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Abstract: The developments in the fields of industrial Internet of Things (IIoT) and big data
technologies have made it possible to collect a lot of meaningful industrial process and quality-based
data. The gathered data are analyzed using contemporary statistical methods and machine learning
techniques. Then, the extracted knowledge can be used for predictive maintenance or prognostic
health management. However, it is difficult to gather complete data due to several issues in IIoT, such
as devices breaking down, running out of battery, or undergoing scheduled maintenance. Data with
missing values are often ignored, as they may contain insufficient information from which to draw
conclusions. In order to overcome these issues, we propose a novel, effective missing data handling
mechanism for the concepts of symmetry principles. While other existing methods only attempt
to estimate missing parts, the proposed method generates a whole set of data set using Gaussian
process regression and a generative adversarial network. In order to prove the effectiveness of the
proposed framework, we examine a real-world, industrial case involving an air pressure system
(APS), where we use the proposed method to make quality predictions and compare the results with
existing state-of-the-art estimation methods.

Keywords: missing data generation; industrial big data; air pressure system; generative adversarial
network; Gaussian process regression

1. Introduction

Failure analysis and process predictions for manufacturing processes have significant impacts on
improving product quality and process reliability. A number of studies on failure cause analysis and
classification using machine learning or deep learning methods are actively been conducted, which
will lead to improvements in product quality and reliability. For instance, a failure of the brakes in a
vehicle may lead to a significant accident, so it is important to predict any potential failures. In heavy
vehicles such as trucks excavators, the performance of the brakes is very important due to the heavy
weight they must bring to a halt. The brakes of a truck are driven by an air pressure system, and
therefore require pressurized air to operate. If the air pressure in the system does not reach a certain
level, its brakes may not work precisely and then serious accidents can occur. This research focuses on
quality prediction of an air compressor and pressure system found in vehicles. The air pressure system
(APS), an essential part of the vehicle, stops or decelerates the vehicle by applying compressed air to
the brakes. Figure 1 depicts the APS structure.

As shown in Figure 1, the air compressor compresses air that is initially at atmospheric pressure
and maintains the air at optimum pressure through the air compressor governor. The compressed
air moves to the air reservoir. When the driver presses the brake pedal, the brake valve closes and
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compressed air stored in the air reservoir is used to brake by applying pressure to the brake chamber
through the line.Symmetry 2020, 12, x FOR PEER REVIEW 2 of 21 
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of the operating sensor attributes from a broken Scania truck, in which the attributes are anonymized. 
In order to investigate the causes of any APS failure, these attributes and their data are analyzed 
using several machine learning and statistical methods.  

However, the data have a number of missing values due to sensor failures. Missing data can 
mean that there is insufficient information for analysis by existing methods and can make it difficult 
to identify the actual cause of any failure. In addition, missing values cause disproportionately 
distributed data, and for models trained on properly proportioned data this reduces the accuracy of 
the classification performance. Figure 2 shows the issue of missing values in a real APS failure 
incident in the Scania trucks data set. Missing values are marked as not available (na). The data are 
used for the failure study of a vehicle. The positive class (pos) of the data set indicates that the failure 
is in the APS, and the negative class (neg) indicates that the failure is not related to the APS. 

Figure 1. Air pressure system (APS) structure.

It is important to predict defects and malfunctions in the APS. Well considered analysis of data
leads to reliable predictions of potential APS failures and contributes to the minimization of dangers,
as well as reduces maintenance costs. In this study, the data set for the failure analysis is from APS
operations and the relevant quality data is from the Scania trucks data set [1]. This data set consists of
the operating sensor attributes from a broken Scania truck, in which the attributes are anonymized. In
order to investigate the causes of any APS failure, these attributes and their data are analyzed using
several machine learning and statistical methods.

However, the data have a number of missing values due to sensor failures. Missing data can
mean that there is insufficient information for analysis by existing methods and can make it difficult
to identify the actual cause of any failure. In addition, missing values cause disproportionately
distributed data, and for models trained on properly proportioned data this reduces the accuracy of
the classification performance. Figure 2 shows the issue of missing values in a real APS failure incident
in the Scania trucks data set. Missing values are marked as not available (na). The data are used for the
failure study of a vehicle. The positive class (pos) of the data set indicates that the failure is in the APS,
and the negative class (neg) indicates that the failure is not related to the APS.

