− xk
y− yj y− yk

∣∣∣∣∣∣∣∣∣∣ xi − xj xi − xk
yi − yj yi − yk

∣∣∣∣∣
. (5)

2.2.2. Coons Patch Construction Based on Side–Side Method

Given a function F (x, y) over triangular domain ∆T, side–side interpolant Pi can be obtained
by altering Hermite polynomial in BBG parallel projection method with the rational quadratic
trigonometric Hermite functions in (1) as follows

P1 [F] = T0(
b3

1− b1
)F (M1) + T1(

b3

1− b1
)F (N1)

+ T2(
b3

1− b1
) (1− b1)

∂F
∂e1

(M1) + T3(
b3

1− b1
) (1− b1)

∂F
∂e1

(N1) , (6)

where M1 = b1V1 + (1− b1)V2, N1 = b1V1 + (1− b1)V3, ∂F
∂e1

(Q) is the partial derivative of F along the
direction of e1 at point Q. α1 and β1 are shape parameters of P1[F].

P2 [F] = T0(
b1

1− b2
)F (M2) + T1(

b1

1− b2
)F (N2)

+ T2(
b1

1− b2
) (1− b2)

∂F
∂e2

(M2) + T3(
b1

1− b2
) (1− b2)

∂F
∂e2

(N2) , (7)

where M2 = b2V2 + (1− b2)V3, N2 = b2V2 + (1− b2)V1, ∂F
∂e2

(Q) is the partial derivative of F along the
direction of e2 at point Q. α2 and β2 are shape parameters of P2[F].
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P3 [F] = T0(
b2

1− b3
)F (M3) + T1(

b2

1− b3
)F (N3)

+ T2(
b2

1− b3
) (1− b3)

∂F
∂e3

(M3) + T3(
b2

1− b3
) (1− b3)

∂F
∂e3

(N3) , (8)

where M3 = b3V3 + (1− b2)V1, N3 = b3V3 + (1− b3)V2, ∂F
∂e3

(Q) is the partial derivative of F along the
direction of e3 at point Q. α3 and β3 are shape parameters of P3[F].

The Coons patch is defined by the Boolean sum of Pi [F] (i = 1, 2, 3) as follows

P [F] = ω1P1 [F] + ω2P2 [F] + ω3P3 [F] , (9)

where ωi (i = 1, 2, 3) is called weight function and

ωi = bi
2 (3− 2bi + 6bjbk

)
, (10)

or

ωi =
bi

2

3
∑

n=1
bn

2
. (11)

The weight function in (10) and (11) has the properties as follows
ω1 + ω2 + ω3 = 1,

ωi|ei = 0,
∂ωi
∂ei

= 0.
(12)

Theorem 1. Let F (x, y) ∈ C1(∂T), when (x, y) ∈ ∂T, P [F] in (9) interpolates to F (x, y) and its first-order
partial derivatives.

Proof of Theorem 1. Consider any point on the side Si, i, j, k = 1, 2, 3, i 6= j 6= k 6= i, simple calculation
gives that b1 = 0, b2 = 1− b3, and

P[F] =
b2

2

3
∑

n=1
bn

2
P2[F] +

b3
2

3
∑

n=1
bn

2
P3[F]. (13)

Direct computation gives that Pj [F]
∣∣
ei
= F

(
Mj
)

, Pk [F]|ei
= F (Nk) . It is easy to check that Mj

and Nk are points on the side Si, thus

P[F] =
b2

2

3
∑

n=1
bn

2
F
(

Mj
)
+

b3
2

3
∑

n=1
bn

2
F (Nk) = F (Si) . (14)

Therefore,

P [F]|∂T = F |∂T . (15)

According to (12), we have
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∂P [F]|ei
= ∂ (ωiPi [F])|ei

+ ∂
(
ωjPj [F]

)∣∣
ei
+ ∂ (ωkPk [F])|ei

(16)

= ∂ωjPj [F]
∣∣
ei
+ ωj∂Pj [F]

∣∣
ei
+ ∂ωkPk [F]|ei

+ ωk∂Pk [F]|ei

= ∂F (Si) .

Therefore, we have

∂P [F]|∂T = ∂F|∂T . (17)

These imply the theorem.

Detailed proof can be referenced from [11]. We call the interpolation method of (9) as the side–side
method for interpolation based on the rational quadratic trigonometric Hermite functions (SS).