In APS failure analysis, the classification performance depends heavily on the data’s completeness
level. The more missing values in the data, the lower the completeness level is. Unfortunately, the
Scania APS data contains a number of missing values. In addition, these missing values may cause
a lack of data for analysis. Therefore, it is important to have a framework that handles incomplete
data. Missing values and data imbalances are a primary cause for less accurate quality prediction.
In addition, several kinds of multivariate statistical analysis cannot be applied to this data set due
to the issues of missing values. This situation makes missing value estimations the most important
preprocessing steps. A number of existing studies [2–13] have proposed methods to overcome this
data imbalance issue. Table 1 summarizes several existing missing value estimation methods and
their applications.
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Table 1. Existing research studies and applications for estimating missing data.

Missing Value
Handling Method

Research Studies and
Applications Main Estimation Techniques and Frameworks

Imputation

Paul [2] Multiple imputation (MI)-based missing value
estimation

Dempster, Laird, and Rubin [3]
Probability modeling maximum likelihood

estimation (MLE)-based estimation
Expectation maximization-based estimation [4]

Hastie et al. [5],
Troyanskaya et al. [6]

Singular value decomposition (SVD) and
K-nearest neighbor (KNN)-based missing data

imputation

Zhang [7] Regression-based imputation

Gondara and Wang [8] Deep denoising autoencoder-based imputation

Gemmeke et al. [9] Missing data imputation using sparse
imputation-based compressive sensing (CS)

Estimation

Oba et al. [10] Bayesian network-based preprocessing
Gene profiling expression

Little and Rubin [11] Least squares-based missing data analysis

Gondek, Hafner, and Sampson [12] Missing value imputation using random forest
and feature engineering

Perepu and Tangirala [13] Missing value estimation using a CS method with
adaptive dictionary

Chodosh, Wang, and Lucey [14] Estimating a dense depth map using a CS method
and alternating direction neural networks

Most research methods resort to data imputation, where a data set with missing values is ignored.
However, these kinds of methods cause distortion of the captured data-based probability distribution.
In addition, the variance of the data that is used becomes heavily distorted. In order to overcome
the issue, this paper proposes a novel, effective framework to generate a complete data set using
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a generative adversarial network (GAN) and Gaussian processes regression (GPR). The proposed
framework is based on the symmetry principles, which the original data and the generated data have.
Scania APS data are used as exemplary test data and the proposed method is compared with other
existing methods.

Section 2 examines the background of the key techniques we use (GPR and GAN) and reviews the
relevant literature. Section 3 proposes an overall framework for generating a data set using GPR and
GAN. Section 4 shows the proposed method’s effectiveness with experimental analysis of the proposed
framework and provides comparisons with other classification models using the APS data.

2. Background Knowledge and Literature Reviews

2.1. Gaussian Processes Regression

GPR [15–19] is a Bayesian algorithm and has the ability to provide a statistical uncertainty measure.
Since it can provide high uncertainty prediction measurements in changing environments, the GPR
algorithm has been applied in various research fields, as shown in Table 2.

Table 2. Research studies and applications using Gaussian processes regression (GPR).

Research Studies Using GPR Application Areas

Jochem et al. [20] Automated spectral band analysis

Ak et al. [21] The time and space prediction of an infectious diseases

Luttinen and Ilin [22] Sea level temperature reconstruction using GPR

Nguyen and Peters [23] Kinetics model estimation

Nguyen, Hu and Spanos [24] Efficient building field formation using an estimation of indoor
environment fields

Chen et al. [25] Wind prediction for energy efficiency

Oh and Lee [26] Estimation of pheromone values based on ant colony optimization

Figure 3 depicts the general process of GPR. The latent variable fi is derived from the input value
Xi with the observed value Yi. The distribution of the test observation value Y∗ is estimated using the
Gaussian field f∗ for the input value X∗.

Symmetry 2020, 12, x FOR PEER REVIEW 5 of 21 

 

Table 2. Research studies and applications using Gaussian processes regression (GPR). 

Research Studies Using 
GPR 

Application Areas 

Jochem et al. [20] Automated spectral band analysis  
Ak et al. [21] The time and space prediction of an infectious diseases  

Luttinen and Ilin [22] Sea level temperature reconstruction using GPR 
Nguyen and Peters [23] Kinetics model estimation 
Nguyen, Hu and Spanos 

[24] 
Efficient building field formation using an estimation of indoor 
environment fields 

Chen et al. [25] Wind prediction for energy efficiency 
Oh and Lee [26] Estimation of pheromone values based on ant colony optimization  

Figure 3 depicts the general process of GPR. The latent variable 𝑓௜ is derived from the input 
value 𝑋௜ with the observed value 𝑌௜. The distribution of the test observation value 𝑌∗ is estimated 
using the Gaussian field 𝑓∗ for the input value 𝑋∗. 

 

Figure 3. Graphical model of Gaussian process regression. 

The training data set is {(𝑥(௜), y(௜))}௜ୀଵ௟ , while Equations (1) and (2) summarize the general GPR 
model. y = 𝑓 + ϵ (1) 

where, ϵ ~ N൫0, σ୷ଶI൯ 𝑓 ~ GP(m(𝑥), k(𝑥, 𝑥∗)) (2) 

where m(𝑥) = E[𝑓(𝑥)], and k(𝑥, 𝑥∗) = E[(𝑓(𝑥) − m(𝑥))(𝑓(𝑥∗) − m(𝑥∗))] 
In Equation (1), ϵ is a noise parameter that follows a Gaussian distribution, with variance of σ୷ଶ 

and a mean of 0. Here, 𝐼 is an identity matrix constructed according to the data’s dimensions, 𝑓 is 
the transformation relation-based value for the equivalent input vector 𝑋, and Y is the observed 
output vector. Equation (2) is the “distribution over functions” [19] used to derive the test target value Y using the Gaussian model. The distribution consists of a mean m(𝑥) and variance covariance k(𝑥, 𝑥∗) derived by sampling from a multivariate Gaussian distribution. The covariance function k(𝑥, 𝑥∗) is commonly parameterized by a kernel parameter and models the dependence between 
existing observed input points 𝑥 and new test input points to predict 𝑥∗. Equation (3) is a radial basis 
kernel function that calculates a similarity measure between both data instances. The kernel is a 
closeness measure of data points. It is not just used to model the dependence of observed and 
unobserved points, but all points. 

Figure 3. Graphical model of Gaussian process regression.

The training data set is
{(

x(i), y(i)
)}l

i=1
, while Equations (1) and (2) summarize the general

GPR model.
y = f + ε (1)
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where, ε ∼ N
(
0,σ2

yI
)

f ∼ GP(m(x), k(x, x∗)) (2)

where m(x) = E[ f (x)], and k(x, x∗) = E[( f (x) −m(x))( f (x∗) −m(x∗))].
In Equation (1), ε is a noise parameter that follows a Gaussian distribution, with variance of σ2

y
and a mean of 0. Here, I is an identity matrix constructed according to the data’s dimensions, f is the
transformation relation-based value for the equivalent input vector X, and Y is the observed output
vector. Equation (2) is the “distribution over functions” [19] used to derive the test target value Y using
the Gaussian model. The distribution consists of a mean m(x) and variance covariance k(x, x∗) derived
by sampling from a multivariate Gaussian distribution. The covariance function k(x, x∗) is commonly
parameterized by a kernel parameter and models the dependence between existing observed input
points x and new test input points to predict x∗. Equation (3) is a radial basis kernel function that
calculates a similarity measure between both data instances. The kernel is a closeness measure of data
points. It is not just used to model the dependence of observed and unobserved points, but all points.

k(x, x∗) = exp(γ·
∣∣∣x− x∗

∣∣∣2) (3)

where γ is a hyper parameter of the kernel function.
The parameter γ is related with the variance of a data set. After the mean function and kernel

types are selected, the Gaussian process produce predictions are made based on previous observations.
However, any actual data obtained from measurements include a lot of noise in general. Therefore, an
observed output vector Y with its noise is expressed as in Equation (4).