2.2.3. Coons Patch Construction Based on Side–Vertex Method

Consider the point on the side Si corresponding to the vertex Vi, and the coordinates of Si
are follows

Si = Si(x, y) = (
x− bixi
1− bi

,
y− biyi
1− bi

) = (
bjxj − bkxk

bj + bk
,

bjyj − bkyk

bj + bk
). (18)

Now, alter the cubic Hermite polynomial of the interpolants in radial projection method by the
following interpolants,

Di[F] = T1(1− bi)F(Si) + T3(1− bi)Ri
′(1) + T1(bi)F(Vi)− T3(bi)Ri

′(0), (19)

where (i = 1, 2, 3), αi and βi (i = 1, 2, 3) are shape parameters of Di[F], andRi
′(1) = (x−xi)Fx(Si)+(y−yi)Fy(Si)

1−bi
,

Ri
′(0) = (x−xi)Fx(Vi)+(y−yi)Fy(Vi)

1−bi
..

(20)

The Coons patch is defined by the Boolean sum of Di[F](i = 1, 2, 3) as follows

D [F] = ω1D1 [F] + ω2D2 [F] + ω3D3 [F] , (21)

where ωi (i = 1, 2, 3) is called weight function and

ωi =
1/bi

2

1/b1
2 + 1/b2

2 + 1/b3
2 , (22)

or

ωi =
bj

2bk
2

b2
2b3

2 + b1
2b3

2 + b2
2b1

2 . (23)

The above weight function has the properties as follows
ω̄1 + ω̄2 + ω̄3 = 1,

ω̄i|e i
= δij,

∂ω̄i
∂ei

= 0.
(24)

Theorem 2. Let F (x, y) ∈ C1(∂T), when (x, y) ∈ ∂T, D [F] in (21) interpolates F (x, y) and its first-order
partial derivatives.
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Proof of Theorem 2. The proof of Theorem 2 is analogy to Theorem 1. Detailed proof can be referenced
from [14].

We call the interpolation method of (21) as side–vertex method for interpolation based on the
rational quadratic trigonometric Hermite functions (SV).

2.3. Region Control of Shape Parameters

In order to deal with the problem of well-posedness in image zooming, we give the region control
of the shape parameters using the method proposed in [27]. For the gray-scale values of the new
pixels should be bounded between 0 and 255 for eight-bit images, we constrain the interpolants
Pi [F] and Di [F] to lie between the two given piecewise step functions. For any x ∈ [xr, xr+1] , t =
(x− xr) /hr, r = 1, 2, . . . , n− 1, we alter the piecewise interpolation curves given in [27] with g (x) = gr

and g∗ (x) = g∗r , where gr < F < g∗r , S = S (t) = sin
(

π
2 t
)

and C = C (t) = cos
(

π
2 t
)
. For SS, if the

interpolant Pi [F] , i = 1, 2, 3, satisfies

g (x) < Pi [F] < g∗ (x) , (25)

for any x ∈ [x1, xn], then Pi [F] is called the constrained interpolant lying strictly between the two
given piecewise step functions g (x) and g∗ (x).

For x ∈ [xr, xr+1] , 1 ≤ r ≤ n− 1, Pi [F] lies strictly above the piecewise step function g (x) = gr,
if Pi [F] > gr, which is equivalent to

Pi [F]− gr = T0(t)F (Mi) + T1(t)F (Ni) + T2(t) (1− bi)
∂F
∂ei

(Mi) + T3(t) (1− bi)
∂F
∂ei

(Ni)− gr

=


αiF (Mi)C2 + βiF (Ni) S2

+π
2 αi (1− bi)

∂F(Mi)
∂ei

S (1− S)

−π
2 βi (1− bi)

∂F(Ni)
∂ei

C (1− C)
−
(
αiC2 + βiS2) gr

 1
αiC2 + βiS2

≥


αiF (Mi)C2 + βiF (Ni) S2

−π
2 αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣ S (1− S)

−π
2 βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣C (1− C)

−
(
αiC2 + βiS2) gr

 1
αiC2 + βiS2

=


αiF (Mi)C2 + βiF (Ni) S2

+ 1
π αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣ (S− 1)2 − 1
π αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣ S2 − 1
π αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣ (S2 + C2)
+ 1

π βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣ (C− 1)2 − 1
π βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣C2 − 1
π βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣ (S2 + C2)
−αiC2gr − βiS2gr


1

αiC2 + βiS2

=


1
π αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣ (S− 1)2 + 1
π βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣ (C− 1)2

+C2
[
αiF (Mi)− 1

π αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣− 2
π βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣− αigr

]
+S2

[
βiF (Ni)− 2

π αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣− 1
π βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣− βigr

]


1
αiC2 + βiS2 .