Y ∼ N
(
0, k + σ2

yI
)

(4)

In Equation (4), the observed output vector Y with a mean 0 and covariance k + σ2
yI follows

the properties of multivariate Gaussian distribution and is used as a prediction model. Equation (5)
denotes the prior distribution for f∗(X∗) with the noise condition, f∗(X∗) is a function that outputs a
predicted vector Y∗ for a vector X∗, which has a new input point x∗. It is a prior distribution model that
considers the noise generated when the test data vector X∗ is input and the output data are predicted
through the function value f∗(X∗).[

Y
f∗

]
∼ N

(
0,

[
k(X, X) + σ2

yI k(X, X∗)
k(X∗, X) k(X∗, X∗)

])
(5)

The maximum likelihood estimator (MLE) and variance of the predicted distribution derived
using the newly updated Gaussian process is expressed as seen in Equations (6) and (7).

m(x) = k(x, X)(k(X, X) + σ2
yI)
−1

Y (6)

k(x, x∗) = k(x, x∗) − k(x, X)(k(X, X) + σ2
yI)
−1

k(X, x∗) (7)

In this study, the introduced GPR framework is used to estimate missing values in our real-world
imbalanced data set. The GPR process helps produce more accurate modeling from the data. The
following section explains the GAN method, which generates a new data set using the GPR-based
missing value estimations.

2.2. Generative Adversarial Network

GAN [27] is a generative model that uses the neural network architecture. A general GAN
framework includes two types of model, both of which are neural networks: a generator (G) and a
discriminator (D). Both models generate data that become closer to the real data set by competing with
each other. GANs have been used in many research fields, as shown in Table 3.
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Table 3. Research studies and applications using a generative adversarial network (GAN).

Research Studies Using GAN Application and Characteristics

Kim and Lee [28]
Missing data generation of semiconductor manufacturing
processes data
method: Oversample→ GAN based data generation

Yoon, Jordon, and Schaar [29]
Missing data imputation of breast cancer, spam, letter recognition,
credit, news data
GAN-based hint generation

Kim and Lee [30] Missing data generation of steel Plates faults data
Estimate the missing value by adding missing term based on the GAN

Shang et al. [31] Image generation
GAN-based missing view imputation

Mao et al. [32] Image generation
Least squares loss function-based discriminator in a GAN

Zhao, Mathieu, and Le Cun [33]
Image generation
Energy value allocation according to data density-based a
discriminator in a GAN

Li et al. [34] Object detection
GAN-based high-quality image generation

As shown in Figure 4, the generator G takes a vector z extracted from random noise as its input
and attempts to generate data which is close to the real data. The discriminator D learns how to
distinguish between real data and the generated fake data. During training, while this process is being
repeated, the generator minimizes the probability that the discriminator can distinguish real from
generated data, and the discriminator maximizes the probability of distinguishing real data from the
generated data.
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As shown in Figure 4, the sample data extracted from the real data are represented by x and
the distribution of the real data are pdata(x). The distribution of the data from the generator is pg

and the input noise variable is pg(z). The discriminator and the generator are differential multilayer
perceptrons with θd and θg as parameters, respectively.

D(x) is the probability that x comes from the real data distribution. D(G(z)) is the probability
that G(z) comes from the pg, which is not from the real data distribution. D(x) should point to 1 and
D(G(z)) should point to 0, resulting in a min-max problem as shown in Equation (8). The objective
function of GAN is shown in Equation (8).

min
G

max
D

V(D, G) = Ex∼pdata(x) [log D(x)] + Ez∼pz(z)[log(1−D(G(z)))] (8)
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where fD
(
xd

)
= Ex∼pdata(x) [log D(x)], fG(xg) = Ez∼pz(z)[log(1−D(G(z)))].

According to the distributions (pg and pdata(x)), the discriminator learns to distinguish between the
real and the fake, and the generator also learns to produce a distribution that is similar to the real data
in order to prevent the discriminator from easily distinguishing what is fake. If this learning process
is repeated, pg = pdata(x), so we get to the point where the discriminator cannot distinguish anymore.
Then, the converged D(x) follows Equation (9).