We can obtain the following sufficient conditions for Pi [F] > gr, ∀x ∈ [xr, xr+1]
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
0 < αi <

π
2

F(Ni)− 1
π

∣∣∣∣ ∂F(Ni)
∂ei

∣∣∣∣−gr∣∣∣∣ ∂F(Mi)
∂ei

∣∣∣∣ βi,

0 < βi <
π
2

F(Mi)− 1
π

∣∣∣∣ ∂F(Mi)
∂ei

∣∣∣∣−gr∣∣∣∣ ∂F(Ni)
∂ei

∣∣∣∣ αi.

(26)

Similarly, for x ∈ [xr, xr+1] , 1 ≤ r ≤ n− 1, the interpolant Pi [F] lies strictly below the piecewise
step function g∗ (x) = g∗r , if Pi [F] < g∗r , which is equivalent to

g∗r − Pi [F] = g∗r − T0(t)F (Mi)− T1(t)F (Ni)− T2(t) (1− bi)
∂F
∂ei

(Mi)− T3(t) (1− bi)
∂F
∂ei

(Ni)

≥


(
αiC2 + βiS2) g∗r
−αiF (Mi)C2 − βiF (Ni) S2

−π
2 αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣ S (1− S)

−π
2 βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣C (1− C)

 1
αiC2 + βiS2

=


1
π αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣ (S− 1)2 + 1
π βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣ (C− 1)2

+C2
[
−αiF (Mi)− 1

π αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣− 2
π βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣+ αig∗r
]

+S2
[
−βiF (Ni)− 2

π αi

∣∣∣ ∂F(Mi)
∂ei

∣∣∣− 1
π βi

∣∣∣ ∂F(Ni)
∂ei

∣∣∣+ βig∗r
]


1
αiC2 + βiS2 .

We can obtain the following sufficient conditions for g∗r − Pi [F] > 0, ∀x ∈ [xr, xr+1]
0 < αi <

π
2

g∗r−F(Ni)− 1
π

∣∣∣∣ ∂F(Ni)
∂ei

∣∣∣∣∣∣∣∣ ∂F(Mi)
∂ei

∣∣∣∣ βi,

0 < βi <
π
2

g∗r−F(Mi)− 1
π

∣∣∣∣ ∂F(Mi)
∂ei

∣∣∣∣∣∣∣∣ ∂F(Ni)
∂ei

∣∣∣∣ αi.

(27)

Therefore, (26)–(27) are the sufficient conditions to ensure g (x) < Pi [F] < g∗ (x).
For SV, if the interpolant Di [F] , i = 1, 2, 3, satisfies

g (x) < Di [F] < g∗ (x) , (28)

for any x ∈ [x1, xn], then Di [F] is called the constrained interpolant lying strictly between the two
given piecewise step functions g (x) and g∗ (x).

For x ∈ [xr, xr+1] , 1 ≤ r ≤ n− 1, Di [F] lies strictly above the piecewise step function g(x) = gr,
if Di [F] > gr, which is equivalent to
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Di [F]− gr = T1(1− t)F (Si) + T3(1− t)Ri
′ (1) + T1(t)F (Vi)− T3(t)Ri

′ (0)− gr

=
βiC2

αiS2 + βiC2 F (Si)−
2
π

βiS (1− S)
αiS2 + βiC2 Ri

′ (1) +
βiS2

αiC2 + βiS2 F (Vi)

+
2
π

βiC (1− C)
αiC2 + βiS2 Ri

′ (0)− gr

(
S2 + C2

)

=

 βiF (Si)C2

− 2
π βiRi

′ (1) S (1− S)
−C2gr

(
αiS2 + βiC2)

 1
αiS2 + βiC2

+

 βiF (Vi) S2

+ 2
π βiRi

′ (0)C (1− C)
−S2gr

(
αiC2 + βiS2)

 1
αiC2 + βiS2

≥

 βiF (Si)C2

− 2
π βi

∣∣Ri
′ (1)

∣∣ S (1− S)
−C2gr

(
αiS2 + βiC2)

 1
αiS2 + βiC2

+

 βiF (Vi) S2

− 2
π βi

∣∣Ri
′ (0)

∣∣C (1− C)
−S2gr

(
αiC2 + βiS2)

 1
αiC2 + βiS2

=

{ 1
π βi

∣∣Ri
′ (1)