D∗(x) =
pdata(x)

pdata(x) + pg(x)
(9)

In Equation (8), the optimum value is obtained at pg = pdata(x) so, the value of D∗(x) is 1
2 . The

generator proceeds learning in a way so that D∗(x) becomes close to 1
2 .

This research applies the GAN framework, which is used for the correction of missing data after
GPR correction. The detailed framework is provided in Section 3.

3. Generative Adversarial Network-Based Missing Value Estimation Framework

In general, real data from manufacturing processes contains a number of missing values. This
causes a lack of data and data imbalance as a result. These issues such as data shortages and data
imbalances make it difficult to analyze the industrial data accurately. This section explains a new
and effective framework to estimate the missing values and generate data that is closer to the real
data distribution. Figure 5 shows the detailed procedures for generating a data set, which includes
missing values.
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As shown in Figure 5, the missing values of the original data are indicated as not available (na).
First, if na exists, it is replaced with the average value of the attribute data that are missing. The
average value ehl is derived according to Equation (10).

ehl =

∑n
h=1 ah

n
(10)
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where n is the number of remaining values, except for the missing value in the attribute, where the
missing value comes from; h is the number of instance vectors and l is the number of attributes.

Then, approximate estimation of the missing value is achieved using GPR. In this case, GPR is
applied to an instance vector.

f (Y∗) ∼ N(m(X), k(X, X∗)) (11)

Equation (11) is derived using the prediction procedure provided in Section 2.1. The missing
value is estimated by predicting a new estimate Y∗ through Equations (12)–(14). Missing values are
predicted based on GPR and updated to ehl.

X = [xh1, xh2, . . . , ehk, . . . xhl] (12)

f (ehk) ∼ N([m(ehk)], [k(Xk, X1) · · · k(Xk, Xl)]) (13)

phk = Yk = f (ehk) + ε (14)

In Equation (12), X is an input vector with l attributes and k is the missing index among these
attributes. Equation (13) is the distribution of the latent variables in the kth attribute where the missing
value occurs, and the missing value correction value phk using GPR is the same as Equation (13). Then,
the ehk is transformed to Yk using Equation (14).

Finally, GAN is used to estimate missing values. The discriminator distinguishes the real instance
vector distribution from the generated instance vector distribution, and the generator produces a new
instance vector distribution based on the error generated by the discriminator.

The discriminator derives gradients using the backpropagation algorithm to maximize
Equation (8), while the generator derives the relevant gradient using the backpropagation algorithm
to minimize fG(xg) during the learning process. In this study, the gradient is derived to maximize
Ez∼pz(z)[log(D(G(z)))] to increase the convergence speed of learning. The learning process using the
backpropagation algorithm for the discriminator and generator is shown in Figure 6.

Figure 6a shows the discriminator’s learning process that is used to distinguish whether the input
data are from real data or are generated data. Figure 6b shows the learning process of a discriminator
to distinguish whether the input data are real or not. Figure 6c shows the learning process in which the
generator generates data from random noise values.
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Equations (15)–(17) summarize the backpropagation processes of the discriminator, and
Equation (18) and Equation (19) summarize the backpropagation process of the generator. The
backpropagation process of the discriminator derives the gradients for D(x) and D(G(z)), as shown in
respective Equation (16) and Equation (17).

w is the weight of the neural network, and the sigmoid function is used as its activation function
in this paper. Based on the output derived by the discriminator learning, the generator updates w
through the gradient to produce a newly generated data. When D(x) converges through repetition,
the estimation process is terminated.

X = [xh1, xh2, . . . , phk, . . . xhl] (20)

∂ fG(xg)

∂X
=

1
D(G(z))

·

(
yG,g

i

)
′·wG,g

ji ·(yG,g
j )′·z (21)

The missing value phk in Equation (20) is estimated and a new data set is generated using
Equation (21). Using these processes, a new set of data are generated. The generated data are
considered balanced data.

In order to show the effectiveness of GPR-based GAN, time series data with missing values were
tested. Figure 7a shows original time-series data, including Autoregressive Moving-Average (ARMA)
model - ARMA(1,1) with the Gaussian noise N(0,2). The number of data points is 1024 (N = 1024).
Among them, 100 points are randomly picked as missing parts.