∣∣ (S− 1)2

+C2
[
− 1

π βi
∣∣Ri
′ (1)

∣∣+ βiF (Si)− αigr + (αi − βi) grC2
] } 1

αiS2 + βiC2

+

{ 1
π βi

∣∣Ri
′ (0)

∣∣ (C− 1)2

+S2
[
− 1

π βi
∣∣Ri
′ (0)

∣∣+ βiF (Vi)− αigr + (αi − βi) grS2
] } 1

αiC2 + βiS2

≥
{ 1

π βi
∣∣Ri
′ (1)

∣∣ (S− 1)2

+C2
[
− 1

π βi
∣∣Ri
′ (1)

∣∣+ βiF (Si)− gr (2αi − βi)
] } 1

αiS2 + βiC2

+

{ 1
π βi

∣∣Ri
′ (0)

∣∣ (C− 1)2

+S2
[
− 1

π βi
∣∣Ri
′ (0)

∣∣+ βiF (Vi)− gr (2αi − βi)
] } 1

αiC2 + βiS2 .

We can obtain the following sufficient conditions for Di [F]− gr > 0, ∀x ∈ [xr, xr+1] βi > 0,

0 < αi < min
{

gr+F(Si)− 1
π |Ri

′(1)|
2gr

βi,
gr+F(Vi)− 1

π |Ri
′(0)|

2gr
βi

}
.

(29)

Similarly, Di [F] lies strictly below the piecewise step function g∗ (x) = g∗r , if g∗r − Di [F] > 0,
which is equivalent to
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g∗r − Di [F] = g∗r − T1(1− t)F (Si)− T3(1− t)Ri
′ (1)− T1(t)F (Vi) + T3(t)Ri

′ (0)

= g∗r
(

S2 + C2
)
− βiC2

αiS2 + βiC2 F (Si) +
2
π

βiS (1− S)
αiS2 + βiC2 Ri

′ (1)

− βiS2

αiC2 + βiS2 F (Vi)−
2
π

βiC (1− C)
αiC2 + βiS2 Ri

′ (0)

=

 −βiF (Si)C2

+ 2
π βiRi

′ (1) S (1− S)
+C2g∗r

(
αiS2 + βiC2)

 1
αiS2 + βiC2

+

 −βiF (Vi) S2

− 2
π βiRi

′ (0)C (1− C)
+S2g∗r

(
αiC2 + βiS2)

 1
αiC2 + βiS2

≥

 −βiF (Si)C2

− 2
π βi

∣∣Ri
′ (1)

∣∣ S (1− S)
+C2g∗r

(
αiS2 + βiC2)

 1
αiS2 + βiC2

+

 −βiF (Vi) S2

− 2
π βi

∣∣Ri
′ (0)

∣∣C (1− C)
+S2g∗r

(
αiC2 + βiS2)

 1
αiC2 + βiS2

=

{ 1
π βi

∣∣Ri
′ (1)

∣∣ (S− 1)2 + g∗r
[
(αi − βi)C2 + αi

]
+C2

[
− 1

π βi
∣∣Ri
′ (1)

∣∣+ βiF (Si) + g∗r
[
−2αi + βi − (αi − βi) S2]]

}
1

αiS2 + βiC2

+

{ 1
π βi

∣∣Ri
′ (0)

∣∣ (C− 1)2 + g∗r
[
(αi − βi) S2 + αi

]
+S2

[
− 1

π βi
∣∣Ri
′ (0)

∣∣+ βiF (Vi) + g∗r
[
−2αi + βi − (αi − βi)C2]]

}
1

αiC2 + βiS2

≥
{ 1

π βi
∣∣Ri
′ (1)

∣∣ (S− 1)2 + βig∗r
+C2

[
− 1

π βi
∣∣Ri
′ (1)

∣∣+ βiF (Si) + g∗r [−3αi + 2βi]
] } 1

αiS2 + βiC2

+

{ 1
π βi

∣∣Ri
′ (0)

∣∣ (C− 1)2 + βig∗r
+S2

[
− 1

π βi
∣∣Ri
′ (0)

∣∣+ βiF (Vi) + g∗r [−3αi + 2βi]
] } 1

αiC2 + βiS2 .

We can obtain the following sufficient conditions for g∗r − Di [F] > 0, ∀x ∈ [xr, xr+1] βi > 0,

0 < αi < min
{

2g∗r +F(Si)− 1
π |Ri

′(1)|
3g∗r

βi,
2g∗r +F(Vi)− 1

π |Ri
′(0)|

3g∗r
βi

}
.

(30)

Therefore, (29)–(30) are the sufficient conditions to ensure g (x) < Di [F] < g∗ (x).

2.4. Image Zooming Based on Two Classes of Coons Patches Construction over Triangular Domain

Coons patches constructed by the proposed method can be also applied in image interpolation
and image zooming. This work mainly discusses the problem of gray-scale images zooming.

Image zooming results using different methods will be compared by the visual quality,
edge detection by Prewitt operator and calculating peak signal to noise ratio (PSNR), structural
similarity index (SSIM), feature similarity (FSIM) [28], multiscale structural similarity (MS-SSIM) [29].

PSNR is a full reference image quality evaluation index, which is defined as follows

MSE =
1

H ×W

H

∑
i=1

W

∑
j=1

(X(i, j)−Y(i, j))2, (31)
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PSNR = 10log10(
(2n − 1)2

MSE
), (32)

where MSE is the square error between the magnified HR image and the original image. H and W is
the height and the width of the image; X is the magnified HR image; Y is the original image; n is the
bit num of pixel.

SSIM measures the image similarity from brightness l, contrast c and structure s, which are defined
as follows

l(X, Y) =
2µXµY + C1

µ2
X + µ2

Y + C1
, (33)

c(X, Y) =
2µXµY + C2

µ2
X + µ2

Y + C2
, (34)

s(X, Y) =
σXY + C3

σXσY + C3
, (35)

where µx and µy are mean of X and Y respectively; σX and σY are variance of X and Y respectively;
σXY is covariance of X and Y; C1 = (k1 ∗ L)2, C2 = (k2 ∗ L)2 and C3 = C2/2, where k1 = 0.01, k2 = 0.03
and L = 225. Therefore SSIM is defined as follows

SSIM = l (X, Y) ∗ c (X, Y) ∗ s (X, Y) . (36)

Higher PSNR and SSIM means a better quality image.
To further demonstrate the proposed method can preserve image edge details, we use a Prewitt

operator to detect the edges of the image zooming results. The Prewitt operator is used in image
processing, particularly within edge detection algorithms. Technically, it is a discrete differentiation
operator, computing an approximation of the gradient of the image intensity function. At each point
in the image, the result of the Prewitt operator is either the corresponding gradient vector or the norm
of this vector. More edge details that Prewitt operator can detect means more edge details preserved.

Method of Image Zooming by Coons Patch Construction

Given a digital gray-scale original image G(x, y) of size M × N, gi,j(i = 0, 1, . . . , M − 1; j =

0, 1, . . . , N − 1) is the gray-scale value of the pixel at row i and column j. Any three adjacent pixels
of the original image, for example, gi+1,j, gi+1,j+1, gi,j or gi,+1j, gi,j, gi+1,j+1, constitute a triangular
interpolation domain T, marked as ∆V1V2V3. Note

Ω = {
(

gi+1,j, gi+1,j+1, gi,j
)
|0 ≤ i ≤ M− 1, 0 ≤ j ≤ N − 1} (37)

∪ {
(

gi,j+1, gi,j, gi+1,j+1
)
|0 ≤ i ≤ M− 1, 0 ≤ j ≤ N − 1}.

Consider area { (x, y)| (x, y) ∈ ∆V1V2V3} where (V1, V2, V3) ∈ Ω. Vi locates at row xi and
column yi.

According to the side–side method, the constructed Coons patch on ∆V1V2V3 where (V1, V2, V3) ∈
Ω can be written as follows

f∆V1V2V3 (x, y) = ω1P1 [F] + ω2P2 [F] + ω3P3 [F] , (38)
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where Pi [F] is the same as (6)–(8), F (Q) is the value of linear interpolation to the original image I at
the point Q, ∂F

∂ei
(Q) = (xj − xk)Fx(ei) + (yj − yk)Fy(ei), ei = Vk − Vj, and alter the first-order partial

derivative with difference quotient as follows

Fx(ei) =

{ gk−gj
xk−xj

, xk 6= xj,

0, xk = xj,
(39)

Fy(ei) =

{ gk−gj
yk−yj

, yk 6= yj,

0, yk = yj.
(40)

According to the side–vertex method, the constructed Coons patch on ∆V1V2V3 where
(V1, V2, V3) ∈ Ω can be written as follows

f∆V1V2V3 (x, y) = ω1D1 [F] + ω2D2 [F] + ω3D3 [F] , (41)

where Di [F] is the same as (19), F (Q) is the value of linear interpolation to the original image I at
the point Q, ∂F