Then, GPR-GAN is applied to estimate the missing value. Figure 7b shows the data gap between
the original data and the newly generated data. In order to measure the accuracy of the generated
method, Equation (22) is applied.
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Accuracy (%) =

1−
N∑

i=1

Oi −Gi
Oi

 · 100 (22)

The proposed method has 91.23% accuracy in the provided numerical test.
In order to show the effectiveness of the proposed framework, randomly generated data and

their pass/fail outputs are considered. Figure 8a shows a data set from a randomized time series
with Gaussian noise N(0, 2). The data set size is 50 data points and each data point is composed of
20 attributes. Their outputs are divided randomly into 44 passes (1) and 6 fails (0). Then, as shown in
Figure 8b, several selected sections are considered as the sections with missing values.

Figure 8c shows a newly generated data set using the proposed framework. Finally, the pass/fail
predictions using the randomly generated original data and the generated data are conducted as shown
in Figure 8d.

The following section shows how the proposed framework is effective using the real data set.
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4. Data Issues in Air Pressure System and Numerical Analysis

This section proves the effectiveness of the proposed framework and compares it with other
existing methods. As discussed in previous sections, the proposed framework has the advantage of
high performance in classification that comes from using accurate interpolations of missing values
using the GPR-based GAN framework.
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In order to show the effectiveness of the proposed framework, real-world data are used, specifically
the APS failure Scania trucks data set [1]. The data consist of 170 attributes and 60,000 instance vectors.
Training data are divided into 59,000 negative classes of APS-based faults and 1000 positive cases. Test
data are divided into 15,625 negative cases and 375 positive cases. Several attributes in each piece of
data have missing values. Table 4 shows the number of missing values in the APS data.

Table 4. Missing data issues in APS data.

Categories Total Size Data Item with
Missing Values

Percentages of
Missing Items

Training data Number of attributes 170 170 100%
Data set 60,000 59,998 99.99%

Test data
Number of attributes 170 169 99.41%

Data set 16,000 16,000 100%

In order to estimate the missing values, the proposed framework is applied. Figure 9a shows the
applied structure of the proposed framework. The generator regenerates the data by reflecting the
discriminator’s objective value that distinguishes whether the data points generated by the generator
are real data points or not. The deep neural network (DNN) is trained and tested to produce interpolated
data, as shown in the red box in Figure 9b. A pass (1) or fail (0) is diagnosed using the DNN model. The
DNN model has one input layer, multiple hidden layers, and one output layer. The hyperparameter
for the experiment is set to 0.001 for its learning rate, 28 for the mini-batch size, 100 for max-epochs,
and 0.5 for momentum.

In order to verify the effectiveness of the proposed framework, it is compared with other existing
methods, including the classification and regression tree (CART), GPR, K-means, mean-based GAN,
and compressed sensing (CS) methods. Table 5 summarizes these models and the relevant parameters.

Table 5. Models and parameters for each testing algorithm. Note: classification and regression tree =

CART; compressed sensing = CS.

Tested Frameworks Equation Parameter

GPR-based GAN
(Proposed framework)

min
G

max
D

V(D, G) = Ex∼pdata(x) [log D(x)]

+Ez∼pz(z)[log(1−D(G(z)))]

Max epochs = 100
Learning rate = 0.1
Momentum = 0.5

CART

IG( f ) = 1−
m∑

i=1
fi

2

Cost f unction =
mle f t

m IG
(

fle f t
)

+
mright

m IG
(

fright
)

Tree’s depth = 50,000
Costs of misclassification = 1:1
Occupation percentage = 1:1

GPR f ∼ GP(m(x), k(x, x∗)) Nonparametric

K-means arg min
S

k∑
i=1

∑
x∈Si

‖x− µi‖
2

Maximum number of runs = 100
Distance calculation method =

Euclidean
Surface pretreatment =

Normalization

Mean-based GAN
min

G
max

D
V(D, G) = Ex∼pdata(x) [log D(x)]

+Ez∼pz(z)[log(1−D(G(z)))]

Max epochs = 100
Learning rate = 0.1
Momentum = 0.5

CS min
x
‖x‖1 subject to y = wx Max epochs = 100

Learning rate = 0.1
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Table 6 shows the results of the confusion matrix experiment with test data for each
classification model.
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Table 6. Confusion matrix for each classification model.