∂ei
(Si) = 0, ∂F

∂ei
(Si) = (xj − xk)Fx(ei) + (yj − yk)Fy(ei), ei = Vk −Vj and, alter the partial

derivative with difference quotient as (39) and (40).
In fact, (38) and (41) is to obtain linear interpolation function F(x, y) to the input image I, and then

construct Coons patch interpolating to F(x, y). The above construction progress shows that the whole
interpolated surface f (x, y) (0 ≤ x ≤ M − 1, 0 ≤ y ≤ N − 1) is spliced by 2× (M− 1)× (N − 1)
piecewise Coons patches f∆V1V2V3 (x, y). The interpolation surface f (x, y) can be written as follows

f (x, y) = f∆V1V2V3 (x, y) , when (x, y) ∈ ∆V1V2V3, (42)

where (V1, V2, V3) ∈ Ω.
By up-sampling to the constructed interpolation surface f (x, y), a high-resolution image can

be obtained.

3. Results

Let ∆T be the triangle with vertexes V1(0, 0), V2(1, 0), V3(0, 1). Construct Coons patches by SS
and SV interpolating to the following function over the triangular domain ∆T, which are shown in
Figure 1.

F(x, y) = 5.2exp(
−x2 − (y− 0.5)2

4
), (43)

Given scattered data generated from (43) on [0, 5]× [0, 5], and Delaunay triangulation is shown
in Figure 2. Construct two classes of Coons patches over the Delaunay triangulation by SS and SV,
which are shown in Figure 3. Theorems 1 and 2 prove that two classes of Coons patches satisfy
C1-continuous splice.
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Figure 1. Coons patches constructed by SS and SV. (a) SS with α1=β1=α2=β2=α3=β3= 1. (b) SS with
α1=α2=α3= 1, β1= 10, β2 = 15, β3 = 20. (c) SS with α1= 10,α2 = 15, α3 = 20, β1=β2=β3= 1. (d) SV
with α1=β1=α2=β2=α3=β3= 1. (e) SV with α1=α2=α3= 1,β1= 1.1,β2 = 1.2, β3 = 1.3. (f) S with
α1= 1.1,α2 = 1.2, α3 = 1.3, β1=β2=β3= 1.
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Figure 2. Delaunay triangulation of the scattered data.
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Figure 3. Splice of Coons patches constructed by side–side (SS) and side–vertex (SV). (a) SS with
α1 = β1 = α2 = β2 = α3 = β3 = 1. (b) SS with α1 = α2 = α3 = 1, β1 = 10, β2 = 15, β3 = 20. (c) SS
with α1 = 10, α2 = 15, α3 = 20, β1 = β2 = β3 = 1. (d) SV with α1 = β1 = α2 = β2 = α3 = β3 = 1.
(e) SV with α1 = α2 = α3 = 1, β1 = 10, β2 = 13, β3 = 1.2. (f) SV with α1 = 10, α2 = 13, α3 =

1.2, β1 = β2 = β3 = 1.

To compare the proposed method with bilinear, bicubic, ICBI [22], NEDI [23], SR-NLM [24]
and RBC [25], we tested three standard gray-scale images (8-bits, 512× 512): ‘pepper’, ‘plane’ and
‘flower’ from BSD200 [30]. The image zooming factor is 4. First, we obtain the low-resolution images
down-sampled by the original images with factor 1/4 and then up-sample using SS and SV methods
based on the proposed rational quadratic trigonometric Hermite functions with factor 4. The values of
shape parameters are listed in Table 1.

Experimental outcomes are assessed by the well-known state-of-the-art image quality assessment
metrics: PSNR, SSIM, FSIM [28] and MS-SSIM [29], which are listed in Tables 2–5. The values of PSNR,
SSIM, FSIM and MS-SSIM of NEDI, SR-NLM and RBC are referenced from [25].

For visual quality assessment and edge detection, Figures 4 and 5 show the pepper and plane
images up-scaled by eight methods: bilinear, bicubic, ICBI, NEDI, SR-NLM, RBC and the proposed
SS and SV methods. The image zooming results of SR-NLM and RBC are downloaded from [25].
For sensitivity analysis of SS and SV, Figures 6 and 7 show PSNR, SSIM, FSIM and MS-SSIM tested on
the image zooming results with r = α1

β1
= α2

β2
= α3

β3
, r ∈ (0, 4].

Table 1. Values of shape parameters.

Parameter α1 β1 α2 β2 α3 β3

SS1 1 1 1 1 1 1
SV1 1 1 1 1 1 1
SS2 0.9 1 2 3 1 4
SV2 1 1.01 1 1.06 1 1.05
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 4. Image zooming and edge detection results on image ‘pepper’ by different algorithm (Factor 4).
(a) Original. (b) Bilinear. (c) Bicubic. (d) Iterative curvature-based interpolation (ICBI). (e) Novel
edge orientation adaptive interpolation scheme for resolution enhancement of still images (NEDI).
(f) Super-resolution using iterative Wiener filter based on nonlocal means (SR-NLM). (g) Rational
ball cubic B-spline (RBC). (h) SS with α1 = 0.9, β1 = 1, α2 = 2, β2 = 3, α3 = 1, β3 = 4. (i) SV with
α1 = 1, β1 = 1.01, α2 = 1, β2 = 1.06, α3 = 1, β3 = 1.05.
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(a) (b) (c) (d)

(e) (f) (g) (h)

(i)

Figure 5. Image zooming and edge detection results on image ‘plane’ by different algorithm (Factor 4).
(a) Original. (b) Bilinear. (c) Bicubic. (d) ICBI. (e) NEDI. (f) SR-NLM. (g) RBC. (h) SS with α1 = 0.9, β1 =

1, α2 = 2, β2 = 3, α3 = 1, β3 = 4. (i) SV with α1 = 1, β1 = 1.01, α2 = 1, β2 = 1.06, α3 = 1, β3 = 1.05.
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Figure 6. Sensitivity analysis of SS with r = α1
β1

= α2
β2

= α3
β3

(Factor 4). (a) Peak signal to noise
ratio (PSNR). (b) Structural similarity (SSIM). (c) Feature similarity (FSIM). (d) Multiscale structural
similarity (MS-SSIM).

Table 2. Comparison of different image zooming methods in terms of peak signal to noise ratio (PSNR).

Image Bilinear Bicubic ICBI NEDI SR-NLM RBC SS1 SS2 SV1 SV2

Pepper 23.06 22.70 26.82 22.69 22.79 22.98 26.75 27.05 26.24 26.25
Plane 22.23 21.88 25.05 24.88 25.29 25.79 25.58 25.76 24.34 24.35

Flower 25.55 25.22 29.84 28.59 28.97 29.64 29.59 29.72 28.45 28.46
Average 23.62 23.27 27.23 25.39 25.68 26.13 27.30 27.51 26.34 26.35

Table 3. Comparison of different image zooming methods in terms of Structural similarity index (SSIM).

Image Bilinear Bicubic ICBI NEDI SR-NLM RBC SS1 SS2 SV1 SV2

Pepper 0.717 0.705 0.784 0.669 0.666 0.699 0.780 0.784 0.780 0.781
Plane 0.734 0.731 0.812 0.806 0.810 0.823 0.821 0.824 0.837 0.837

Flower 0.806 0.801 0.884 0.789 0.797 0.812 0.891 0.892 0.864 0.864
Average 0.752 0.746 0.827 0.803 0.806 0.829 0.831 0.833 0.827 0.827
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Table 4. Comparison of different image zooming methods in terms of feature similarity (FSIM).

Image Bilinear Bicubic ICBI NEDI SR-NLM RBC SS1 SS2 SV1 SV2

Pepper 0.875 0.876 0.932 0.958 0.963 0.970 0.934 0.935 0.937 0.937
Plane 0.734 0.731 0.906 0.943 0.946 0.952 0.910 0.911 0.914 0.914

Flower 0.897 0.897 0.952 0.936 0.944 0.954 0.952 0.953 0.942 0.940
Average 0.871 0.871 0.930 0.956 0.951 0.959 0.932 0.933 0.931 0.931

Table 5. Comparison of different image zooming methods in terms of multiscale structural
similarity (MS-SSIM).

Image Bilinear Bicubic ICBI NEDI SR-NLM RBC SS1 SS2 SV1 SV2

Pepper 0.836 0.836 0.899 0.869 0.876 0.881 0.903 0.905 0.908 0.908
Plane 0.813 0.813 0.892 0.718 0.930 0.940 0.894 0.900 0.904 0.905

Flower 0.844 0.844 0.931 0.915 0.919 0.926 0.931 0.932 0.923 0.924
Average 0.831 0.831 0.909 0.834 0.908 0.916 0.909 0.912 0.912 0.912
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Figure 7. Sensitivity analysis of SV with r = α1
β1

= α2
β2

= α3
β3

(Factor 4). (a) PSNR. (b) SSIM. (c) FSIM.
(d) MS-SSIM.