Proposed Framework
Pass (Predicted) Fail (Predicted)

Pass (Actual) 15,418 207
Fail (Actual) 59 316

CART
Pass (Predicted) Fail (Predicted)

Pass (Actual) 14,084 1541
Fail (Actual) 259 116

GPR
Pass (Predicted) Fail (Predicted)

Pass (Actual) 14,625 1000
Fail (Actual) 214 161

K-means
Pass (Predicted) Fail (Predicted)

Pass (Actual) 11,249 4376
Fail (Actual) 295 80

Mean-based GAN
Pass (Predicted) Fail (Predicted)

Pass (Actual) 14,654 971
Fail (Actual) 146 229

CS
Pass (Predicted) Fail (Predicted)

Pass (Actual) 14,782 843
Fail (Actual) 106 269

As shown in Table 6 and Figure 10, the proposed GPR-based GAN framework shows the lowest
rates of type-I and type-II errors.
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Table 7 summarizes several performance evaluation indicators using the confusion matrix from
Table 6. A true positive (TP) is given if a pass is indicated in real data and a pass is indicated by
the classification model. A false negative (FN) is given if a pass is indicated in real data but a fail is
indicated by the classification model. A false positive (FP) is given if a fail is indicated in real data but
a pass is indicated by the classification model. A true negative (TN) is given if a fail is indicated in real
data and a fail is indicated by the classification model.

Table 7. Performance evaluation indicators.

Proposed Framework CART GPR K-Means Mean-Based GAN CS

Precision 0.996 0.981 0.985 0.974 0.99 0.992
Recall 0.986 0.901 0.936 0.719 0.937 0.946

Fall-out 0.157 0.690 0.570 0.786 0.389 0.282
Accuracy 0.983 0.887 0.924 0.708 0.93 0.94
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As outlined in Table 7, the definition of “precision” is the number of TP divided by the number of
TP plus FP, while the “recall” is the number of TP divided by the number of TP plus FN. The “precision”
and the “recall” handle the cases where the classification model classifies a pass when the real data
indicates a pass. The “fall-out” is the number of FP divided by the number of TN plus FP. It handles
misclassifications by the classification model when the real data indicate a fail but the classification
model gives a pass. The “accuracy” is the number of TP plus TN divided by the sum of TP, TN, FP,
and FN. “Accuracy” handles cases where both passes and fails are correctly classified. This is used as
the main performance evaluation indicator.

As shown in Table 7 and Figure 11, the accuracy of the proposed framework is 98.3% and the
fall-out is 15.7%, thus it is experimentally proved that the missing value handling using the proposed
framework has better performance than other existing methods.
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5. Conclusions

Failure analysis and relevant predictions generated from industrial big data are essential processes
for industry in order to produce high quality and reliable products. However, most industrial big
data sets are incomplete due to various issues. In these situations, existing algorithms fail to provide
accurate corrections for the missing data. Therefore, any classification task executed on these kinds of
incomplete data sets shows very poor performance.

In order to overcome this issue, the proposed framework generates a new complete data set
using the proposed GPR-based GAN framework. The provided framework is based on the symmetry
properties. First, the missing values are replaced with the mean value of the appropriate attribute.
Then, the missing value estimates are refined by applying GPR. The data characteristics from this GPR
process are linked to the GAN. Finally, the GAN is applied to generate further refinements to generate
new data that are similar to the real data. The generated data are used as training data and help to
overcome any data imbalances in the input data set.

In order to prove the performance of the proposed framework, it is compared with existing
classification models using a real industrial data set related to APS failure in Scania trucks. Numerical
analysis shows that the proposed framework has higher accuracy and lower fall-out than existing
classification models. Through numerical analysis, it was confirmed that the proposed framework is
effective compared with existing classification models.
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The proposed framework can be used to estimate missing values in a data set with a high frequency
of missing data. In addition, industrial data sets that are highly distorted with large data imbalances
can be successfully analyzed using the proposed framework. In future studies, we hope to incorporate
more efficient computation methods to handle data from multiple industrial areas.
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