4. Discussion

In Figure 1, for SS and SV, both the interior Coons patches shows convex shape when α < β and
concave shape when α > β. When α = β, it shows convex interior shape in the middle for SS and
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concave interior shape for SV. However, Coons patches constructed by the proposed methods always
interpolate to function value and the first partial derivative on the boundary.

In Figure 3, it is shown that when changing the values of shape parameters, Coons patches splice
shows piecewise convex or concave, so as to achieve the complex surface design. Splice of Coons
patches constructed by the proposed methods always keep C1-continuity at the boundary of the
piecewise Coons patch.

In Tables 2–5, SS1 and SS2 has the highest PSNR values on aveage, and have slightly lower FSIM
and MS-SSIM values than SR-NLM and RBC. SS2 has the highest SSIM values on average. SS2 have
higher PSNR, SSIM and FSIM values than SS1, which demonstrates that we can acquire higher quality
images by adjusting values of shape parameters. SV1 and SV2 have similar indexes, for values of shape
parameters are close. SV1 and SV2 have higher MS-SSIM values than bilinear, bicubic, ICBI, NEDI,
SR-NLM, SS1 and SS2 on average. Therefore, our methods still give pleasing results overall.

For visual quality assessment, in Figure 4, we find that SR-NLM and RBC lose edge details,
while bilinear, bicubic, ICBI, NEDI, SS and SV preserve clear edges. In Figure 5, we find that bilinear,
SR-NLM, RBC, SS and SV preserve sharp and straight edges in the highlighted area, while deformed
edges are detected in bicubic, ICBI and NEDI. Bilinear, bicubic and ICBI show the problem of damaging
the texture on other areas (e.g., The mountain of the plane image), where the edge detections show
circle textures instead of complex textures. Compared to SR-NLM and RBC, SS and SV have sharper
edges in the highlighted area and clearer texture details in another area (e.g., The mountain of the
plane image). More texture details were detected in SS than SV.

Through computation, we find that SS with α1 = 0.9, β1 = 1, α2 = 2, β2 = 3, α3 = 1, β3 = 4
(SS2) and SV with α1 = 1, β1 = 1.01, α2 = 1, β2 = 1.06, α3 = 1, β3 = 1.05 (SV2) will give best image
zooming results.

For sensitivity analysis, from Figures 6 and 7, we find that for SS, indexes values of image zooming
quality are sensitive to values of shape parameters when r = α1

β1
= α2

β2
= α3

β3
∈ (0, 1], and indexes values

maintain high when r ∈ [1, 4]. For SV, indexes values are sensitive to values of shape parameters,
and it achieve the highest quality when r is around 1.

In conclusion, in order to improve the quality of image zooming, we proposed a class of
rational quadratic trigonometric Hermite functions with two shape parameters. Based on the
proposed functions, using the improved side–side method and side–vertex method for interpolation,
we proposed two classes of C1-continuous Coons patches constructions over the triangular domain.
Coons patches constructed by the proposed methods always interpolate to the function values and
the first-order partial derivatives on the boundary. We can adjust the interior shape of Coons patches
by altering the values of shape parameters without influencing the boundary shape. Splice of
C1-continuous Coons patches constructed by the proposed methods can interpolate to complex surface.
Since the Coons patches are constructed over the triangular domain, they can interpolate to scattered
data through the Delaunay triangulation.

Applying the proposed Coons patches construction to image zooming, we give region control
of shape parameters to deal with the problem of well-posedness. We also give sensitivity analysis
on values of shape parameters. Compared to bilinear, bicubic, ICBI, NEDI, SR-NLM and RBC,
the proposed methods improve PSNR and SSIM. Through edge detection analysis by Prewitt operator,
compared to these six methods, the proposed methods can better preserve sharp edges and textures.
Therefore the proposed Coons patch construction can improve the visual effect of the image and it is
effective in computation for image zooming. Our future work will be C2-continuous Coons surfaces
over the triangular domain with shape parameters.
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Abbreviations

The following abbreviations are used in this manuscript:

PSNR Peak Signal to Noise Ratio
SSIM Structural Similarity
FSIM Feature Similarity
MS-SSIM Multiscale Structural Similarity
SS Side–side Method Based on the Rational Quadratic Trigonometric Hermite Functions
SV Side-vertex Method Based on the Rational Quadratic Trigonometric Hermite Functions
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